Parametric Verification of
Address Space Separation

Jason Franklin
with Sagar Chaki, Anupam Datta,

Jonathan M. McCune, Arvind Seshadri, and
Amit Vasudevan

Cylab & SEI @ Carnegie Mellon University

Outline

Seel i GidElE e Definition & Importance
Interfaces e How we model adversaries
ElElcieins - o Data structure reduction

Refinement e Verification of source code

Security Kernels

Security kernels utilize protection
mechanisms to prevent actions that
violate a security policy

— OSes, hypervisors and web browsers

Uses: cloud computing, online banking,
DRM (PS3), malware testing, national
security?, etc.

Critically important to verify absence of
security bugs

(

_

APP

-

J

\U

Adversary

>

)

2\
N

O
o

Security
Policy

State of the Art in Security Kernel Verification

 Manual/semi-automated verification

— Similar goals, costly and time consuming (requires
patience)
 SRIHDM, Inalo, Gypsy, UCLA, PSOS, [Heitmeyer et al.], seL4

 Model checking work for security kernels

— Study non-parametric verification
* [Guttman et al.], [Lie et al.], [Mitchell et al.]

e Bug finding with adversaries

— Unsound or incomplete methods
e [Kidd et al.], [Emmi et al.], [Bugrara and Aiken]

State of the Art in High-Assurance Systems

App . App App . App
(ON)
0OS + TCB

Hypervisor (TCB)

Hardware Hardware

e Security-critical components extracted and moved to hypervisor

— Reduces system code size and interface
e <10k L.O.C. and < 10 system calls

— Promising initial step to reduce complexity of verification

 TRANGO Virtual Processor, Open Kernel Labs OKL4, VirtuallLogix’s VLX,
SecVisor (CMU), TrustVisor (CMU), and many others

Limitations of State of the Art

e Manual verification effort for theorem proving is high
e Small TCBs alone don’t enable automated formal verification
e Major source of complexity for model checking is size of data structures

e Overcome limitations by exploiting structure of protection mechanisms

Approach

Automatic source-level verification of OS

protection mechanisms can be realized by:

e Parametrically reasoning about protection data structures
and

e Using refinement to carry verification down to source code
level

Verification Process

- Relate abstract

models and C e
code

Scope

Systems

e Protection mechanisms of Xen, TrustVisor, SecVisor

e Manages protection data structures, performs
permission and bounds checks

Properties

e Address separation, W xor X, access control

Adversary model

e Adversary constrained to system interface

Security Kernels

Interfaces

Parametricity

Refinement

Outline

e How we model adversaries

10

Interface-Constrained Adversary

* Adversary model = arbitrary number of calls to system call
interface with non-deterministic inputs

— Reduces complexity of adversary models, eases model checking

Without Interface Abstraction Interface-constrained Adversary
Kernel
Kernel
A(w) A(*)
Adversary <:> B(x,y) B(*,*)

C(z2) C(*)

Example

Adversary-Controlled Authoritative
* ReadWrite
* > eXe
* Write
Key Insights:

e Kernel page table is adversary-
controlled data structure

e Sync copies adversary-controlled data
into memory

e Adversary is constrained to interface
e | ={Sync(*), Add(*,*), Delete(*)}

sync =

foreach row do
if (Secure) then

copy

Sys Call
Interface

e

N

Sync(*) |

7
S

Add(*,*)

Delete(*)

~
S

\

~/

12

Common Examples

e Constrained
1 tonetwork
interface

¢ Constrained
Malicious
Process to OS SyStem
call interface

Malicious O Constrained
Web to browser
Gadget .
interface

e Constrained

Malicious
Peripheral to IOMMU
interface

13

Security Kernels

Interfaces

Parametricity

Refinement

Outline

e Data structure reduction

14

Kernel Page Table

Protection Data Structures

R UM
W KD
WX | KC

®
©

Shadow Page Table

RW UM
X KC
W KD

Secvisor Sync =

foreach row do
if (W XOR X) then
sSync

UM=User Memory KD=Kernel Data KC=Kernel Code

15

Data Structure Size and Verification Complexity

 Securit ‘uctures
— Page Goal: automated verification otc.
techniques that scale gracefully
* Comple with increase in data structure size rease§
exXpone ure Size
ME_
55,000 2 sec
4 1,700,000 <256 MB 360 sec
5 -- Out of Memory
1024

Murphi model checking SecVisor security hypervisor with increasing page table size

16

Hierarchical Nesting

Registers
m Multi-level Page Tables Single-level Page Tables
PDT PT Memory PT
-
L
PT
oic2 B oic0 RNl
pde3 ummy ptel mummy

17

Parametricity of System Data Structures

shadow_paging_sync = Row uniform
foreach row do

if (Row_Check) then Row independent
modify row;

n

I
L
—

Small Model Analysis:
Modeling Systems and Properties

* Model kernel and adversaries

— Parametric Guarded Command
Language (PGCL)

* Express security properties

— Parametric Temporal
Specification Logic (PTSL)

SYS(n)J

ADV(n)

| 4
sary

Apps : : Adver

y;

[' Security Kernel

SK(n) \

J

2

Language Design Challenges

Balancing expressiveness with small
model analysis

— Conditionals

— Whole array ops

— Assignment

— Parallel and sequential composition
— Non-deterministic update

foreach row do

1f (Condition) then
Set row = X;

Distinctive features Adversary =
— Modeling systems and adversaries:

whole array operations foreach row do
— Adversary: Non-deterministic row[0] = *;

updates

Parametric Programming Language

Natural Numerals K
Index Variable i
Boolean Variables B
Parametric Variable n
Expressions E = T|L|*x|B|EVE|EAE|—-E
Parameterized Expressions E = E|Ppq[i][K] EVE|EAE|-E
Instantiated Guarded Commands G = GC(K)
Guarded Commands GC == E?C Siumple guarded command
| GC||GC Parallel composition
Commands C = _ B:=E Assignment
| fori : Ppqdo E ? C Parametric
| C.C Sequencing
Parameterized Commands C = | Pngli][K] :=E Parameterized array assignment
| TC Sequencing

Language for modeling system &
adversary

— Finite number of Boolean variables
— System parameter: n
— Single parametric array: P of size n x q

— Parametric loop
e fori:P[n,gJdoE?C

Kernel Entry =
—kernelmode ? kernelmode :=T;

fori:Pn,qdo
Pn,q[i][Write] =T ? Pn,q[i][eXe] := L;

21

Kernel Entry =

SecVisor Model

—ikernelmode ? kernelmode :=T;

fori:Pn,qdo

Pn,q[i][SPTPA] = KC ?
Pn,q[i][SPTRW] := L;
Pn,q[i][SPTX] :=T;

Kernel Page Table

Sync =
T ?fori:Pn,qdo
T ? Pn,q[i][SPTPA] := Pn,q[i][KPTPA]

Attacker =

T?fori:Pn,gdo
Pn,q[i][KPTPA] :=*;
Pn,q[i][KPTRW] := *;
Pn,q[i][KPTX] := *

Shadow Page Table

R UM
R X| KD
WX | KC

R UM
Sync > | RW KD
X | KC

22

Expressive Specification Logic

Basic Propositions BP 1= b, beB
| -BP
| BPABP
Parametric Propositions PP(i) 1= {Pngq[i][1]|[1] < [q]}
| -PP(3)
| PP(i)APP(i)

PTSL Path Formulas TLPF := TLF “state formula”

| TLFATLF “conjunction”
Propositi . - nction”
- “ Execution Integrity:

1e next state”
e Basic range

« Parametric In kernel mode, only kernel code should be executable. I
It is stated as follows:

Universal Sta their negations™

Pexec == MODE=KERNEL=>(V i P[i][eXe]=(P[il[CodeType] = KC))

| A ILPF ““for all computation paths”
Existential State Formulas ESF ::= BP
| Ji.PP(1)
| BP AJi.PP(i)
Generic State Formulas GSF ::= USF Temporal |OgIC SpeCIﬁcatlonS
] ESF
| USFAESF e Path formulas

e Subset of ACTL* with USF as atomic
Reachability properties propositions

e State formulas

e Universal, existential, and generic 23

Small Model Theorems

Verify
* Relate properties of System(1) Lmsecure J
to System(n), for all finite n
_ System(1)

— Sound: If small model is secure { T

then large model is secure
— Complete: If small model is -

insecure then large model is % Insecure J

insecure v

Small Model Safety Theorem

System model
— Let gc(k) be any instantiated guarded command (i.e., any well-formed program)

Security property

— Let @ in GSF be any generic state formula
* Foralli. P(i), Exists i. P(i), or conjunctions of

Initial state
— Let Init in USF be any universal state formula (For all i. P(i))

Definition: model exhibits @ if contains reachable state that satisfies @
Theorem: M(gc(k), Init) exhibits ¢ iff M(gc(1), Init) exhibits ¢

Thms with different initial conditions & properties in [Oakland2010]

Small Model Analysis

Initial condition:
SecVisor starts in kernel mode and only SYS(n) \ ADV(n)
kernel code is executable
System Adversary
mode = kernel AND
FOREACH page in SPT, if eXe then @
age maps kernel code
pag P RM(n)
. . SecVisor(n)
Execution Integrity: .
In kernel mode, only kernel code should be
executable. W xor X
_
-
=
(7))
SecVisor(1)

Verify

Verification Results

* SecVisor (Shadowvisor, sHype, Xen),
adversary, and properties expressible

— Small Model Theorems apply
* Translate to Murphi, verify

— Two vulnerabilities, repaired, verified

e Two more in ShadowVisor

Sync = Secure Sync =
T ?fori:Pn,qdo T ?fori:Pn,qdo

T? (—Pn,q[i][SPTX] A —(Pn,q[i][KPTPA] =
Pn,q[i][SPTPA] :=Pn,q[i][KPTPA] KC)) ?

Pn,q[i][SPTPA] := Pn,q[i][KPTPA]

Extending Parametricity Results

page_fault (u32 addr) {

pdt = get _pdt(addr);

e Multiple, linked, parametric arrays if (pdt is ADDR) {
e Extended PGCL to handle multiple 1f (pdt < MAX)
parametric arrays } else {c°py’
e Added nested quantifiers to PTSL if (getpde(addr) < MAX)

e New small model theorems copy;

Related Work

* Parametric verification for correctness

— Missing whole array operators (adversary) or less efficient
* [Lazic et al.] and [Emerson and Kahlon]

— Incomplete methods (environment abstraction)
* [Clarke et al.] and [Talupur et al.]

* Parametric verification for security

— Focus on security protocols
* [Lowe et al.], [Roscoe and Broadfoot], [Durgin et al.], [Millen]

Security Kernels

Interfaces

Parametricity

Refinement

Outline

¢ VVerification of source code

30

Towards Source Level Verification

C code Guarded Command Representation

page_fault (u32 addr) {
pdt = get_pdt(addr);
if (pdt.ADDR) {
if (pdt < MAX)
copy;

} else {
if (getpde(addr) < MAX) DR && pde(pdt) < MAX ?

oy Refinement Theorem <[il[ADDR] := Pn,k[i][ADDR];

page_fault =
pdt.ADDR && pdt < MAX ?
Pn,k[i][ADDR] := Pn,k[i][ADDR];

2. Check language

Language containment
containment =
refinement r w
. J
p < g | Yes, results apply.
Convert C code to Check language)
guarded commands containment to p §
(GC) prove GCis in PGCL No, modify or
- y, - J ’
results do not
apply.
L J

o1

Verification

Verification

Relate abstract
models and C
code

e ..
2

Expressiveness and Limitations

e PGCL/PTSL can model:

— Protection mechanisms that
are row independent and row

uniform

— Policies that are expressible
as FSA over rows (safety

properties)

* Developed compilation to
convert FSA policy to PGCL

reference monitor

—read —send

y ’

7 ' read ’
— | start noSnd

send

Y
-

Actions error

U

universal_reference_monitor =
T?
fori @ Pypqdo
Pngqli][o}] := L:...:Pnq[i][og]) := L:
fori ! Phqdo
Pnq[i][01] A Pag[i][a1] A boarer ? Pagli][of]:=T:

fori: Pn.,; do

pﬂ;Q[i] [0s] A Png[i][aa] A bosarcs ? Pagli][os] = T:
fori @ Phqdo

Pug[i][o1] :=Pngq[i][0}]:.. .:Pa,q[i][0s] := Pa,q[i][o5]:

Assumptions and/or Limitations

e Verification
— Applies to row-uniform, hierarchical-row independent
systems (expressible in PGCL)
— Properties expressible in large subset of ACTL*/X
— Currently at model level and some source-level guarantees

— Assumptions about semantics of C, correctness of model
checker, translation tools, and of proofs

e Validation

— Security properties might not be right properties or strong
enough

— Adversary model may not match reality

Related Work

 Model checking for security

— Study non-parametric verification of secure systems
* [Guttman et al.], [Lie et al.], [Mitchell et al.]

e Bug finding with adversaries

— Unsound or incomplete methods
e [Kidd et al.], [Emmi et al.]

e QOperating system verification
— Manual/semi-automated verification
» [Walker et al.], [Heitmeyer et al.], [Klein et al.]

Questions?
More info @

http://www.cs.cmu.edu/~jfrankli

e Towards scalable automated source-level
verification of protection mechanisms

— Adversary abstraction reduces model complexity

— Parametric reasoning reduces data complexity

* Small model theorems relate small/large models
* Application to SecVisor, sHype, Shadowvisor, & Xen

— Refinement theorem pushes guarantees to source

e Qutlined path to source level verification

— Building models is time-consuming, costly, and error-
prone

— In progress, proof of refinement theorem

