Program Verification
and the Church-Rosser Theorem

e

Peter Vincent Homeler
National Security Agency
homeier@saul.cis.upenn.edu

4/24/2011

The Need for Practical Verification
D

 Reliability is critical for some applications

* For qualitatively superior reliability, verification is
necessary

« For credible proofs, mechanical verification is necessary

« (Goal is a tool to support human construction of software
designs and code that are proven consistent with specs

» Desired result is code verified to perform as specified

2

4/24/2011

Prior Related Work

e Sunrise, total correctness for small imperative language,
like subset of Pascal including mutually rec. procedures

o Bali, formalizes aspects of Java in Isabelle/HOL,
Including dynamic binding, exceptions, side-effects

o Extended Static Checking (ESC), super-lint for Java,
checks array bounds, nil dereference, synchronization

Strong Extended Partial Total

Typing Static Correctness Correctness
Checking

4/24/2011

Syntax
Definitions

sunrise:
} Structure of Approach

Operational +
Semantics Definitions
Use

Verification

Correctness
Specifications
Definitions

I ¢ Axiomatic Semantics is Sound

VCG
Definitions

I ? VCG is Sound

P Program is Totally Correct

4/24/2011

Process and Advantages of Verification
D

Programmer iteratively writes design/code with
annotations about intended behavior: reveals flaws

Tool automatically resolves most of verification,
resorting to programmer for remaining issues

Many common programming errors prevented absolutely
Verification implies significantly higher reliability

Eases but does not replace testing; Only part of a wider
high-confidence software engineering methodology 5

4/24/2011

Foundations of Semantics of Languages
D

Most such previous VCG tools were not formally verified
— ... hence proofs of programs were suspect!
Need formal proof of soundness of VCG tool
... based on formal semantics of the programming language
Lambda Calculus is a prototypical programming language
A laboratory for examining general language issues
... Including the nontrivial Church-Rosser property 6

4/24/2011

Prior Proofs of Church-Rosser Theorem
S

e Shankar, 1988, Boyer-Moore (ngqthm), name-carrying syntax
* Huet, 1994, Coq, de Bruijn syntax
* Rasmussen, 1995, Isabelle-ZF, de Bruijn syntax

* Vestergaard/Brotherston, 2001, Isabelle-HOL,
name-carrying syntax

4/24/2011

Raw Lambda Calculus Syntax

-
A-calculus syntax:

variables (var): x,V, z, ...
terms (term,): A, ::= var | A; A | Avar.A;
(variable, application, abstraction)
substitutions (subst,): 2, =[] | (var:=Ap) %,
(nil, cons of (var, term) pair) - a simultaneous substitution
Typical meta-variables of types: term:t,u, M, N,L subst:s varset.r

val _ = Hol_datatype
" terml = Varl of var
| Appl of terml => terml
| Laml of var => terml ° ;

Hol98 automatically proves term 1) structural induction, 2) function existence,
3) cases, 4) constructors distinctiveness, and 5) constructors one-to-one

4/24/2011

Functions on Raw Lambda Calculus Syntax
D

Functions on A-calculus syntax:
HEIGHT,;: A — num Height of term, var is 0, else 1+components

FVy: A — varset Set of free variables of term
Oy : var— X —> A Application of a substitution to a variable
4, A —> X — A Proper application of a substitution to a term

HEIGHT, and FV, are defined by primitive recursion on the structure of terms
," is defined by list recursion on the structure of the substitution

3, is defined by primitive recursion on the structure of terms, making use of the
simultaneous substitution to add new bindings to properly avoid capture. 9

4/24/2011

Substitution
D

Definition of substitution: (Complete)

xd;s = x03,"s
(t u)yd;s = (t3ys)(ud,s)
(Ax.t) 3, s = let x’ = variant x (FVsubst; s (FV,;t—{x}))In
A (3, (x:=Xx7) 1))
where
FVsubst;sr = U (image (Fv, O SUB,; s) r)
SUB; S X = x03,"s

“Naive” substitution is easy and simple but
(Ax.t) 3y s = Ax. (t3;59)

4/24/2011

10

Constructors One-to-One Property
-

Almost right, but constructors one-to-one property says that
(AX1. 4 =A% 1) & (X =X) A (= 1)
But we want, for example, Ax. X = Ay. y. Just which name Is

used for the variable should be immaterial, as long as names
are changed consistently.

This one-to-one property Is too discriminating. We want to
create a variant of this calculus to blur such distinctions.

The exact blurring we wish is called alpha-equivalence. 11

4/24/2011

Alpha-Equivalence
D

Church represented as semantic reduction: t— t’

More modern approach (Barendreght, Abadi/Cardelli, ...)
IS to identify equivalent terms at syntactic level

Alpha-equivalence: relation on terms; e.g., AX. X =, Ay. V.
Design issue: How to define =_?
— Others used substitution (3,); is it deceptively complex?

— We used contextual alpha-equivalence, where the
contexts are lists of variables denoting bindings present 12

4/24/2011

Real Lambda Calculus
D

* Real lambda calculus formed as quotient of raw lambda
calculus by alpha-equivalence:

A= A=,
* New type “term” made by new HOL package for quotients
* Produces two mapping functions between term and term1.:
[A > A [T:A > Ay
Ya. [[all=a A Hdrr.r=r < (Lrl=Lr))
e Term constructor functions redefined in A using map fns 13
E.g., Lamxt=L[Lam, x [t]], whichisAx.t=[Ax.[t]]

4/24/2011

Recreating Function Definitions in the
Real Lambda Calculus
D

 Functions are defined first in A; and then recreated in A
e BUT, not every function definable in A, can be recreated!
* Functions must respect alpha-equivalence, e.g.,
t,=,t, = FV; 1, =FV; 1,
=t A s =s, = (t,0;s) =, (,0;s)
1) Prove function respects alpha-equivalence (arb. complex)
» 2) Define new function using || and []

« 3) Prove as theorem in A the same form as definition in A, 14

4/24/2011

Recreated Properties in the
Real Lambda Calculus
D

* Now we have the one-to-one property

(Xt = M%) & (L O X =X] =H) A (GO X =Xx]=1)
All other properties and definitions of A, are recreated in A,
except for function existence

More general term height induction principle:

P YP. (¥X. P X) A
(Jtu.PtAPU =P (t u) A
(¥t. (Jt". HEIGHT t = HEIGHTt" = Pt’) = Jx. P (Ax. 1))

g;t. Pt) 15

4/24/2011

Barendregt Variable Convention (BVC)

Barendregt’s Lambda Calculus: It’s Syntax and Semantics

The BVC states that in any proof, one can assume that all
bound variables are different from all free variables

Then substitution is simple (naive), and proofs are elegant
« Controversial; some have suggested the BVC is incomplete

* We have found a mechanization within the security of HOL

that (partially) justifies the BVC —

A new HOL tactic to shift abstractions away from capture, 16
used along with height-based induction

4/24/2011

Semantics of Reduction in Lambda Calculus
D

Define S as relation on terms such that for all M, N € A,
L (Ax. M)N) (M3 [x:=N])
A relation R on A Is compatible (with the operations) if
forall M, M’, Z € A, X € var,
RMM = R(ZM)(ZM)ARMZ)(M* Z) A ROAX.M)(AX.M?)

Given relation R, R induces reduction relations:

—r One step R-reduction compatible closure of R
@r R-reduction reflexive, transitive closure of —¢ 1 7

=r R-equality equivalence relation generated by ¢

4/24/2011

Diamond Property and
Church-Rosser Property

« & satisfies diamond property (& © 0) if
YM M, M,. M&M; A MB&M, = IM,. MM, A M,% M,

M
VRN
Ml\\ /,Mz

N 7/
N e
4 3

M

» Ris Church-Rosser if @3 © ¢ ; wantto prove & ,© ¢ 18

4/24/2011

The Church-Rosser Theorem
D

 Original by Church-Rosser (1936); Schroer (1965) 627 pgs

» Greatly simplified proof found by Martin-Lo6f (1972),
based on ideas of Tait

« Elegant presentation by Barendregt (1981) using the BVC
» Define parallel reduction (¥¢) inductively by the rules

MM , NN
M s M M N« M N’

M % M’ MM , NN . 19
AX. M Y Ax. M’ (Ax. M) N ¢ M’ O [x:=N’]

4/24/2011

Proof of the Church-Rosser Theorem
)

« Theorem: For all relations %, © © ¢ = L*© 0
 Theorem: 5% satisfies the diamond property (¢ © 0)
 Theorem: & ;is the transitive closure of ¥ (&, = **)

e Theorem: gis Church-Rosser.
Proof:. by definition of Church-Rosser and above theorems

20

4/24/2011

HOL Proof of the Church-Rosser Theorem

e 6 main HOL theories (+ 2 auxiliary)

e 3 new types

e 73 new definitions

« 302 theorems proved

* 0 new axioms (secure, conservative extension of HOL)

o 22,252 lines of Standard ML code (including comments)

All theory scripts and associated code, including the new
quotient library and mutual recursion tools, are available at 2 1

http://www.cis.upenn.edu/~hol/lamcr/

4/24/2011

Conclusions
.

« Separation of concerns is simpler: alpha-equivalence and
beta-reduction analyzed in two distinct layers.

« Creating the real lambda calculus as a quotient relied on the
proof that substitution respected alpha-equivalence. This
proof for a complete substitution function is new.

* We have justified the controversial BVVC for this CR proof.

* As the lambda calculus is an archetype of programming
languages, this proof is a prototype for general foundations. 22

e Soli Deo Gloria.

4/24/2011

	Program Verification�and the Church-Rosser Theorem
	The Need for Practical Verification
	Prior Related Work
	Sunrise:�Structure of Approach
	Process and Advantages of Verification
	Foundations of Semantics of Languages
	Prior Proofs of Church-Rosser Theorem
	Raw Lambda Calculus Syntax
	Functions on Raw Lambda Calculus Syntax
	Substitution
	Constructors One-to-One Property
	Alpha-Equivalence
	Real Lambda Calculus
	Recreating Function Definitions in the�Real Lambda Calculus
	Recreated Properties in the�Real Lambda Calculus
	Barendregt Variable Convention (BVC)
	Semantics of Reduction in Lambda Calculus
	Diamond Property and �Church-Rosser Property
	The Church-Rosser Theorem
	Proof of the Church-Rosser Theorem
	HOL Proof of the Church-Rosser Theorem
	Conclusions

