

Overview FAA IT & ISS R&D: Security Today Security Tomorrow

Marshall Potter

Chief Scientist for Information Technology Federal Aviation Administration

> AIO-4 (202) 267-9878 marshall.potter@faa.gov

Three FAA Mission Goals*

Safety: Reduce fatal aviation accident rates by 80 percent in ten years

Security: Prevent security incidents in the aviation system

System Efficiency: Provide an aerospace transportation system that meets the needs of users and is efficient in applying resources

* FAA Strategic Plan

Background: FAA...

- Is one of the largest civilian users of Information Technology
- Has growing demands for IT and system security
- Is responsible for security of a significant part of the Transportation Critical Infrastructure
- Must keep an eye to the future
- Must be aware of insider threats
- Needs Research and Development to meet its mission

Enterprise Architecture Framework Must understand the business architecture to secure the business

What is Information Security?*

- Protecting information and information systems from unauthorized access, use, disclosure, disruption, modification, or destruction in order to provide:
 - integrity, which means guarding against improper information modification or destruction, and includes ensuring information non-repudiation and authenticity;
 - confidentiality, which means preserving authorized restrictions on access an disclosure, including means for protecting personal privacy and proprietary information;
 - and availability, which means ensuring timely and reliable access to and use of information.

* FISMA

The CIO wants the ability to:

- Know how well our assets are protected
- Know the effort/cost of providing security
- Maintain our security
- Identify the "observables" of pending attacks
- Reduce the attack surface

The CEO wants to know:

- How secure am I?
- Am I better off today than last year?
- Am I spending enough on security?
- What has my money accomplished?
- What's the value of my investment?
- What trends are we seeing?
- If I gave you \$x, how would you invest it?

Security Today at the FAA

- Operational Security: Integrity and Availability
- Mission Support Security: Confidentiality
- Office of Information Services and Chief Information Officer
- Chief Scientist for Information Technology
- Office of Information Systems Security

Layered Defense Model

FAA's 5 Layers of System Protection

Office of Information Systems Security

CSIRC PREVENT

Awareness and Training Patches and Fixes Vulnerability Testing PROTECT

Secure

Provide Alerts, Advisories, Bulletins

DETECT

Monitor

Network with other CIRTS/CERTS

RESPOND Secure Prevent Block/Action RECOVER Assist Provide Fixes

SECURITY BREACH: 1-866-580-1852

Security Tomorrow: Three Thrusts of R&D

- Real Time Intrusion Protect Detection, Response, & <u>Recovery</u>
 - To provide continuity of operations in the face of attacks to FAA systems
- Integrity and Confidentiality in the Mobile Environment
 - Addresses the unique FAA mobile air-to-ground environment

Trustworthy Systems from Untrustworthy Components with Untrustworthy Actors

The theory and impact of trust on security architectures

These overlap to cover safety, security, and efficiency

FAA R&D Initiatives

<u>Real Time Intrusion Protect</u> <u>Detection, Response, & Recovery</u>

- Protect keep abreast of changing threats, and mitigate vulnerabilities
- Detection CSIRC monitors networks, LAN and System Administrators keep close watch on internal and external traffic
- Response Team in place responds appropriately to intrusions with minimal impact to operations
- Recovery Effective contingency and disaster recovery plans to resume normal operations and inhibit repeat attacks

Integrity and Availability in the Mobile Environment

- Collaborative R&D AFRL
 - Cyberwolf
 - DAIWatch
 - ATN IDS

MIT Lincoln Labs/Natural Selection, Inc.

FAA In-House Tool Development for Improving Security Analyst Effectiveness

LanScape What assets am I protecting? **ATRaCT** Am I under widespread attack? Who is probing me "below my radar"? **Stethoscope**

Which alerts are most important?

Three prototype tools successfully deployed at the FAA CSIRC Passively builds map of network assets (e.g., servers, services) LanScape: ATRaCT: Detects alert trend changes Stethoscope: Detects slow, stealthy scans

Ongoing R&D likely to result in FY04 Alert Prioritizer prototype tool

- Detects successful (vs. attempted) attacks; dramatically reduces alert volumes
- Detects anomalies to find novel attacks (exploits elliptical basis functions and evolutionary computation)

Integrity and Availability in the Mobile Environment

- Integrity and Availability in an mobile environment addresses Air-Ground, wireless networks, LANs using diversity, public key infrastructure (PKI), and other technologies to reduce vulnerabilities
- Must concentrate on both RF and IR vulnerabilities
- Initial focus on CPDLC and airports

Trustworthy Systems from Untrustworthy Components using Untrustworthy Actors

Develop a (continuous/staged) model of trust

• Quarantine & Forensics

Impacts on ISSA

Summary Slide

- There is no silver bullet
- Prioritization is the key to successful design
- Security must be dynamic and forward thinking
- We must maintain current vigilance while researching the world of tomorrow