

SOARTECH

Dynamical Understanding of DNS Events (DUDE)

H. Van Dyke Parunak, Alex Nickels, Rich Frederiksen Soar Technology, Inc.

Problem **Advanced Persistent Threat**

- Internal machine connects to multiple URLs to (e.g.)
 - Download exploit
 - Persistent C2 channel
 - Exfiltration
- Infection can spread within the enterprise

 not all machines show all steps of the threat

Preparation **Objectives**

- Reduce data size
- Avoid artifacts

Actions

- Round all times to nearest second
- Delete all but one of multiple DNS responses to the same IP for the same URL
- Collapse DNS resolution chains: retain records only from Ips that never respond to a DNS query
- Whitelist URLs from Month 1

Processing: Graph

All relevant data is local in the graph

- Connection times (on edge)
- Degree of URL
- Propagation
- Scale by distributing across CPUs
- Agents on each processor
- Implement different heuristics
- Interact by annotating the graph
- → Giant component has 800,472 nodes, 1500 smaller components total 3353 nodes

Example (Day 12)

- IPs adjacent to rare URLs (≤ 5
- suspect IPs

Processing: Dynamics

Exploring: Time Delay Embedding

Takens' Theorem (1981): Such plots capture the complete topology of the system trajectory in the underlying (unknown) state space.

Key hunch: "nature writes straight with crooked lines." Dynamics that emerge from legitimate software used by many interacting machines should be qualitatively more complex than beaconing from a trojan.

→ Base time series: delays between successive connections

Detecting Connections

Look for

- IPs)
- Rare URLs adjacent to

Known, Benign Examples confluence.soartech.com

Detecting Regular Beaconing

On a link with 10 or more connections to a rare URL (5 or fewer IPs)

- Compute successive differences between connection times
- Subtract their mean
- Compute Fourier transform (off-label use!)
- Drop first coefficient (0)
- Compute ratio of minimum coefficient to maximum coefficient
- Select links with highest ranking ratio

This scores type B (e.g., mine.starving.wad.f8) low. Candidate extension:

Replace long intervals with sequence

Regular Connections askerpat1sk8nd2.aa9kz-j.ho.ari.don mine.starving.wad.f8 1818.0 1817.5 + 1817.0 + 1802 ⁺ × 2500 1816.5 1798

Type A: perfectly regular Type B: missed connection

Performance **Documented Attacks** Yes No Summary Prede-Prede-Suc-Suc-Beacons Beacons cessors cessors cessors cessors 15 325^{1} 21 249^{2} 10 15 Without Hints 11 Hit DUDE With Hints 10 17 Miss 55 34 Total

Example (Day 22) IPs (internal machines) **URLs** (external machines) derrick.formian.h0 delver.h0 74.92.56.28 cot.auyp0sw.val cot.aqo6614sj1-b0mdct.val 74.92.25.58 cot.aqo6z4jll21d0hjnl.val a3njhij8op-ga.wad otyugh.muck.don

IPs (internal machines)

URLs (external machines)

- ¹ These are associated with only 9 beacons. # of predecessors/beacon = {264, 31, 18, 6, 2, 2, 2, 1, 1}
- ² These are associated with only 6 beacons. # of successors/beacon = {227, 12, 7, 3, 1, 1}. The beacon with 227 successors is the same as the one with 264 prececessors.