
Pragmatic Approaches with
COTS
Reverse Engineering for the Detection of
Undesirable Functionality

WISDOM SOFTWARE, LTD.

Wisdom Software, Ltd.
 Small Business- Incorporated in Virginia
 Business Interests

 Formal Methods research and application
development

 Software Certification
 System Safety Analysis

 Customer Base
 NSA
 US Army – WRAIR
 FDA

Research Objectives
 Evaluate the practicality of using

reverse engineering (RE) to identify
undesirable functionality (UF)

 Document and implement a practical
(formal methods) process for RE

 Examine implications for addressing
system security and safety

Undesirable Functionality
Definition

 permits non-secure access
 exports sensitive information
 damages computer or network operations
 modifies other unrelated systems or

resources
 otherwise compromises system security

The UF Problem
 There is potentially an infinite set of

unique instances of UF
 Each instance might be implemented in

many ways
 Implications

 A general solution is needed
 Functionality must be examined in context

Finding Undesirable
Functionality
 Pattern matching is insufficient

 Only useful if you already know specifically
what you are looking for

 Does not address variations on
implementation

 Does not identify unknown undesirable
functionality

 The alternative: Examining functional
behavior in context

Examination of Behavior in
Context
 Context is based on the scope of information

abstracted from the software
 Context of definition
 Context of use

 Obvious behavior
 Local function definition
 Short stimulus sequence trigger

 Not so obvious behavior
 Function definition is distributed
 Long stimulus sequence trigger

Reverse Engineering Process
 Segment the software into functional

blocks
 Abstract the program function for each

segment
 Compose the abstracted segment

functions
 Generate the Legal Sequence Table

from the composed segment function

Segmentation
 Segmentation divides the software into

functional blocks
 A segmentation graph shows the

hierarchical relationship of the
segments

 Each segment represents a context of
definition

static void free_proc_chain(struct process_chain *procs)
{
 struct process_chain *p;
 int need_timeout = 0;
 int status;

 if (procs == ((void *)0))
 return;

2666 "alloc.c"

 for (p = procs; p; p = p->next) {
 if (waitpid(p->pid, (int *) 0, 1) > 0) {
 p->kill_how = kill_never;
 }
 }

 for (p = procs; p; p = p->next) {
 if ((p->kill_how == kill_after_timeout)
 || (p->kill_how == kill_only_once)) {

 if (kill(p->pid , 15) != -1)
 need_timeout = 1;
 }
 else if (p->kill_how == kill_always) {
 kill(p->pid, 9);
 }
 }

 if (need_timeout)
 sleep(3);

 for (p = procs; p; p = p->next) {

 if (p->kill_how == kill_after_timeout)
 kill(p->pid, 9);

 if (p->kill_how != kill_never)
 waitpid(p->pid, &status, 0);
 }
}

Function Abstraction
 Function abstraction is the process of

deriving a state machine for a segment
 A state machine is abstracted for each

segment in the system being analyzed
 The state machine is represented in a

tabular format for each segment

Function Composition
 Abstracted state machines for related

segments are combined by function
composition

 A loop unrolling algorithm is employed to
eliminate dynamic looping or recursion in the
software
 Resulting definition of behavior is an

approximation
 Accuracy increases as the number of cycles

unrolled is increased

Segment 82
Stimulus Current Condition State Update Response

Invoke procs == null return
terminate

Invoke procs != null waitpid(procs->pid, (int*) 0, 1)
waitpid(procs->pid, (int*) 0, 1)
> 0

procs!= null procs->kill_how = kill_never terminate

waitpid(procs->pid, (int*) 0, 1)
≤ 0

procs!= null
(procs->kill_how ==
kill_after_timeout
OR
procs->kill_how ==
kill_only_once)

 kill(procs->pid, 15)

waitpid(procs->pid, (int*) 0, 1)
≤ 0

procs!= null
procs->kill_how ==
kill_always

 kill(procs->pid, 9)
waitpid(procs->pid, &status,
0)
terminate

waitpid(procs->pid, (int*) 0, 1)
≤ 0

procs!= null
procs->kill_how !=
kill_after_timeout
procs->kill_how != kill_never
procs->kill_how !=
kill_only_once
procs->kill_how !=
kill_always

 waitpid(procs->pid, &status,
0)
terminate

waitpid(procs->pid, (int*) 0, 1)
≤ 0

procs!= null
procs->kill_how == kill_never

 terminate

kill(procs->pid, 15) == -1 procs!= null
procs->kill_how ==
kill_after_timeout

 kill(procs->pid, 9)
waitpid(procs->pid, &status,
0)
terminate

kill(procs->pid, 15) == -1 procs!= null
procs->kill_how ==
kill_only_once

 waitpid(procs->pid, &status,
0)
terminate

kill(procs->pid, 15) != -1 procs!= null
procs->kill_how ==
kill_after_timeout

 sleep(3)
kill(procs->pid, 9)
waitpid(procs->pid, &status,
0)
terminate

kill(procs->pid, 15) != -1 procs!= null
procs->kill_how ==
kill_only_once

 sleep(3)
waitpid(procs->pid, &status,
0)
terminate

Legal Sequence Table
The composed segment table is processed to

derive the legal stimulus sequences
 This identifies behavior in context of use

 Series of responses generated for each sequence
 Series of state updates generated for each

sequence
 For lower level segments - possible conditions

under which a sequence may occur
 Gives the analyst a clearer picture of the

actions being performed by the segment

Segment 82
Legal sequences

Sequence Conditions State Updates Responses
Invoke procs == null return

terminate
Invoke
waitpid(procs->pid, (int*) 0, 1)
> 0

procs != null procs->kill_how = kill_never waitpid(procs->pid, (int*) 0, 1)
terminate

Invoke
waitpid(procs->pid, (int*) 0, 1)
≤ 0
kill(procs->pid, 15) == -1

procs!= null
procs->kill_how ==
kill_after_timeout

 waitpid(procs->pid, (int*) 0, 1)
kill(procs->pid, 15)
kill(procs->pid, 9)
waitpid(procs->pid, &status,
0)
terminate

Invoke
waitpid(procs->pid, (int*) 0, 1)
≤ 0
kill(procs->pid, 15) == -1

procs!= null
procs->kill_how ==
kill_only_once

 waitpid(procs->pid, (int*) 0, 1)
kill(procs->pid, 15)
waitpid(procs->pid, &status,
0)
terminate

Invoke
waitpid(procs->pid, (int*) 0, 1)
≤ 0
kill(procs->pid, 15) != -1

procs!= null
procs->kill_how ==
kill_after_timeout

 waitpid(procs->pid, (int*) 0, 1)
kill(procs->pid, 15)
sleep(3)
kill(procs->pid, 9)
waitpid(procs->pid, &status,
0)
terminate

Invoke
waitpid(procs->pid, (int*) 0, 1)
≤ 0
kill(procs->pid, 15) != -1

procs!= null
procs->kill_how ==
kill_only_once

 waitpid(procs->pid, (int*) 0, 1)
kill(procs->pid, 15)
sleep(3)
waitpid(procs->pid, &status,
0)
terminate

Invoke
waitpid(procs->pid, (int*) 0, 1)
≤ 0

procs != null
procs->kill_how ==
kill_always

 waitpid(procs->pid, (int*) 0, 1
kill(procs->pid, 9)
waitpid(procs->pid, &status,
0)
terminate

Invoke
waitpid(procs->pid, (int*) 0, 1)
≤ 0

procs!= null
procs->kill_how !=
kill_after_timeout
procs->kill_how != kill_never
procs->kill_how !=
kill_only_once
procs->kill_how !=
kill_always

 waitpid(procs->pid, (int*) 0, 1)
waitpid(procs->pid, &status,
0)
terminate

Invoke
waitpid(procs->pid, (int*) 0, 1)
≤ 0

procs!= null
procs->kill_how == kill_never

 waitpid(procs->pid, (int*) 0, 1)
terminate

Results Analysis
 Behavioral description of the program

function
 State machine definition
 Legal Sequence Table

 Potentially large volume of data to address
 Prioritization – current research
 Assertion tests – proposed research
 Semantic analysis – proposed research

Prioritization
 Prioritization is being investigated to direct

analyst attention to segments that have a
higher likelihood of containing UF

 Based on a cursory examination of attributes
 Segment level
 State machine level
 Legal sequence level

 Generates a weighted score for each segment
that reflects a potential for or sensitivity to UF

Ongoing Research
 Refinement of the prioritization

weighting scheme
 Optimal weighting values for measured

attributes
 Additional attributes to examine

 Refinement of Abstraction process
 Improved automation support

 Results Analysis and Presentation

	Pragmatic Approaches with COTS�Reverse Engineering for the Detection of Undesirable Functionality
	Wisdom Software, Ltd.
	Research Objectives
	Undesirable Functionality
	The UF Problem
	Finding Undesirable Functionality
	Examination of Behavior in Context
	Reverse Engineering Process
	Segmentation
	Slide Number 10
	Function Abstraction
	Function Composition
	Slide Number 13
	Legal Sequence Table
	Slide Number 15
	Results Analysis
	Prioritization
	Ongoing Research

