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© Patient Bob wants to update his physician Alice about his
Body Mass Index (BMI) and weight (x).
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Motavation
oce

Example

© Patient Bob wants to update his physician Alice about his
Body Mass Index (BMI) and weight (x).

@ Alice already knows the BMI category of Bob (c¢).

© Alice and Bob want to keep the BMI category ¢ private from
Eve, a passive eavesdropper, after observing the
communication.
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Setting and Threat Model

Disclosed Identity

The identity of the sender (s) is attached to each disclosed piece
of information.

\
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Setting and Threat Model

Disclosed Identity

The identity of the sender (s) is attached to each disclosed piece
of information.

|

Intended Recipient’s Knowledge

The sender belongs to a class (c) that is known to the intended
recipient.

A

Threat Model

Adversary is a passive man in the middle interested in inferring the
class ¢ of the sender s based on the disclosed information.
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The sender discloses an encoded version z of x, where the
encoding depends on her class c.
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Objectives

Decoding Condition

The intended recipient can make full use of the sent information z,
i.e. obtain the original message x from the transmitted message z.
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Framework
coe0

Objectives

Decoding Condition

The intended recipient can make full use of the sent information z,
i.e. obtain the original message x from the transmitted message z.

Hiding Class Condition
The adversary's ability to make inference about ¢ given s, based
on the sent information z is minimized.

N

6/ 25
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Some Definitions

@ S is the set of senders’ identities
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Some Definitions

@ S is the set of senders’ identities

@ Y is the set of senders’ classes

@ T is the set of pieces of information
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The Disclosure Process

Let R : ¥ — TZ (Privacy Mapping Function)
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The Process

The Disclosure Process

Let R : ¥ — TZ (Privacy Mapping Function) (Equivalent to
R : ¥ x Z — 7 being injective in the second argument)

Sending Information

@ Sender s € S (from class ¢ € ¥) wants to send information
xel.

o Let the sender encode z = [R(c)] (x), and send z.

|

Receiving Information

@ The intended recipient knows the identity of s and her class c.

o The intended recipient then can decode x < [R(c)]' (2).
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Statistical Graphical Model
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Statistical Graphical Model
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Statistical Graphical Model

S ~( C -

p(Z =2IX =x,C=c) £ 5(z—[R(c)] (x))

(2
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Statistical Graphical Model

S ~( C -

P(S) P(C|S) P(X|C,S)

(2
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Formulation of Problem

minimize /(C, Z|S; R)
w.rt Re (Z — IZ)
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Framework
°

Formulation of Problem

minimize /(C, Z|S; R)
w.rt Re (Z — IZ)

© Properties?

@ How do we learn such a privacy mapping function, R?
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Optimality Analysis
[ Jelelelele)

If there exists a privacy mapping function R such that
p(Z =2z|C=c,5S=5s;R)=1f(z,5s) for all c € X then:
Q@ /(C,Z|S; R) =0 (global optimum)

Q@ p(C=c|Z2=2S5=5s;R)=p(C =c|S=s) (Bayesian
updates prevented)
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Optimality Analysis
©00®000

Gaussian Information

If X|C=c,S=sn~ N(uc,Xc) (Normal distribution) for every
1

ce X ands €S, then [R(c)] (x) = Zc? - (x — pe) yields
I(C,Z|S; R) =0 and “prevents Bayesian updates”.

Aranki, Bajesy (UC Berkeley) Private Disclosure of Information May 7, 2015



Optimality Analysis
©000e00

Exponentially Distributed Information

If X|C =c,S =s ~ Exp(\c) (Exponential distribution) for every
c€X ands €S, then [R(c)](x) = Acx yields I(C, Z|S; R) =0
and "prevents Bayesian updates”.
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Optimality Analysis
0000®0

Gamma Distributed Information

Theorem 4

If X|C =¢,S =s~ Gamma(k,0.) (Gamma distribution with
shape and scale parameters) for every c € ¥ and s € S, then
[R(c)] (x) = & vyields I(C,Z|S; R) =0 and “prevents Bayesian
updates”.
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Optimality Analysis
oooooe

Uniform Information

If X|C =c¢,S=sn~ U(ac,bc) (Uniform distribution) for every
ceXand S €S, then [R(c)] (x) = 5= yields I(C,Z|S;R) =0
and "prevents Bayesian updates”.
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The Learning Problem

Hard problem:
@ /(C,Z|S;R) is non-convex in R.
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The Learning Problem

Hard problem:
@ /(C,Z|S;R) is non-convex in R.
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°

The Learning Problem

Hard problem:
@ /(C,Z|S;R) is non-convex in R.
@ Search space is hard to compute over.
MATLAB Implementation as a toolbox:
@ Parametrize R(-) — R(+;0) where § € © a (vector) of
parameter(s) from a parameter space.

@ Treat all subjects as “equal”
e p(S) is uniform.
o p(C|S =) is invariant in s.
o p(X|C=c,S=s5)isinvariant in s.
© minimize I(C,Z; R(-;0)) w.rt. 6 € ©
@ Non-parametric modeling of p(X|C) and p(C)
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Information Distribution Per Weight Category
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Table: Confusion Matrix. UW = Underweight, HW = Healthy Weight,
OW = Overweight, OB = Obese

Ground Truth Category
uw HW Ow OB

uw | 47 20 0 0
HW | 14 1203 66 1
ow | 0 45 194 47
OB 0 2 37 308

redicted
ategory

P
Cc

trace(Confusion Matrix)/sum(Confusion Matrix) = 88.31%
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pdi_begin
% data/information spac
pdi_dimension BMI 0:2:60;
pdi_dimension weight 0:5:180;
% define classes
pdi_class underweight healthy_weight overweight obese
% provide data
pdi_datapoints underweight fv_uw
pdi_datapoints healthy.-weight fv_hw
pdi_datapoints overweight fv_ow
pdi_datapoints obese fv_ob
% parameter space
pdi_var shift (pdi_nrdimensions, pdi_-nrclasses);
pdi_var scale(pdi_nrdimensions, pdi_nrclasses);
% z = scale.x (x—-shift)
pdi_reference @(x, cn) bsxfun(@times, bsxfun (@minus,
x, shift(:,cn)), scale(:,cn));
% such that
scale(:,1) == 1; % entry-wise
shift(:,1) == 0; %
scale>=.1; % entry-wise
shift>=0; % entry-wise
pdi_end

entry-wise
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Privatized Information Per Class (Top View)
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1000 Privatized Information Per Class (Bottom View)
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Table: Confusion Matrix After Privatizing. UW = Underweight, HW =
Healthy Weight, OW = Overweight, OB = Obese

Ground Truth Category
uw HwW OwW OB

uUw | 48 14 8 5

HW | 13 1217 276 290
ow 0 25 13 29
OB 0 14 0 32

Predicted
Category

trace(Confusion Matrix)/sum(Confusion Matrix) = 66.03%
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Table: Confusion Matrix After Privatizing. UW = Underweight, HW =
Healthy Weight, OW = Overweight, OB = Obese

Ground Truth Category
uw HwW OwW OB

uUw | 48 14 8 5

HW | 13 1217 276 290
ow 0 25 13 29
OB 0 14 0 32

Predicted
Category

trace(Confusion Matrix)/sum(Confusion Matrix) = 66.03%

from 88.31%
lower bound: #HW /sum(Confusion Matrix) = 64.01%

May 7, 2015
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Future Directions

@ Bounds on privacy.
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Future Work

Future Directions

@ Bounds on privacy.
@ Sensitivity analysis.

@ Relaxing the assumption of perfect classification knowledge
for the intended recipient.

@ Markov-type relaxation.
@ Study the relationships between /(C, Z|S) and /(X, Z|S).

e Parametric modeling of p(X|C) for learning.
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