DeHon,

#Penn

Programmable Hardware Support for
Ubiguitous Micro-Policy Enforcement

André DeHon, Benjamin C. Pierce
University of Pennsylvania

(joint work with Harvard and BAE)

HCSS, May 2014

Pierce -- May 2014

Where are we?

(wrt. software security)

Nowhere good

DeHon, Pierce -- May 2014

How did we get here?
Lots of reasons!

Among them...
— Legacy of technology of the 1960s - 80s

* Expensive hardware
* Limited verification capabilities
* Few computers, protecting a little, not networked

— Poor HW abstractions, high performance cost
to isolation

DeHon, Pierce— May 2014

What’'s Changed?

transistors
Dual-Core Intel® Itanium® 2 Process ;‘
00,
d Intel" Itanium* 2 Pr /
MOORE'S LAW Intel® n:r::‘r?:‘ Pro(zg"
")
° Intel" Pentium® l Processor ™
* Bigger software ~ Lmmoee
Intel* Pentium® Processor ‘/'/
ssssssssssssssssssss
. Inte1386" Processer |~
o
— (harder to get right) m/
A
8085‘/
808 // 10,000
® 8008, %
iquitous networking
1,000

970 1975 1980 1985 1990 1995 2000 2005 2010

* Protecting more valuable stuff

But also...

e 4+ decades of Moore’s Law
— Hardware is cheap

* Huge progress in formalizing / verifying software
4

DeHon, Pierce — May 2014

Our Goals

Idea: Make hardware enforce more invariants

— Must first communicate invariants to the hardware!

Win:
— Programmable hardware supports a wide range of
policies and allows rapid adaptation to threats
— Ubiquitous policy enforcement at all system levels

— Safety interlock: tolerate errors in operation (bugs
in trusted code, transient errors)

DeHon, Pierce -- May 2014

HARDWARE ARCHITECTURE

PUMP Architecture

(Programmable Unit for Metadata Processing)

e Add full word-sized tag to every word
— In memory, cache, register file...

— (Conceptual model: efficient implementations
may compress!)

* Tagged word is indivisible atom in machine
* Process tags in parallel with ALU operations

— Hardware rule cache

— Software policy system that fills hardware cache
as needed

DeHon, Pierce -- May 2014

Conventional processor

Process Tags in Parallel

PC

|-Store

Reqgister File

AL

{

Memory

DeHon, Pierce -- May 2014

Processor + PUMP

|Principa|| |_| PC |

security —<—| TMU
violation

Combine I

*L]
AL

iy

MNe
Ay
 J
|-Store
 J
‘Register File
(=
Memory

Tags

Integrate PUMP into Conventional
RISC Processor Pipeline

PCtag
PC i
L1-D$ 11
L1-I$ RF > Tags pUMP —
Tags Tags
IF Decode Execute Memory PUMP Commit

on, Pierce -- May 2014

EXAMPLE:
INFORMATION-FLOW CONTROL

DeHon, Pierce, Smith -- April 2014

10

user code rule cache manager

symbolic rules

add rl r2 r3
add rl r4 r5 add(L1,L2) - max(L1l,L2)

software

hardware

rule cache

add(public,public)
add (secret,secret) > public

>

add(secret,secret)
- secret

secret

ground rules

ALU PUMP

user code rule cache manager

"o symbolic rules
add rl r2 r3

add rl r4 r5 add(L1,12) > max(Ll,L2)
software 5‘0(" install
hardware (e trap l
rule cache
_ add(public,public)
add(public, secret) > public
>

add(secret,secret)
- secret

add(public,secret)
- secret

ground rules

ALU PUMP

user code rule cache manager

"o symbolic rules
add rl r2 r3

add rl rd r5 add(L1,L2) = max(Ll,L2)
software
hardware
rule cache
_ add(public,public)
add(public, secret) > public

>
add(secret,secret)

- secret
add(public,secret)
- secret

secret

ground rules

ALU PUMP

DeHon,

Scaling up to Full IFC

* Tag on PC tracks implicit flows

* Word-sized tags can hold pointers to arbitrary
data structures

—labels can represent, for example, sets of
principals

14

Pierce, Smith -- April 2014

Protecting the Protector

Q: How do we prevent the attacker gaining control of
the PUMP itself?

A: Ground rules
* Installed at boot time (by trusted boot sequence)

* Allow tag-manipulating instructions only in carefully
controlled contexts

15

DeHon, Pierce, Smith -- April 2014

The Role of Formal Methods

Q: The interplay between the hardware rule cache,
the software rule cache manager, the ground rules,
and the symbolic policy is somewhat intricate...
— How do we know that it works correctly in all cases?
— How do we know that the symbolic policy is what the
user intends?
A: Though complex, this is a small enough artifact
that we can hope to prove these properties

16

DeHon, Pierce, Smith -- April 2014

Formal Methods: Status

[POPL14, S&P13]
* Formal, machine-checked proofs (in Coq) of
— noninterference for a simple symbolic IFC policy

— correct implementation of this policy by a rule-table
compiler and rule cache handler routine (on a
simplified hardware architecture)

* Currently extending both methodologies to more
realistic models, including

— protection and compartmentalization of kernel code
— additional policies beyond IFC...

17

DeHon, Pierce, Smith -- April 2014

MICRO-POLICIES

18

Micro-Policies

Information-Flow Control
Signing

Sealing

Endorsement

Taint

Confidentiality

Low-Level Type Safety

Memory Safety

Control-Flow Integrity

Stack Safety

Unforgeable Resource ldentifiers
Abstract Types

Immutability

Linearity

Software Architecture Enforcement
Numeric Units

DeHon, Pierce -- May 2014

Mandatory Access Control
Classification levels
Lightweight compartmentalization
Sandboxing

Access control

Capabilities

Provenance

Full/Empty Bits
Concurrency: Race Detection
Debugging

Data tracing

Introspection

Audit

Reference monitors

GC support

Bignum common cases

19

DeHon,

opcode

Pierce -- May 2014

Symbolic Rules

input tags

(PC, CI, OP1, OP2, MR)
— (PCrew, Rnew) if allow?

N\ / \

output tags side condition

20

Control-Flow Integrity

e Tags: Each instruction that can be the source

or target of a control-flow edge is tagged (by
compiler) with a unique tag

* Rules:

— On a jump, call, or return, copy tag of current
instruction onto tag of PC

— Whenever PC tag is nonempty, compare it with
current instruction tag (and abort on mismatch)

DeHon, Pierce -- May 2014

Memory Safety

* Tags:
— Each call to malloc generates a fresh tag T
— Newly allocated memory cells tagged with T
— Pointer to new region tagged “pointer to T”

* Rules:

— Load and store instructions check that their targets
are tagged “pointer to T” and that the referenced
memory cell is tagged T (for the same T!)

— Pointer arithmetic instructions preserve “pointer to T”
tags

22

DeHon, Pierce -- May 2014

% CPI overhead

Performance Overhead (SPEC2006)

O
<
B on-chip D/I-$
8 - DRAM
O on-chip PUMP-$
o O PUMP s/w
«
9_ -
o —
[HASP 2014]

$ § S 23

DeHon, Pierce -- May 2014

FINISHING UP...

24

DeHon,

Future Work

* Micro-architectural optimization

— Reduce energy, area, delay overhead

* Define more uwPolicies, characterize security

properties, implement, formally validate

* Understand policy composition
e Use to compartmentalize, shrink trusted

computing base

25

Pierce -- May 2014

Conclusion

* Host of security problems arise from violation
of well-understood low-level invariants

* Spend modest hardware to check
— Ubiquitously enforce in parallel with execution

* Programmable PUMP Model
— Richness and flexibility of software...
— ...with the performance of hardware!

— Reduce or eliminate security/performance
tradeoff

26

DeHon, Pierce -- May 2014

