
Preliminary Analysis of Code Hunt Data Set from a Contest

Pierre McCauley, Brandon
Nsiah-Ababio, Joshua Reed, Faramola

Isiaka
University of Illinois

Urbana, IL, USA
{pmccaul2,nsiahab2,jbreed3,fisiaka2}@illinois.edu

Tao Xie
University of Illinois

Urbana, IL, USA
taoxie@illinois.edu

ABSTRACT
Code Hunt (https://www.codehunt.com/) from Microsoft Research
is a web-based serious gaming platform being popularly used for
various programming contests. In this paper, we demonstrate pre-
liminary statistical analysis of a Code Hunt data set that contains
the programs written by students (only) worldwide during a con-
test over 48 hours. There are 259 users, 24 puzzles (organized into
4 sectors), and about 13,000 programs submitted by these users.
Our analysis results can help improve the creation of puzzles in a
future contest.

CCS Concepts
•Social and professional topics→ Software engineering educa-
tion;

Keywords
Code Hunt; educational software engineering

1. INTRODUCTION
Code Hunt [1] (https://www.codehunt.com/) from Microsoft Re-

search is a web-based serious gaming platform being popularly
used for various programming contests. Coding duel [2] is the
game type in Code Hunt. A coding duel (written in C# or Java) in-
cludes a secret (solution) code segment and a user-visible code seg-
ment, both embodied in a Puzzle method sharing the same method
signature. The user-visible code segment is typically empty in con-
tent or an incorrect/incomplete version of the secret code segment.
To solve a coding duel, a user iteratively observes clues (i.e., test
data and their outputs from both segments) generated by Code Hunt
and modifies the user-visible code segment to match the functional
behaviors of the secret code segment (the matching is determined
based on the generated test data).

Microsoft Research released a Code Hunt data set (https://github.
com/Microsoft/Code-Hunt), consisting of programs that were writ-
ten by students throughout the world for the Imagine Cup 2014.
This contest gave students 48 hours to write programs, with their
choice of the used programming language as Java or C#. Within

the data set, there are 259 users who attempted the given 24 puz-
zles (named as levels in Code Hunt), being grouped into 4 sectors
(6 puzzles in each sector). Each sector typically corresponds to a
specific learning topic. Code Hunt imposes a rule that a user may
only access a puzzle in a sector if the user has won at least all but
one of the puzzles in the previous sector. Therefore, for a contest,
contest or puzzle creators typically arrange the sectors or puzzles
in an order of increasing difficulty.

In this paper, we present the first preliminary statistical analy-
sis on the data set. The main purpose of our analysis is to better
understand how users performed on the puzzles and use the analy-
sis results to help improve the creation of puzzles in a future con-
test. To analyze the data set, we develop a Python program to
traverse the data set and extract information about each user and
their performance on each of the 24 puzzles. The extracted infor-
mation includes the user’s self-declared experience level, the num-
ber of the user’s attempts on a puzzle, the user’s completion status
of a puzzle, and the programming language used by the user in
the attempts. We then analyze the extracted information with R
(https://www.r-project.org/), a tool for statistical computing.

2. ANALYZING PUZZLE DIFFICULTY
In this section, we present a statistical analysis on the data set

for analyzing puzzle difficulty based on two types of information
extracted for each puzzle: the completion status of each user and
the number of attempts made by each user. We intend to address
two main research questions: RQ1. Does the information extracted
from the data set generally reflect a trend of increasing difficulty
from Puzzles 1 to 24 and from Sectors 1 to 4? RQ2. Are there
any outliers if a trend of increasing difficulty is indeed generally
followed? Given that a trend of increasing difficulty is desirable
and expected, answering these research questions can help improve
the creation of puzzles in a future contest.

Figure 1 shows a bar chart for the percentage of users who com-
pleted (bottom portion), attempted but did not complete (middle
portion), and skipped a puzzle (top portion), respectively. Figure 2
shows a boxplot for the distribution of the number of attempts made
by each user for a puzzle. The x-axis of both charts denote Puzzles
1-24. For the boxplot, to properly handle cases of users who at-
tempted but did not complete or skipped a puzzle, we post-process
the number of these users’ attempts: we replace such number with
the highest number of attempts (among all the users) for the puzzle.
Because there are some cases where the highest number of attempts
per puzzle skews the distribution (e.g., 278 or 330 attempts), we
make a cutoff of the highest number of attempts as 150.

For RQ1, from the two figures, we can observe the general ex-
pected trend of increasing difficulty from Puzzles 1 to 24 and from
Sectors 1 to 4. For example, as a user continues further into the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

CHESE’16, November 14, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4402-9/16/11...$15.00

http://dx.doi.org/10.1145/2993270.2993272

7

Figure 1: Percentage of users who completed (bottom portion), at-
tempted but did not complete (middle portion), and skipped a puz-
zle (top portion), respectively.

Figure 2: Number of attempts by each user per puzzle.

contest, the puzzles on each sector become more difficult. The per-
centage of users who completed tends to decrease and the number
of attempts tends to increase as users advance from Puzzles 1 to 24
and from Sectors 1-4.

For RQ2, we observe a few outliers while the trend of increasing
difficulty is generally followed. From both figures, we notice that
at least Puzzle 3 from Sector 1, Puzzle 7 from Sector 2, and Puzzle
17 from Sector 3 are much more difficult than the other puzzles in
their respective sector.

Sector 1 (Puzzles 1-6) focuses on the arithmetic portion of pro-
gramming. Typically the first sector in a contest is expected to be
the easiest; however, only about 40% of the users were able to com-
plete Puzzle 3 (whose solution is shown in Figure 3). One possible
reason is that Puzzle 3 is based on using bit-wise operations, and
users often struggled with using bit-wise operators.

Sector 2 (Puzzles 7-12) focuses on the topic of loops, iterations,
and conditional statements. The solution for Puzzle 7 from Sector 2
is shown in Figure 4. Note that API calls IsNotNull and IsTrue

(defined on class PexAssume) in Lines 1, 2, and 6 are used to ig-
nore generated test data that violate the specified constraints, and
Line 3 is used to cause Code Hunt to generate specific test data.
Only about 10% of the users were able to complete this puzzle.
In addition, as shown in Figure 2, the average number of attempts
to solve Puzzle 7 is about 4 times greater than the other puzzles in
Sector 2. The solution to Puzzle 7 iterates through a list of numbers
(Lines 5-7) and returns the average rounded to the closest integer
(Lines 8-9). We hypothesize that the difficulty faced by many users
came from their first inaccurate impression/guess to solve the puz-
zle. Computing the average of a list does not seem to be a difficult
task to many users. However, from the data set, we observe that

public static bool Puzzle(bool x, bool y, bool z) {
1 return x | y & z;

}

Figure 3: Solution to Puzzle 3 (Sector 1)
public static int Puzzle(int[] a) {

1 PexAssume.IsNotNull(a);
2 PexAssume.IsTrue(a.Length > 0);
3 if (a.Length==3 && (a[0]==13 & a[1]==-5 && a[2]==7));
4 int sum = 0;
5 foreach (var n in a) {
6 PexAssume.IsTrue(n>=-100 & n<=100);
7 sum += n;

}
8 int len = a.Length;
9 return (sum + len/2) / len;

}

Figure 4: Solution for Puzzle 7 (Sector 2)
many of these users were confused on how to compute the proper
rounded average from the list. In particular, these users struggled
with the code in Lines 8-9 for rounding the average to the closest
integer. This struggle resulted in many of these users being frus-
trated to leave the puzzle incomplete.

Sector 3 (Puzzles 13-18) requires a combination of techniques
and algorithms in order to successfully complete the puzzles. The
solution to Puzzle 17 in Sector 3 is to emulate the movement of a
knight piece in a chess game. We hypothesize that the difficulty
faced by many users when solving Puzzle 17 came from requiring
the use of bit-wise operations to solve the puzzle, a similar situation
for Puzzle 3.

3. CONCLUSION
We have presented the first preliminary statistical analysis on the

Code Hunt data set. Our analysis has focused on analyzing puzzle
difficulty based on the completion status of each user and the num-
ber of attempts made by each user for a puzzle. The analysis results
indicate that an expected trend of increasing difficulty is generally
followed from Puzzles 1 to 24 and from Sectors 1 to 4. However,
at the same time, there exist some outlier cases that a few puzzles
are much more difficult than other puzzles in the same sector.

Much of such higher difficulty might be due to the use of bit-wise
operations in these puzzles. Such observations have two main im-
plications. First, contest or puzzle creators shall pay special atten-
tions to puzzles involving the use of bit-wise operations and expect
these puzzles to be of likely higher difficulty than other puzzles in
the same sector. Second, systems and hardware engineering rely on
frequent use of bit-wise operations; thus, if a user lacks skills in this
topic area, recruiters seeking employees in these fields may want to
watch out, and educators may want to enhance student learning on
such skills.

4. ACKNOWLEDGMENTS
This material is based upon work supported by the Maryland

Procurement Office under Contract No. H98230-14-C-0141. This
work is also supported in part by National Science Foundation un-
der grants no. CCF-1409423, CNS-1434582, CCF-1434596, CNS-
1513939, CNS-1564274, and a Microsoft Research Award.

5. REFERENCES
[1] J. Bishop, R. N. Horspool, T. Xie, N. Tillmann, and

J. de Halleux. Code Hunt: Experience with coding contests at
scale. In Proc. ICSE JSEET, pages 398–407, 2015.

[2] N. Tillmann, J. D. Halleux, T. Xie, S. Gulwani, and J. Bishop.
Teaching and learning programming and software engineering
via interactive gaming. In Proc. ICSE SEE, pages 1117–1126,
2013.

8

