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Wisdom Software, Ltd.
 Small Business- Incorporated in Virginia
 Business Interests

 Formal Methods research and application 
development

 Software Certification
 System Safety Analysis

 Customer Base
 NSA
 US Army – WRAIR
 FDA



Research Objectives
 Evaluate the practicality of using 

reverse engineering (RE) to identify 
undesirable functionality (UF)

 Document and implement a practical 
(formal methods) process for RE

 Examine implications for addressing 
system security and safety



Undesirable Functionality
Definition

 permits non-secure access
 exports sensitive information
 damages computer or network operations
 modifies other unrelated systems or 

resources
 otherwise compromises system security



The UF Problem
 There is potentially an infinite set of 

unique instances of UF
 Each instance might be implemented in 

many ways
 Implications

 A general solution is needed
 Functionality must be examined in context



Finding Undesirable 
Functionality
 Pattern matching is insufficient

 Only useful if you already know specifically 
what you are looking for

 Does not address variations on 
implementation

 Does not identify unknown undesirable 
functionality

 The alternative: Examining functional 
behavior in context



Examination of Behavior in 
Context
 Context is based on the scope of information 

abstracted from the software
 Context of definition
 Context of use

 Obvious behavior
 Local function definition
 Short stimulus sequence trigger

 Not so obvious behavior
 Function definition is distributed
 Long stimulus sequence trigger



Reverse Engineering Process
 Segment the software into functional 

blocks
 Abstract the program function for each 

segment
 Compose the abstracted segment 

functions
 Generate the Legal Sequence Table 

from the composed segment function



Segmentation
 Segmentation divides the software into 

functional blocks
 A segmentation graph shows the 

hierarchical relationship of the 
segments

 Each segment represents a context of 
definition



static void free_proc_chain(struct process_chain *procs) 
{ 
    struct process_chain *p; 
    int need_timeout = 0; 
    int status; 
 
    if (procs == ((void *)0) ) 
        return;                          
      
# 2666 "alloc.c" 
 
    for (p = procs; p; p = p->next) { 
        if (waitpid(p->pid, (int *) 0, 1 ) > 0) { 
            p->kill_how = kill_never; 
        } 
    } 
 
 
    for (p = procs; p; p = p->next) { 
        if ((p->kill_how == kill_after_timeout) 
            || (p->kill_how == kill_only_once)) { 
              
            if (kill( p->pid ,   15  )  != -1) 
                need_timeout = 1; 
        } 
        else if (p->kill_how == kill_always) { 
            kill(p->pid, 9 ); 
        } 
    } 
 
    if (need_timeout) 
        sleep(3); 
      
    for (p = procs; p; p = p->next) { 
 
        if (p->kill_how == kill_after_timeout) 
            kill(p->pid, 9 ); 
 
        if (p->kill_how != kill_never) 
            waitpid(p->pid, &status, 0); 
    } 
} 

 



Function Abstraction
 Function abstraction is the process of 

deriving a state machine for a segment
 A state machine is abstracted for each 

segment in the system being analyzed
 The state machine is represented in a 

tabular format for each segment



Function Composition
 Abstracted state machines for related 

segments are combined by function 
composition

 A loop unrolling algorithm is employed to 
eliminate dynamic looping or recursion in the 
software
 Resulting definition of behavior is an 

approximation
 Accuracy increases as the number of cycles 

unrolled is increased



Segment 82  
Stimulus Current Condition State Update Response 

Invoke procs == null  return 
terminate 

Invoke procs != null  waitpid(procs->pid, (int*) 0, 1) 
waitpid(procs->pid, (int*) 0, 1) 
> 0 

procs!= null procs->kill_how = kill_never  terminate 

waitpid(procs->pid, (int*) 0, 1) 
≤ 0 

procs!= null 
(procs->kill_how == 
kill_after_timeout 
OR 
procs->kill_how == 
kill_only_once) 

 kill(procs->pid, 15) 

waitpid(procs->pid, (int*) 0, 1) 
≤ 0 

procs!= null 
procs->kill_how == 
kill_always 

 kill(procs->pid, 9) 
waitpid(procs->pid, &status, 
0) 
terminate 

waitpid(procs->pid, (int*) 0, 1) 
≤ 0 

procs!= null 
procs->kill_how != 
kill_after_timeout 
procs->kill_how != kill_never 
procs->kill_how != 
kill_only_once 
procs->kill_how != 
kill_always 

 waitpid(procs->pid, &status, 
0) 
terminate 

waitpid(procs->pid, (int*) 0, 1) 
≤ 0 

procs!= null 
procs->kill_how == kill_never 

 terminate 

kill(procs->pid, 15) == -1 procs!= null 
procs->kill_how == 
kill_after_timeout 

 kill(procs->pid, 9) 
waitpid(procs->pid, &status, 
0) 
terminate 

kill(procs->pid, 15) == -1 procs!= null 
procs->kill_how == 
kill_only_once 

 waitpid(procs->pid, &status, 
0) 
terminate 

kill(procs->pid, 15) != -1 procs!= null 
procs->kill_how == 
kill_after_timeout 

 sleep(3) 
kill(procs->pid, 9) 
waitpid(procs->pid, &status, 
0) 
terminate 

kill(procs->pid, 15) != -1 procs!= null 
procs->kill_how == 
kill_only_once 

 sleep(3) 
waitpid(procs->pid, &status, 
0) 
terminate 

 



Legal Sequence Table
The composed segment table is processed to 

derive the legal stimulus sequences
 This identifies behavior in context of use

 Series of responses generated for each sequence
 Series of state updates generated for each 

sequence
 For lower level segments - possible conditions 

under which a sequence may occur
 Gives the analyst a clearer picture of the 

actions being performed by the segment



Segment 82 
Legal sequences 

 

Sequence Conditions State Updates Responses 
Invoke procs == null  return 

terminate 
Invoke 
waitpid(procs->pid, (int*) 0, 1) 
> 0 

procs != null procs->kill_how = kill_never  waitpid(procs->pid, (int*) 0, 1) 
terminate 

Invoke 
waitpid(procs->pid, (int*) 0, 1) 
≤ 0 
kill(procs->pid, 15) == -1 

procs!= null 
procs->kill_how == 
kill_after_timeout 

 waitpid(procs->pid, (int*) 0, 1) 
kill(procs->pid, 15) 
kill(procs->pid, 9) 
waitpid(procs->pid, &status, 
0) 
terminate 

Invoke 
waitpid(procs->pid, (int*) 0, 1) 
≤ 0 
kill(procs->pid, 15) == -1 

procs!= null 
procs->kill_how == 
kill_only_once 

 waitpid(procs->pid, (int*) 0, 1) 
kill(procs->pid, 15) 
waitpid(procs->pid, &status, 
0) 
terminate 

Invoke 
waitpid(procs->pid, (int*) 0, 1) 
≤ 0 
kill(procs->pid, 15) != -1 

procs!= null 
procs->kill_how == 
kill_after_timeout 

 waitpid(procs->pid, (int*) 0, 1) 
kill(procs->pid, 15) 
sleep(3) 
kill(procs->pid, 9) 
waitpid(procs->pid, &status, 
0) 
terminate 

Invoke 
waitpid(procs->pid, (int*) 0, 1) 
≤ 0 
kill(procs->pid, 15) != -1 

procs!= null 
procs->kill_how == 
kill_only_once 

 waitpid(procs->pid, (int*) 0, 1) 
kill(procs->pid, 15) 
sleep(3) 
waitpid(procs->pid, &status, 
0) 
terminate 

Invoke 
waitpid(procs->pid, (int*) 0, 1) 
≤ 0 

procs != null 
procs->kill_how == 
kill_always 

 waitpid(procs->pid, (int*) 0, 1 
kill(procs->pid, 9) 
waitpid(procs->pid, &status, 
0) 
terminate 

Invoke 
waitpid(procs->pid, (int*) 0, 1) 
≤ 0 

procs!= null 
procs->kill_how != 
kill_after_timeout 
procs->kill_how != kill_never 
procs->kill_how != 
kill_only_once 
procs->kill_how != 
kill_always 

 waitpid(procs->pid, (int*) 0, 1) 
waitpid(procs->pid, &status, 
0) 
terminate 

Invoke 
waitpid(procs->pid, (int*) 0, 1) 
≤ 0 

procs!= null 
procs->kill_how == kill_never 

 waitpid(procs->pid, (int*) 0, 1) 
terminate 

 



Results Analysis
 Behavioral description of the program 

function
 State machine definition
 Legal Sequence Table

 Potentially large volume of data to address
 Prioritization – current research
 Assertion tests – proposed research
 Semantic analysis – proposed research



Prioritization
 Prioritization is being investigated to direct 

analyst attention to segments that have a 
higher likelihood of containing UF

 Based on a cursory examination of attributes
 Segment level
 State machine level
 Legal sequence level

 Generates a weighted score for each segment 
that reflects a potential for or sensitivity to UF



Ongoing Research
 Refinement of the prioritization 

weighting scheme
 Optimal weighting values for measured 

attributes
 Additional attributes to examine

 Refinement of Abstraction process
 Improved automation support

 Results Analysis and Presentation
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