
4/24/2011

Program Verification
and the Church-Rosser Theorem

Peter Vincent Homeier
National Security Agency

homeier@saul.cis.upenn.edu

4/24/2011

The Need for Practical Verification

• Reliability is critical for some applications
• For qualitatively superior reliability, verification is

necessary
• For credible proofs, mechanical verification is necessary
• Goal is a tool to support human construction of software

designs and code that are proven consistent with specs
• Desired result is code verified to perform as specified

2

4/24/2011

Prior Related Work

• Sunrise, total correctness for small imperative language,
like subset of Pascal including mutually rec. procedures

• Bali, formalizes aspects of Java in Isabelle/HOL,
including dynamic binding, exceptions, side-effects

• Extended Static Checking (ESC), super-lint for Java,
checks array bounds, nil dereference, synchronization

3

4/24/2011

4

Sunrise:
Structure of Approach

Operational
Semantics Definitions

Syntax
Definitions

Proof of Axioms, Rules

Axiomatic Semantics is Sound

Correctness
Specifications

Definitions

Proof of VCG

 VCG is Sound

VCG
Definitions

Program with Annotations

VCG

Verification Conditions

Proof of VC’s

 Program is Totally Correct

Verification Use

4/24/2011

Process and Advantages of Verification

• Programmer iteratively writes design/code with
annotations about intended behavior; reveals flaws

• Tool automatically resolves most of verification,
resorting to programmer for remaining issues

• Many common programming errors prevented absolutely
• Verification implies significantly higher reliability
• Eases but does not replace testing; Only part of a wider

high-confidence software engineering methodology 5

4/24/2011

Foundations of Semantics of Languages

• Most such previous VCG tools were not formally verified
– … hence proofs of programs were suspect!

• Need formal proof of soundness of VCG tool
• … based on formal semantics of the programming language
• Lambda Calculus is a prototypical programming language
• A laboratory for examining general language issues
• … including the nontrivial Church-Rosser property 6

4/24/2011

Prior Proofs of Church-Rosser Theorem

• Shankar, 1988, Boyer-Moore (nqthm), name-carrying syntax
• Huet, 1994, Coq, de Bruijn syntax
• Rasmussen, 1995, Isabelle-ZF, de Bruijn syntax
• Vestergaard/Brotherston, 2001, Isabelle-HOL,

name-carrying syntax

7

4/24/2011

Raw Lambda Calculus Syntax

λ-calculus syntax:
variables (var): x, y, z, ...
terms (term1): Λ1 ::= var | Λ1 Λ1 | λvar.Λ1

(variable, application, abstraction)
substitutions (subst1): Σ1 ::= [] | (var := Λ1) :: Σ1

(nil, cons of (var, term) pair) - a simultaneous substitution
Typical meta-variables of types: term: t, u, M, N, L subst: s var set: r

val _ = Hol_datatype

` term1 = Var1 of var

| App1 of term1 => term1

| Lam1 of var => term1 ` ;

Hol98 automatically proves term 1) structural induction, 2) function existence,
3) cases, 4) constructors distinctiveness, and 5) constructors one-to-one

8

4/24/2011

Functions on Raw Lambda Calculus Syntax

Functions on λ-calculus syntax:
HEIGHT1: Λ → num Height of term, var is 0, else 1+components
FV1: Λ → var set Set of free variables of term
_1

v_: var → Σ → Λ Application of a substitution to a variable
1: Λ → Σ → Λ Proper application of a substitution to a term

HEIGHT1 and FV1 are defined by primitive recursion on the structure of terms
1

v is defined by list recursion on the structure of the substitution
1 is defined by primitive recursion on the structure of terms, making use of the

simultaneous substitution to add new bindings to properly avoid capture. 9

4/24/2011

Substitution

Definition of substitution: (Complete)
x1 s = x1

v s
(t u) 1 s = (t1

v s) (u1
v s)

(λx. t) 1 s = let x’ = variant x (FVsubst1 s (FV1 t – {x})) in
λx’. (t1 ((x := x’) :: s))

where

FVsubst1 s r = ∪ (image (FV1 SUB1 s) r)
SUB1 s x = x1

v s

“Naïve” substitution is easy and simple but NOT CORRECT:
(λx. t) 1 s = λx. (t1 s) 10

4/24/2011

Constructors One-to-One Property

Almost right, but constructors one-to-one property says that
(λx1. t1 = λx2. t2) ⇔ (x1 = x2) ∧ (t1 = t2)

But we want, for example, λx. x = λy. y. Just which name is
used for the variable should be immaterial, as long as names
are changed consistently.

This one-to-one property is too discriminating. We want to
create a variant of this calculus to blur such distinctions.

The exact blurring we wish is called alpha-equivalence. 11

4/24/2011

Alpha-Equivalence

• Church represented as semantic reduction: t →α t’
• More modern approach (Barendreght, Abadi/Cardelli, …)

is to identify equivalent terms at syntactic level
• Alpha-equivalence: relation on terms; e.g., λx. x ≡α λy. y.
• Design issue: How to define ≡α?

– Others used substitution (1); is it deceptively complex?
– We used contextual alpha-equivalence, where the

contexts are lists of variables denoting bindings present 12

4/24/2011

Real Lambda Calculus

• Real lambda calculus formed as quotient of raw lambda
calculus by alpha-equivalence:

Λ = Λ1 / ≡α

• New type “term” made by new HOL package for quotients
• Produces two mapping functions between term and term1:

_ : Λ1 → Λ _ : Λ → Λ1

a.  a  = a ∧ r r’. r ≡α r’ ⇔ (r = r’)
• Term constructor functions redefined in Λ using map fns

E.g., Lam x t = Lam1 x t  , which is λx. t = λx. t 
13

4/24/2011

Recreating Function Definitions in the
Real Lambda Calculus

• Functions are defined first in Λ1 and then recreated in Λ
• BUT, not every function definable in Λ1 can be recreated!
• Functions must respect alpha-equivalence, e.g.,

t1 ≡α t2 ⇒ FV1 t1 = FV1 t2

t1 ≡α t2 ∧ s1 ≡α
subst s2 ⇒ (t11 s1) ≡α (t21 s2)

• 1) Prove function respects alpha-equivalence (arb. complex)
• 2) Define new function using _ and _

• 3) Prove as theorem in Λ the same form as definition in Λ1 14

4/24/2011

Recreated Properties in the
Real Lambda Calculus

• Now we have the one-to-one property
(λx1.t1 = λx2.t2) ⇔ (t1 [x1 := x2] = t2) ∧ (t2 [x2 := x1] = t1)

• All other properties and definitions of Λ1 are recreated in Λ,
except for function existence

• More general term height induction principle:
 P. (x. P x) ∧

(t u. P t ∧ P u ⇒ P (t u)) ∧
(t. (t’. HEIGHT t = HEIGHT t’ ⇒ P t’) ⇒ x. P (λx. t))
⇒
(t. P t) 15

4/24/2011

Barendregt Variable Convention (BVC)

• Barendregt’s Lambda Calculus: It’s Syntax and Semantics
• The BVC states that in any proof, one can assume that all

bound variables are different from all free variables
• Then substitution is simple (naïve), and proofs are elegant
• Controversial; some have suggested the BVC is incomplete
• We have found a mechanization within the security of HOL

that (partially) justifies the BVC —
A new HOL tactic to shift abstractions away from capture,
used along with height-based induction 16

4/24/2011

Semantics of Reduction in Lambda Calculus

• Define β as relation on terms such that for all M, N ∈ Λ,
β ((λx. M) N) (M [x := N])

• A relation R on Λ is compatible (with the operations) if
for all M, M’, Z ∈ Λ, x ∈ var,

R M M’ ⇒ R(Z M)(Z M’) ∧ R(M Z)(M’ Z) ∧ R(λx.M)(λx.M’)
• Given relation R, R induces reduction relations:
• →R one step R-reduction compatible closure of R
• R R-reduction reflexive, transitive closure of →R

• =R R-equality equivalence relation generated by R
17

4/24/2011

Diamond Property and
Church-Rosser Property

•  satisfies diamond property ( ◊) if
∀M M1 M2. MM1 ∧ MM2 ⇒ ∃M3. M1M3 ∧ M2M3

• R is Church-Rosser if R ◊ ; want to prove β ◊ 18

M2M1

M3

M

4/24/2011

The Church-Rosser Theorem

• Original by Church-Rosser (1936); Schroer (1965) 627 pgs
• Greatly simplified proof found by Martin-Löf (1972),

based on ideas of Tait
• Elegant presentation by Barendregt (1981) using the BVC
• Define parallel reduction () inductively by the rules

MM’ , N N’
MM M NM’ N’

MM’ MM’ , N N’ .
λx. M λx. M’ (λx. M) N  M’ [x := N’]

19

4/24/2011

Proof of the Church-Rosser Theorem

• Theorem: For all relations ,  ◊ ⇒ * ◊
• Theorem:  satisfies the diamond property ( ◊)
• Theorem: β is the transitive closure of  (β = *)

• Theorem: β is Church-Rosser.
Proof: by definition of Church-Rosser and above theorems

20

4/24/2011

HOL Proof of the Church-Rosser Theorem

• 6 main HOL theories (+ 2 auxiliary)
• 3 new types
• 73 new definitions
• 302 theorems proved
• 0 new axioms (secure, conservative extension of HOL)
• 22,252 lines of Standard ML code (including comments)
All theory scripts and associated code, including the new

quotient library and mutual recursion tools, are available at
http://www.cis.upenn.edu/~hol/lamcr/

21

4/24/2011

Conclusions

• Separation of concerns is simpler: alpha-equivalence and
beta-reduction analyzed in two distinct layers.

• Creating the real lambda calculus as a quotient relied on the
proof that substitution respected alpha-equivalence. This
proof for a complete substitution function is new.

• We have justified the controversial BVC for this CR proof.
• As the lambda calculus is an archetype of programming

languages, this proof is a prototype for general foundations.
• Soli Deo Gloria. 22

	Program Verification�and the Church-Rosser Theorem
	The Need for Practical Verification
	Prior Related Work
	Sunrise:�Structure of Approach
	Process and Advantages of Verification
	Foundations of Semantics of Languages
	Prior Proofs of Church-Rosser Theorem
	Raw Lambda Calculus Syntax
	Functions on Raw Lambda Calculus Syntax
	Substitution
	Constructors One-to-One Property
	Alpha-Equivalence
	Real Lambda Calculus
	Recreating Function Definitions in the�Real Lambda Calculus
	Recreated Properties in the�Real Lambda Calculus
	Barendregt Variable Convention (BVC)
	Semantics of Reduction in Lambda Calculus
	Diamond Property and �Church-Rosser Property
	The Church-Rosser Theorem
	Proof of the Church-Rosser Theorem
	HOL Proof of the Church-Rosser Theorem
	Conclusions

