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Abstract— We introduce a framework for controlling the
charging and discharging processes of plug-in electric vehicles
(PEVs) via pricing strategies. Our framework consists of a
hierarchical decision-making setting with two layers, which
we refer to as aggregator layer and retail market layer. In
the aggregator layer, there is a set of aggregators that are
requested (and will be compensated for) to provide certain
amount of energy over a period of time. In the retail market
layer, the aggregator offers some price for the energy that PEVs
may provide; the objective is to choose a pricing strategy to
incentivize the PEVs so as they collectively provide the amount
of energy that the aggregator has been asked for. The focus
of this paper is on the decision-making process that takes
places in the retail market layer, where we assume that each
individual PEV is a price-anticipating decision-maker. We cast
this decision-making process as a game, and provide conditions
on the pricing strategy of the aggregator under which this
game has a unique Nash equilibrium. We propose a distributed
consensus-based iterative algorithm through which the PEVs
can seek for this Nash equilibrium. Numerical simulations are
included to illustrate our results.

I. INTRODUCTION

Advanced communication and control systems, renewable-
based electricity generation resources, and storage-capable
loads such as plug-in electric vehicles (PEVs), will bring
new opportunities for a more flexible and efficient operation
of electric power systems. For instance, PEVs can be uti-
lized to provide active power for up and down regulation
services, e.g., energy peak-shaving during peak hours and
load-leveling at night [1], [2]. However, in order to enable
the added functionality that these technologies may provide,
it is necessary to develop appropriate control mechanisms.
In this paper, we address this problem in the context of
PEVs; specifically, we consider a competitive scenario in
which individual PEVs are decision makers, and develop a
framework for controlling their charging and discharging via
pricing strategies.

In our setting, we consider a two-layer decision-making
structure. In the first layer—the aggregator layer—there is
a set of aggregators that, through some market-clearing
mechanism, are requested (and will be compensated for) to
provide certain amount of energy over some predetermined
period of time. In the second layer—the retail market layer—
each aggregator offers a price for the energy that PEVs
may provide (positive if charging and negative if discharg-
ing); then, the objective is for the aggregator to design
a pricing strategy in order to incentivize PEVs to charge
and/or discharge so they collectively provide the amount of
energy that the aggregator has been asked for. The focus
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of this paper is on the retail market layer. We assume that
each PEV is a price-anticipating decision-maker (i.e., it is
aware of the aggregator pricing strategy), and in order to
inform its decision making, it exchanges some information
with neighboring PEVs, with the objective of estimating
the average charge capacity collectively available in its
immediate neighborhood. Then each PEV uses this estimate
together with the aggregator’s pricing strategy information
to decide the amount of energy that it will sell or buy. We
cast this decision-making process as a game, and provide
conditions on the pricing strategy of the aggregator under
which this game has a unique Nash equilibrium. We then
propose a distributed consensus-based iterative algorithm
through which the PEVs seek for this Nash equilibrium.

The work in this paper has connections with the literature
on distributed sensing and control in energy systems and
game-theoretic modeling in energy markets. The importance
of distributed sensing and control in future grids has been
mentioned in several recent papers; examples include [1], [3],
and [4]. The distributed strategies introduced in this paper are
closely related to distributed optimization algorithms for the
optimization of a sum of convex functions (see e.g. [5], [6],
[7], [8], [9], [10]). These works build on consensus-based
dynamics to find the solutions of the optimization problem
in a variety of scenarios and are typically designed in discrete
time, with possible exception of [8] and [9].

Game-theoretic models have been used recently for study-
ing energy markets (see, e.g., [11], [12], [13], [14]). The
game-theoretic aspects of our work are related to noncoop-
erative resource allocation problems, see for example [15],
[16], [17], where under appropriate concavity assumptions,
the existence of Nash equilibrium in pure strategies is
guaranteed using the results in [18]. In [11], a game-
theoretic model is introduced for studying the charging and
discharging processes of PEVs. In addition to the fact that
the model does not take into account the original available
charge of PEVs for participating in the game, the considered
PEVs are not price anticipating, i.e., they do not take into
account the fact that the prices are set based on the average
available charge. Also the fact that future PEVs are decision-
makers and have personal utility functions are not taken into
account in this model. The process of charging in our work is
related to the work in [14] and [19]; however, in our setting,
we deal with a scenario in which the PEVs are individual
decision-makers and seek for the Nash equilibrium using the
information available from their neighboring PEVs (along
with the price set by the aggregator). With respect to this, a
focus of our work is on the key role played by the PEVs’
network structure. Also, our setting allows for scenarios in
which PEVs are capable of both charging and discharging.
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The contributions of this paper are as follows. The first
one is the introduction of a framework for controlling the
charging and discharging of PEVs via pricing strategies.
Our second contribution is to cast this market scenario as
a multi-stage game and provide conditions on the pricing
strategy of the aggregator under which this game has a
unique Nash equilibrium. Our third contribution is the design
of a distributed consensus-based iterative algorithm through
which the PEVs seek the Nash equilibrium (when unique)
of the game describing the decision-making process that
takes place in the retail market layer. We establish the
asymptotic convergence property of this dynamic algorithm,
when the payoff functions are locally Lipschitz (i.e., not
necessarily differentiable) and concave, and the underlying
PEVs’ network is undirected and connected. As a by-product,
our distributed scheme can be used for inducing the Nash
equilibrium, when unique, for other locally Lipschitz concave
games on undirected graphs with no shared constraints.

II. MATHEMATICAL PRELIMINARIES

We start with some notational conventions. Let R, R≥0,
Z, and Z≥1 denote the set of real, nonnegative real, integer,
and positive integer numbers, respectively. We denote by
B(X) the space of bounded real-valued functions on a set
X ⊂ Rd, d ∈ Z≥1; we use B0(X) when the functions
are, additionally, continuous. We also denote by co(X) the
convex hull of X . We use the short-hand notation 1d =
(1, . . . , 1)T ∈ Rd and 0d = (0, . . . , 0)T ∈ Rd.

A. Discrete Set-valued Analysis

Here, we provide a brief exposition of useful concepts
from discrete-time set-valued dynamical systems follow-
ing [20]. For X ⊆ Rd, let F : X ⇒ X denote a set-valued
map that takes a point in X to a subset F (x) of X . The map
F is nonempty if F (x) 6= ∅, for all x ∈ X . A point x∗ ∈ X
is a fixed point of F if x∗ ∈ F (x∗). An evolution of F on
X is any trajectory γ : Z≥0 → X such that

γ(k + 1) ∈ F (γ(k)), for all k ∈ Z≥0.

The set-valued map F is upper semicontinuous at x ∈ X
if, for any two convergent sequences {xk}∞k=0 and {yk}∞k=0,
with limk→∞ xk = x, limk→∞ yk = y, and yk ∈ F (xk),
for all k ∈ Z≥0, we have y ∈ F (x). The map F is upper
semicontinous on X if it is upper semicontinuous at x, for
all x ∈ X . A set W ⊂ X is weakly positively invariant with
respect to F if for any x ∈W there exists y ∈W such that
y ∈ F (x) and strongly positively invariant with respect to F
if F (x) ⊂W , for all x ∈W . Finally, a continuous function
V : X → R is called non-increasing along F in W ⊂ X
if V (y) ≤ V (x), for all x ∈ W and y ∈ F (x). Equipped
with these tools, one can formulate the following set-valued
version of the LaSalle invariance principle [21], [22], which
will be most useful in the developments later.

Theorem 2.1: (LaSalle invariance principle for
discrete-time set-valued dynamical systems): Let
F : X ⇒ X be an upper semicontinuous set-valued
map on X ⊂ Rd and let W ⊂ X be strongly positively
invariant with respect to F . Suppose F is nonempty

on W and all evolutions of F with initial condition
in W are bounded. Let V : X → R be continuous
and non-increasing function along F on W . Then, any
evolution of F with initial condition in W approaches
a set of the form S ∩ V −1(c), where c ∈ R and S is
the largest weakly positively invariant set contained in
{x ∈W | there exists y ∈ F (x) such that V (x) = V (y)}.

B. Nonsmooth Analysis

We recall some notions from nonsmooth analysis [23].
A function f : Rd → R is locally Lipschitz at x ∈ Rd
if there exists a neighborhood U of x and Cx ∈ R≥0
such that |f(y) − f(z)| ≤ Cx||y − z||, for y, z ∈ U ; f is
locally Lipschitz on Rd if it is locally Lipschitz at x for all
x ∈ Rd. Locally Lipschitz functions are differentiable almost
everywhere. The generalized gradient of f is

∂f(x) = co
{

lim
k→∞

∇f(xk) | xk → x, xk /∈ Ωf ∪ S
}
,

where Ωf is the set of points where f fails to be differentiable
and S is any set of measure zero. We recall the following
properties of generalized gradients [23].

Lemma 2.2: (Continuity of the generalized gradient
map): Let f : Rd → R be a locally Lipschitz function
at x ∈ Rd. Then the set-valued map ∂f : Rd ⇒ Rd is
upper semicontinuous and locally bounded at x ∈ Rd and
moreover, ∂f(x) is nonempty, compact, and convex.

For f : Rd×Rd → R and z ∈ Rd, we let ∂xf(x, z) denote
the generalized gradient of x 7→ f(x, z). Similarly, for x ∈
Rd, we let ∂zf(x, z) denote the generalized gradient of z 7→
f(x, z). A point x ∈ Rd with 0d ∈ ∂f(x) is a critical point
of f . A function f : Rd → R is regular at x ∈ R if for all
v ∈ Rd the right directional derivative of f , in the direction
of v, exists at x and coincides with the generalized directional
derivative of f at x in the direction of v. We refer the reader
to [23] for definitions of these notions. A convex and locally
Lipschitz function at x is regular [23, Proposition 2.3.6]. The
notion of regularity plays an important role when considering
sums of Lipschitz functions as the next result shows.

Lemma 2.3: (Finite sum of locally Lipschitz func-
tions): Let {f i}ni=1 be locally Lipschitz at x ∈ Rd. Then
∂(
∑n
i=1 f

i)(x) ⊆
∑n
i=1 ∂f

i(x), and equality holds if f i is
regular for i ∈ {1, . . . , n}.
Here the summation on the lefthand-side of the inequality
should be understood in the sense described in [23]. A locally
Lipschitz and convex function f satisfies, for all x, x′ ∈
Rd and ξ ∈ ∂f(x), the first-order condition of convexity,
f(x′)− f(x) ≥ ξ · (x′ − x).

C. Graph Theory

A directed graph, or simply digraph, is a pair G = (V,E),
where V is a finite set called the vertex set and E ⊆ V ×V is
the edge set. When E is unordered, we call G an undirected
graph or simply a graph. In this paper, we only deal with
undirected graphs. Given an edge (u, v) ∈ E, we call u
and v neighbors and denote the set of neighbors of v by
NG(v). A graph is called connected if there exists a path
between any two vertices. A weighted graph is a triplet G =
(V,E,A), where (V,E) is a graph and A ∈ Rn×n≥0 is the
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adjacency matrix of G. The adjacency matrix has the property
that aij > 0 if (vi, vj) ∈ E and aij = 0, otherwise. The
weighted degree vi, i ∈ {1, . . . , n} is dw(vi) =

∑n
j=1 aij .

The weighted degree matrix D is the diagonal matrix defined
by (D)ii = dw(i), for all i ∈ {1, . . . , n}. The Laplacian is
L = D − A. For an undirected graph, L1n = 1TnL = 0
and L = LT and is positive semidefinite [24]. When G is
connected, the zero eigenvalue is simple.

D. Game Theory

We recall the class of concave games in the absence of
shared constraints from [18]. A concave game (with unshared
constraints) is a triplet G = (V, S, {fi}ni=1), where
• V is a group of n ∈ Z≥1 players,
• S = S1 × S2 × . . . × Sn is the strategy set, Si ⊂ Rdi ,
di ∈ Z≥1 is nonempty, convex and compact, and

• fi : S → R, the payoff for player i ∈ {1, . . . , n}, is a
locally Lipschitz concave mapping.

A point x∗ ∈ S is called the Nash equilibrium of G if and
only if, for all i ∈ V ,

fi(x
∗) = max

yi
{fi(x∗1, . . . , x∗i−1, yi, x∗i+1, . . . , x

∗
n) | yi ∈ Si}.

In other words, when the game is at x∗, no player can
improve its payoff by unilaterally deviating from this point.
A celebrated theorem by Rosen guarantees the existence of
Nash equilibrium for this class of games [18]. A unique-
ness result can also be obtained under the so-called diago-
nally strict concavity assumption, along with differentiability
(see [18, Theorem 4]), when one considers another suitable
notion of equilibrium (the so-called normalized or variational
equilibrium), see [25]. When the constraints are not shared,
as it is the case in this paper, these notions of equilibria
match, yielding an applicable uniqueness result.

In many applications, including the one in this paper, the
differentiability assumption does not hold. Furthermore, the
convergence proof of the gradient flow procedure for seeking
this Nash equilibrium [18, Theorem 7] is no longer valid;
however, the results are still valid, see [26].

III. PROBLEM STATEMENT

We consider a set of aggregators, denoted by
{vagg

1 , . . . , vagg
N }, N ∈ Z≥1, that, through some market-

clearing mechanism, are requested to provide certain
amount of energy over a predetermined period of time.
Each aggregator vagg

i , i ∈ {1, . . . , N}, is assumed to have
a backup energy storage device such that if the PEVs
do not provide the requested amount of energy (or they
provide more than the request), the storage device can be
used to provide (or store) the difference. Alternatively, one
can assume that the aggregator contracts some insurance
with a third party that will provide the difference. Then,
vagg
i is responsible for controlling the charging/discharging

processes of a group of ni ∈ Z≥1 PEVs, which we call the
vagg
i -group, by offering them a pricing strategy.

Each PEV is a decision maker and can freely choose
to participate after receiving a request from its aggregator.
The PEVs’ actions include remaining idle, charging, or dis-
charging. The decision that each PEV is faced with, among

The grid

The aggregator layer

The retail market layer

(a)

charge

Ui
fi

0 1 xix0
i

discharge

(b)

Fig. 1. In (a), networks of PEVs and their corresponding aggregators are
shown. In each network, each PEV can communicate with some neighbors.
PEVs can also communicate with their corresponding aggregator. In (b),
given a pricing strategy and x−i ∈ [0, 1]n−1, the payoff function of the
PEV vi is shown (for fixed x−i). The blue curve assigns to each point
xi ∈ [0, x0

i ) the value of (xi−x0
i )Pdischarge(xave); similarly, the red curve

assigns to each point xi ∈ (x0
i , 1] the values of −(xi − x0

i )Pcharge(xave).
In the scenario shown in the figure the PEV vi is more likely to discharge.

other things, depends on its own utility function, along with
the pricing strategy designed by the aggregator. The PEVs
considered in this paper are price anticipating, in the sense
that they are aware that the pricing is designed by the
aggregator with respect to the average charge available in the
vagg
i -group. We also assume that each PEV, in order to make

its decision, is able to collect information from neighboring
PEVs with which it can exchange information. Specifically,
the exchange of information among all PEVs is described
by a connected undirected graph, denoted by GPEVs. The
collection of all vagg

i -group builds a new layer, which we
term the retail market layer. The concepts described above
are illustrated in Figure 1(a). In this paper, we focus on the
retail market layer.

A. The Retail Market Layer

Let Q ∈ R<0 (Q ∈ R>0) be the amount of energy that
the aggregator has contracted to provide (absorb) over some
period of time. Thus, when Q ∈ R<0, the aggregator needs
to encourage the PEVs to discharge the extra charge in their
batteries. Conversely, the aggregator needs to encourage the
PEVs to charge their batteries whenever Q ∈ R>0.

Let us formalize the statement of the problem after in-
troducing some notions. We denote by V = {v1, . . . , vn},
n ∈ Z≥1, the set of PEVs in vagg-group, where the available
energy of each vi, i ∈ {1, . . . , n}, at time t ∈ R≥0 is denoted
by xi(t) ∈ [0, 1]; thus, one can think of xi(t) as the state of
charge of the ith PEV battery. Without loss of generality, we
assume that the PEV is willing to participate in the process of
charging and discharging in the range [0, 1] (in practice each
PEV insures that xi(t) > xmin, for some xmin ∈ R>0). The
mappings Pcharge : [0, 1]→ R≥0 and Pdischarge : [0, 1]→ R≥0
given by Pcharge(xave(t)) and Pdischarge(xave(t)), xave(t) =
1
n

∑n
i=1 xi(t), denote, respectively, the price per unit of
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energy that the PEVs pay and receive when charging and
discharging their batteries. Also, it is reasonable to assume
that the PEVs are making their decisions on the total amount
of energy to be charged/discharged for a certain fixed period
of time. [The PEVs decide at the beginning of this period
what their charge level will be at the end of the period.] We
also need to define a set of utility functions Ui : [0, 1] →
R≥0, with values Ui(xi), i ∈ {1, . . . , n}. This function is an
increasing function of the available charge, i.e., at no cost,
it is beneficial for each PEV to keep its battery charged.

Let us next describe the decision-making process that each
PEV is faced with. Similar to other scenarios of resource
allocation problems (see, e.g., [15]), each PEV wishes to
maximize a payoff function fi : Rn × Xagg → R, where
Xagg = B0([0, 1])×B0([0, 1]), is given by

fi(xi, x−i,Pcharge, Pdischarge) = (1){
Ui(xi)− (xi − x0i )Pcharge(xave), xi > x0i ,

Ui(xi)− (xi − x0i )Pdischarge(xave), xi ≤ x0i ,

where (x0i , x
0
−i) ∈ X , X = [0, 1]n, denotes the initial state of

charge of the PEV batteries. The aggregator’s goal is ensure
that the PEVs collectively provide Q ∈ R units of energy;
thus it wishes to maximize

fagg(x, Pcharge, Pdischarge) = −|Q −
n∑
i=1

αi(xi − x0i )|,

where αi ∈ R>0, for all i ∈ {1, . . . , n}.
Based on the description given above, the aggregator and

the PEVs define a game, which we call the retail market
game,

GPEVs-AGG = (V ∪ {vagg}, X ×Xagg, f1 × . . .× fn × fagg),

where players wish to maximize their objective functions.
We are now ready to formulate the problems of interest:
(a) (Existence of equilibria): given the pricing strategies of

the aggregator Pcharge, Pdischarge ∈ B0([0, 1]), does there
exist a Nash equilibrium solution to the retail market
game? If so, is the equilibrium unique?

(b) (Distributed equilibria seeking): if the answers to both
parts of (a) are positive, can the PEVs use a (distributed)
strategy to seek the Nash equilibrium, after the pricing
strategy is fixed?

(c) (Optimal pricing): if the answer to the existence part of
the previous question is positive, does there exists pricing
strategies Pcharge, Pdischarge ∈ B0([0, 1]) such that

x∗ ∈ {z ∈ X | z = argmaxxfagg(x, Pcharge, Pdischarge)},

where x∗ is the retail market game Nash equilibrium?
The main focus of this paper is to provide answers to (a)
and (b); the study of optimal pricing is left for future work.

IV. EXISTENCE AND UNIQUENESS OF
EQUILIBRIUM POINTS

In this section, we characterize the properties of the retail
market game. We start by stating some assumptions on the
payoff functions of players.

Assumption 4.1: (Properties of the payoff functions):
We assume that

(i) the function Ui is concave, nondecreasing, and contin-
uously differentiable, for all i ∈ {1, . . . , n},

(ii) the function Pcharge is convex, twice differentiable, and
nondecreasing,

(iii) the function Pdischarge is concave, twice differentiable,
nondecreasing, and

(iv) Pcharge(xave) > Pdischarge(xave), for all xave ∈ [0, 1].
Assumption (i) means that without any incentive for

discharging, PEVs would prefer to have full charge at all
times. The nondecreasing parts of assumptions (ii) and (iii),
respectively, ensure that when the average value xave is high
(meaning that PEVs are storing a large amount of energy),
the aggregator increases the charging price and when the
xave is low (meaning that PEVs do not have enough energy
stored) the aggregator increases the discharging price. These
assumptions are reasonable, when the request Q matches a
realistic operating scenario, where most PEVs are willing
to charge overnight and discharge during the daytime. The
convexity and concavity assumptions of (ii) and (iii) are
technical and ensure the concavity of the payoff function
of each player (see Proposition 4.2 bellow). Finally, the
last assumption prevents PEVs from simultaneously trading
power for increasing their payoff and ensures concavity of
the pricing strategy. We have the following result.

Proposition 4.2: (Properties of the payoff functions):
Under Assumption 4.1, the payoff function of each PEV,
given by (1), is concave in its first argument.

Figure 1(b) shows a payoff function which satisfies the
conditions of Proposition 4.2. Using this result, and in view
of the fact that the strategy sets are convex, the existence of a
Nash equilibrium is guaranteed for the problem at hand [18].

Theorem 4.3: (Existence of solutions for GPEVs-AGG):
Under Assumption 4.1, GPEVs-AGG has a Nash equilibrium.

An extension of [18, Theorem 4] to nonsmooth functions,
see [26], can now be applied to guarantee uniqueness, under
the assumption of the diagonally strict concave, see [18].

V. DISCRETE-TIME DISTRIBUTED STRATEGIES FOR
SEEKING THE NASH EQUILIBRIUM

We now design a strategy, distributed in a sense that will
be described shortly, which allows for seeking the Nash
equilibrium, when it is unique. The strategy can be thought of
as the distributed version of the gradient-flow procedure [18,
Theorem 7] for seeking the Nash equilibrium, extended to
include nonsmooth payoff functions. It is discrete-time and
consensus-based and is motivated by the distributed opti-
mization protocols in [8], [9], and the Nash-seeking strategies
for noncooperative games in [27]. Although we derive our
results by considering GPEVs-AGG, when the strategy sets are
convex and compact, and the constraints are not shared, they
are readily extendable to include other concave games with
unique Nash equilibrium.

Each PEV can only communicate with its neighboring
PEVs; the exchange of information among all PEVs is de-
scribed by a connected undirected graph, denoted by GPEVs.
Each player has only access to its own payoff function, which

5089



is assumed to be concave in all its arguments but not neces-
sarily differentiable. To ensure uniqueness, we additionally
assume that the diagonally strict concave condition of [26]
holds. We denote this unique Nash equilibrium by x∗ ∈ X ,
X = [0, 1]n. We assume that each player makes an estimate
of what this Nash equilibrium should be; we denote the
estimate of vi by xi ∈ Rn. We let xT = (x1, . . . , xn) ∈ Xn.
Let Ψδ : Xn × Zn ⇒ Xn × Zn, Z = Rn, be a mapping
given by

Ψδ(x, z) = {(P(x− δ(Lx + Lz − sx)), z + δLx) |
sx ∈ D = {u ∈ Rn

2

| u = (η1, 0, . . . , 0︸ ︷︷ ︸
computed by v1

,

. . . , 0, . . . , 0, ηn)T , ηi ∈ ∂xifi(x
i)}},

where δ ∈ R>0, L = L ⊗ In ∈ Rn2×n2

, L is the Laplacian
of GPEVs, and P = Πn2

i=1Pi, where Pi : R → [0, 1], i ∈
{1, . . . , n2}, is the natural projection map onto [0, 1].

The mapping Ψδ has the following key properties:
(i) by Lemma 2.2, it is nonempty and upper semicontinu-

ous;
(ii) the projections of their fixed points to its first argument

are given by 1n ⊗ x∗, where x∗ ∈ X is the Nash
equilibrium of GPEVs-AGG, as we establish next.

Lemma 5.1: (Fixed points of Ψδ): When GPEVs is undi-
rected and connected, Ψδ has at least one fixed point.
Moreover, (x∗, z∗) is a fixed point of Ψδ if and only if
x∗ = 1n ⊗ x∗, where x∗ ∈ X is the Nash equilibrium of
GPEVs-AGG.

Consider now the discrete-time set-valued dynamical sys-
tem defined on Xn × Zn as

(x(k + 1), z(k + 1)) ∈ Ψδ(x(k), z(k)); (2)

in what follows, we will occasionally refer to these system
as the concave Nash seeking dynamics. Note that (2) is
clearly distributed over the network GPEVs and each player
only uses the information about its own payoff function. Our
primary goal in this section is to characterize the convergence
properties of these dynamics.

Theorem 5.2: (Asymptotic convergence of (2)): When
GPEVs is undirected and connected, the dynamics in (2) is
asymptotically convergent for δ ∈ R>0 small enough.

VI. NUMERICAL SIMULATIONS

Consider a group of PEVs connected to an aggregator;
for illustration purposes, we have only selected six PEVs
{v1, . . . , v6}. The PEVs can obtain information from each
other via a network described by a connected and undirected
graph with adjacency matrix

A =


0 1 1 0 1 1
1 0 1 0 0 1
1 1 0 1 1 0
0 0 1 0 1 0
1 0 1 1 0 1
1 1 0 0 1 0

 .
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Fig. 2. (a) and (c) show the evolutions of (2) for each PEV in Case-1
and Case-2, respectively. In (b) and (d), we have shown, as an example,
the consensus between the groups of PEVs on the value of charge in v5; in
these two figures the dashed lines show the perception of other PEVs about
the state value of v5.

Each PEV’s utility function Ui : [0, 1] → R≥0, i ∈
{1, . . . , 6}, is given by

Ui(x) = u1i log(1 + x) + u2ix,

where Ui is normalized so that u1i , u
2
i ∈ (0, 1]. Note that

Ui is increasing and strictly concave and thus satisfies
Assumption 4.1(i). Let us assume that the aggregator has
linear pricing strategies given by

Pcharge(xave) = c1xave + c2,

Pdischarge(xave) = d1xave + d2,

where these functions are normalized so that c1, d1 ∈ (0, 1]
and c2, d2 ∈ [0, 1]. The payoff functions of vi, i ∈
{1, . . . , 6}, are of the form in (1). Note that these pricing
functions satisfy Assumption 4.1(ii-iii). Also, by assuming
that c1 > d1 and c2 > d2, Assumption 4.1(iv) holds true
and as a result, the payoff function of each PEV is concave
(see Proposition 4.2). In fact, one can easily verify that
each of these functions additionally satisfy the diagonally
strict concavity assumption, and the Nash equilibrium of the
GPEVs-AGG with these pricing strategies is unique. We start
our set of case studies with a scenario in which the aggregator
needs to encourage the PEVs to discharge their batteries. For
this reason, the aggregator chooses the pricing parameters as
c1 = 0.9, c2 = 0.9, d1 = 0.8, and d2 = 0.8. The parameters
associated with each PEV are given in Table I. We consider
two cases.
• Case-1: all PEVs have low initial available charge and

no incentive for charging;
• Case-2: all PEVs have low initial available charge; the

only PEV with incentive of charging is v5.
Figure 2 shows the evolution of (2) for each PEV in these

two cases; the value of the Nash equilibrium for each case,
which all the PEVs have agreed on, is given in Table I.
Unlike Case-1, in Case-2, PEV v5 has a higher incentive to
charge its batteruy (see the value of u5 in Table I).
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PEV 1 PEV 2 PEV 3 PEV 4 PEV 5 PEV 6
Case-1 u1 0.1602 0.1126 0.2502 0.2113 0.3216 0.1984

u2 0.1250 0.1457 0.1780 0.1078 0.1162 0.1942
x∗ 0 0 0 0 0 0

Case-2 u1 0.1602 0.1126 0.2502 0.2113 0.8216 0.1984
u2 0.1250 0.1457 0.1780 0.1078 0.1162 0.1942
x∗ 0 0 0 0 0.0780 0

TABLE I
THE PROPERTIES OF EACH PEV IS GIVEN. THE PRICING PARAMETERS IS GIVEN BY c1 = 0.9, c2 = 0.9, d1 = 0.8, d2 = 0.8 FOR CASE-1 AND

CASE-2. x0 = (0.1, 0.2, 0.1, 0.2, 0.3, 0.2)T .

VII. CONCLUDING REMARKS

We have introduced a framework for controlling the charg-
ing and discharging processes of networked PEVs via pricing
strategies set by an aggregator. We have formulated the
overall scenario as a hierarchical decision-making problem
in which the aggregator is the leader and sets the pricing
strategies for charging and discharging. The PEVs are the
followers and after receiving the pricing strategies, evaluate
their next batteries’ charges. After the pricing strategy is
selected, we give conditions under which this game is a
concave game and determine conditions under which it
has a unique Nash equilibrium. Finally, we introduce a
discrete-time set-valued dynamical system, distributed over
the network of PEVs, which allows the PEVs to compute
the Nash equilibrium, when unique.

Future work will focus on: (i) the characterization of
optimal pricing strategies for the aggregator; (ii) extension
of the convergence results to communication networks de-
scribed by directed graphs, studying groups of aggregators
and their interconnections with the retail market layer; and
(iii) robustness and resilience in pricing strategies.
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