NICTA

Proof Engineering:
The Soft Side of Hard Proof

HCSS 2015

Gerwin Klein

Daniel Matichuk, June Andronick, Toby Murray, Mark Staples,

Ross Jefrey, Rafal Kolanski, Matthias Daum, Timothy Bourke

* Australian Government

. 3%
N7 lu}.:f"-'n\l A

‘f?‘-_f"f " Department of Broadband, Communications
and the Digital Economy

Australian Research Council

NICTA Funding and Supporting Members and Partners

S UNSW &

T UNVUENTY OF MW OROLTH W

Trade &
Investment

/i ;"n....
. Victoria s

-
- -Eowi .3 gy Grifith A 8ot

Hindows

An exception 06 has occured at 0028:C11B3ADC in WxD DiskTSD(03) +
00001660, This was called from 0028:C11B40C8 in WxD voltrack(04) +
00000000, It may be possible to continue normally,

* Press any key to attempt to continue,
* Press CTRLHALTHRESET to restart your computer. You will
lose any unsaved information in all applications.

Press any key to continue

Isolation is the Key Qe

NICTA

Trustworthy Computing Base
, Untrusted Trusted
®* message passing

e virtual memory

* interrupt handling

® access control
Applications

e fault identification .

e fault isolation

* [P protection

e modularity

Trusted next to Untrusted

Isolation is the Key Qe

NICTA

Trustworthy Computing Base
Untrusted Trusted

Applications
e fault isolation
erver
e fault identification

* [P protection

®* message passing
e virtual memory
* interrupt handling

® access control

e modularity

Trusted next to Untrusted

Functional Correctness Possible O‘

NICTA

Proof l

Functional Correctness Possible Qe

NICTA

definition
schedule :: unit s_monad where
schedule = do
threads < allActiveTCBs;
thread < select threads;

W h 't switch_to_thread thread
a od

OR switch_to_idle_thread

Specification

Proof

Functional Correctness Possible e

NICTA

definition
schedule :: unit s_monad where
schedule = do
threads < allActiveTCBs;
thread < select threads;

W h 't switch_to_thread thread
a od

o : OR switch_to_idle_thread
Specification

void
schedule(void) {

Pro Of switch ((word_t)ksSchedulerAction) ({

case (word_t)SchedulerAction ResumeCurrentThread:
break;

case (word_t)SchedulerAction ChooseNewThread:

chooseThread();
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;

H OW default: /* SwitchToThread */
switchToThread(ksSchedulerAction);
ksSchedulerAction = SchedulerAction ResumeCurrentThread;
break;
}
}

*conditions apply O‘
NICTA

S ST E TR LR

Proof

NICTA

*conditions apply -

O

O [Expectation

S ST E TR LR

Proof

Assumptions

~conditions apply

Assume correct:

O - compiler + linker (wrt. C op-sem)
O
- assembly code (600 loc)

S ST E TR LR

- hardware (ARMO)

- cache and TLB management
- boot code (1,200 loc)

Proof

Assumptions

Proof Architecture [SOSP’09] Qe

NICTA

l Isabelle

l Isabelle

Haskell
Prototype

Proof Architecture Now O'

NICTA

Confidentily Avalbilty

|sabelle \ ' Isabelle

1 |sabelle

1 Isabelle

1 Isabelle/SMT/HOL4

Binary Code Semantics - Binary Code

WCET Analysis

10

Proof Architecture Now Qe

Isabelle ‘

= =

High-level properties:

functional correctness
Integrity

authority confinement
non-interference
termination

worst-case execution time
(by static analysis)

Confidentilty Availabilty

NICTA
' Isabelle
ibelle
- - Haskell Prototype

ibelle

- e I

wbelle/SMT/HOL4

- —

WCET Analysis

10

Proof Architecture Now Qe

NICTA

S— Availbilty

R

T

A

Isabelle

Open Source
High-level pr

Haskell Prototype

- functior http://sel4.systems
- integrity https://github.com/sel 4/

- authori =

- non_inte. S/ JIVIE L7 1INV LT
'°

- termination m _ .
Binary Code
worst-case execution time

(by static analysis)

WCET Analysis

10

http://seL4.systems
https://github.com/seL4/

Next Step: Full System Assurance $é}f&‘f (Je

DARPA HACMS Program:
* Provable vehicle safety

e Red Team must not be able to divert vehicle

Boeing Unmanned
Little Bird (AH-6)

SMACCMcopter
Research Vehicle

0‘ Rockwe | AR
= O IN G o
C'O/ Imns g g d lO 1S UNIVERSITY

N | CTA OF MINNESOTA

11

Scale

NICTA

‘ \ .,R.nnnnna\ Rie i

ahhnnnmnn A | = Consits

S8 8 8 8 3 88 CI B 1 e cx e~

~ -
, b (O
JCGEE | ~
z)| .

)
) =

!
3 gl V_ —- T ST

.
v _.ﬂ\\w.i‘

Scale

12

Scale e

NICTA

90000

67500

45000

22500

° J:M l.|.|....|u.|...|.....h\l\m llm

2004-03-19 2006-09-09 2009-09-01 2010-12-17 2012-05-11 2013-09-17 2014-04-23 2014-09-19

size of AFP entries by submission date

13

Scale e

NICTA

600000

450000

300000

150000

1’ bt A‘ﬂlﬂllllnm'u'hlmllu|||||I||||||||||||\\\\\\\\\\\\\\\\\\\m\\‘\\\\\\m \\\\M\\\\}m‘o;%\\%1 T
2004-03- 131 2007-08-02 2009-11-13 2011 2012-05-29 2013-11-15

size of AFP entries by submission date
with four-colour theorem, odd-order theorem, Verisoft, L4, verified

14

Proof Introspection

e 500 files
e 22 000
e 95 000

emmas provea |

emmas stated

o ———¢ ¢

Sy S
"3,{.;:.!. Vay >
v"‘f’t‘ﬁf.&//ﬁ"--‘iﬁ: &

52
L2 IR >

J é I .

A

"K’Q’ x\v"“
’ ;;//{/}
/)/ A

N
.
W,
)
>
/)
7

!

; ‘;‘,\‘\ :75‘
AR
NV

7 i'\f
w{'

) Nk
RV
AN ZE
A— .\3&\ 4

e
SN

A
D

L
X
‘\
!

\

R NS
{ 4>

\
77

15

Proof Introspection

e 500 files
e 22 000 lemmas stated

e 95,000 lemmas provea

Raf’'s Observation

The introspection of proof and theories is an essential part of ‘%%‘; RN,
working on a large-scale verification development. ‘\\\ \.\ N
[jﬁ \\ <
2N U A
% / ™

15

Proof Introspection

e 500 files

e 22,000
e 95,000

Raf’'s Observation

The introspection of proof and theories is an essential part of 5;
working on a large-scale verification development.

emmas stated

emmas proved

* | earning Isabelle? Easy.

* | earning microkernels? Not too bad.

* Finding your way in the 500kloc proof jungle? Hard!

15

Proof Development A

NICTA
— proot development

* decomposition of proofs over people,
* custom proof calculus,
® automating mechanical tasks, custom tactics

* proof craft

16

Proof Development (J©®

— proof development

* decomposition of proofs o\
o 1
e custom proof calculus, Tim’s Statement

 automating mechanical tasl Automating “donkey work” allows attention
and effort to be focussed where most needed

* proof craft
— but it must be done judiciously.

16

Proof Development (J©®

— proot development

* decomposition of proofs o\
e custom proof calculus, Tim’s Statement

 automating mechanical tasl Automating “donkey work” allows attention
and effort to be focussed where most needed

* proof craft
— but it must be done judiciously.

— challenges

* non-local change,

* speculative change,

e distributed development

16

Proof Development

— proot development
* decomposition of proofs o\
* custom proof calculus,
® automating mechanical tas}

* proof craft

— challenges
* non-local change,
* speculative change,

e distributed development

Tim's Statement

Automating “donkey work"” allows attention
and effort to be focussed where most needed
— but it must be done judiciously.

Matthias’ Conjecture

Over the years, | must have waited weeks for
Isabelle. Productivity hinges on a short edit-
check cycle; for that, | am even willing to
(temporarily) sacrifice soundness.

1G

Maintenance Je
NICTA

* Development of selL4 code + spec artefacts (sloc)

P

12000 | phaose 1 : phase 2 : phase 3 : maintenance phase C " 71 cleanup

- () new features

- I -

- : | . @ bug fixes
10000 - : : l : :

s s | :

- . I -

- - |

: ; I

1 : C

8000 -

haskell

AN

6000 - *) B M_ A
: : . . abstract
- ‘Jﬂ-', . (I
; ; — J’_'"_'L- I .
; ; : \ - -

. |

2000 - ’?
K
i ﬂ
O .] T T T T T T T
30-Nov-04 30-Nov-05 30-Nov-06 30-Nov-07 30-Nov-08 30-Nov-09 30-Nov-10 30-Nov-11 30-Nov-1.

17

Maintenance (Je

* Development of selL4 proofs (sloc)
) : : : . _ 1 cleanup
160000 hase 1 : hase 2 : hase 3 : maintenance phase oo E
p : p : P : P () new features
140000 - refinementl
120000 -
100000 -
80000 -
refinement2
40000 -
20000 -
infoflow
—
: access
0 : | | | | | T T T
30-Nov-04 30-Nov-05 30-Nov-06 30-Nov-07 30-Nov-08 30-Nov-09 30-Nov-10 30-Nov-11 30-Nov-12

(b) Size of proofs (X: time; Y: SLOC)

18

Problems of Scale Qe

— proot maintenance
e changes, updates, new proofs, new features
* automated regression, keep code in sync
* refactoring

* simplification

19

Problems of Scale e

— proot maintenance
e changes, updates, new proofs, new features
* automated regression, keep code in sync
* refactoring

* simplification

Dan’s Conclusion

Verification is fast, maintenance is forever.

19

Research Challenges

Software vs Proof Engineering

* |s Proof Engineering a thing?

e Google Scholar:

e “software engineering” 1,430,000 results

NICTA

21

Software vs Proof Engineering

* |s Proof Engineering a thing?

e Google Scholar:

e “software engineering” 1,430,000 results

* “proof engineering” 564 results

21

Software vs Proof Engineering i ®

NICTA

* |s Proof Engineering a thing?

e Google Scholar:

e “software engineering” 1,430,000 results

* “proof engineering” 564 results

Includes

"The Fireproof Building” and

“Influence of water permeation and analysis
of treatment for the Longmen Grottoes"

21

Proof Engineering is The Same (Je

NICTA
e Same kind of artefacts:
e lemmas are functions, modules are modules 60000
® code gets big too

® version control, regressions,
refactoring and IDEs apply

1200000

800000

400000

Proot e 0

Softw. Eng.

22

Proof Engineering is The Same (Je

NICTA
e Same kind of artefacts:

e lemmas are functions, modules are modules 1600000

® code gets big too

® version control, regressions,
refactoring and IDEs apply

1200000

* Same kind of problems

800000
* managing a large proof base over time
* deliver a proof on time within budget

400000
* dependencies, interfaces, abstraction, etc

Proof Eng™ 0

Softw. Eng.

22

Proof Engineering is Different Je
NICTA

e But: New Properties and Problems

1600000

1200000

800000

400000

Proof Eng™ 0

Softw. Eng.

23

Proof Engineering is Different Je
NICTA

e But: New Properties and Problems

e Results are checkable 690000
* You know when you are done!
* No testing

1200000

® 95% proof: no such thing

800000

400000

Proof Eng™ 0

Softw. Eng.

23

Proof Engineering is Different (Je
NICTA

e But: New Properties and Problems
e Results are checkable 690000
* You know when you are done!
* No testing
1200000

® 95% proof: no such thing

e More dead ends and iteration

800000

400000

Proof Eng™ 0

Softw. Eng.

23

Proof Engineering is Different (Je
NICTA

e But: New Properties and Problems

e Results are checkable 1600000

* You know when you are done!

* No testing

1200000

® 95% proof: no such thing

e More dead ends and iteration

e 2nd order artefact 800000

e Performance less critical
e Quality less critical

400000

e Proof Irrelevance

Proof Eng™ 0

Softw. Eng.

23

Proof Engineering is Different (Je
NICTA

e But: New Properties and Problems

e Results are checkable 1600000

* You know when you are done!

* No testing

1200000

® 95% proof: no such thing

e More dead ends and iteration

e 2nd order artefact 800000
® Performance less critical
e Quality less critical o
® Proof Irrelevance

® More semantic context

Proof Eng™ 0

Softw. Eng.

® Much more scope for automation

23

Proof Engineering Tools ®

NICTA
e User Interface

| O Example.thy (~/)) 2 2 isabelle
v |theory Example B % B
| .F imports Base Example.thy 1
. [
e could proof IDEs be more
l ~
v |inductive path for R :: "'a = 'a = bool" where > x -
? base: "path R x x" end
powe rfU| than COde I DES . | S:ZZ: "Izax y rx.-xpath Ry z = path R x 2"
v |theorem example:
. M ° _F ° fixes x z :: 'a assumes "path R x z" shows "P x z"
more semantic Information
proof induct
case (base x) =
. . ? show "P x x" by auto
e proof completion and suggestion? |
note 'R x y' and ‘path Ry z°
moreover note ‘P y z° =
ultimately show "P x z" by auto
qed
end
B ¥ OQutput Prover Session Raw Output I
5,1(35/405) (isabelle,sidekick,UTF-8-Isabelle) UGEIFI120Mb 3:38 PM

24

Proof Engineering Tools o

e User Interface

Filter:

e could proof IDEs be more

v |inductive path for R :: "'a = 'a = bool" where
? base: "path R x x"
powe rfU| than COde | DES . | S::Z: "zax y jx,~xpath Ry z = path R x 2"

v |theorem example:
fixes x z :: 'a assumes "path R x z" shows "P x z"

e more semantic information e

e proof completion and suggestion?

ultimately show "P x z" by auto

e Refactoring

e |ess constrained,
new kinds of refactoring possible, e.g.

* move to best position in library
® generalise lemma

* recognise proof patterns

Proof Patterns

* arge-scale Libraries

e architecture:

* layers, modules, components,
abstractions, genericity

* proof intertaces

AS, : ’; SN
%\‘ /‘,{:'j[.‘lli

* proof patterns MO

BT ‘
T

25

Proof Patterns (Jo

* Large-scale Libraries 4 7
* architecture: N\ Tl \ %

7 TN

7 :
N 0\

)

A

* proof patterns)

* layers, modules, components, V&
abstractions, genericity — N i LN
BN =7 N X7 \
| = " N
e proof interfaces NN N
/ Z o Y A).M A \‘!}l:\ N
T | SR
i

'é"’(‘ \\ \
v \ A‘iéﬁi’!{(‘\
VA

‘A‘l>\“/ ;\S}‘ “
</
——

e Technical Debt

e what does a clean, maintainable proof look like?
e which techniques will make future change easier?

* readability important? is documentation?

25

Proof Engineering “Laws” (Je

NICTA
* Are there Proof Engineering Laws?

160000 -

k]
>
Q
@
~

Jul-05

140000 -

120000 -

100000 -|

80000 |

60000 -

40000 |

20000 -

0 T ; ; " " Y . .
Nov-04 Nov-05 Nov-06 Nov-07 Nov-08 Nov-09 Nov-10 Nov-11 Nov-12

26

Proof Engineering “Laws” (Je®

NICTA
* Are there Proof Engineering Laws?

* Proots always become larger and more complex over time.
(from Cope’s rule)

0000000

000000
000000

000000

26

Proof Engineering “Laws” @

NICTA
* Are there Proof Engineering Laws?

* Proots always become larger and more complex over time.
(from Cope’s rule)

e Adding manpower to a late proof project makes it later.
(from Brooks' law)

000000
000000
000000
00000
00000
00000

00000

NNNNNN

26

Proof Engineering “Laws”

* Are there Proof Engineering Laws?

* Proots always become larger and more complex over time.
(from Cope’s rule)

e Adding manpower to a late proof project makes it later.
(from Brooks' law)

* You cannot reduce the complexity of a given proof beyond a
certain point. Once you've reached that point, you can only shift
the burden around.

(from Tesler's law)

000000
000000
00000
00000
00000

00000

NNNNNN

Proof Engineering “Laws”

* Are there Proof Engineering Laws?

* Proots always become larger and more complex over time.
(from Cope’s rule)

e Adding manpower to a late proof project makes it later.
(from Brooks' law)

* You cannot reduce the complexity of a given proof beyond a
certain point. Once you've reached that point, you can only shift
the burden around. o
(from Tesler's law) |

* Are they true? ™

00000

00000

NNNNNN

Proof Effort

Predictions

Can we predict for proofs:
* how large will it be?
* how long will it take?

e how much will it cost?

28

Predictions

Can we predict for proofs:
* how large will it be?

* how long will it take?

Of course not.

Many hard problems look deceptively easy.

28

Predictions o

NICTA

Can we predict for proofs:
* how large will it be?

* how long will it take?

Of course not.

Many hard problems look deceptively easy.

But maybe for program verification?

At least statistically, some of the time?

28

Predictions

Can we predict for proofs:
* how large will it be?

* how long will it take?

Of cours:«

Many hat

But ma

At least .

We have large proofs.

Let’s crunch some data!

C (Lines)

Spec and Code Size

3000

2500

2000

1500

1000

500

Specification Size and Code Size are extremely well correlated in selL4.

. 3000 -
7 T 2500 - %
k4 k4
k4 k4
. o 2000 - o
ol = %
k4 H{‘ E HHH
1 3 1500 -)
HH o xl
- 1000 -
4 x o o
4 4
. 500 1 . % X
k4 k4
| HH | | | | D ;F‘ - | | | | |
0 500 1000 1500 2000 0 500 1000 1500 2000 2500

Abstract Specification (Lines)

Executable Specification (Lines)

C (Lines)

Spec and Code Size 20

Specification Size and Code Size are extremely well correlated in selL4.

3000 - 3000 - .
Measured lines of Spec/Code
2500 - B 2500 - per top-level APl feature
HH
2000 - X 2000 - x
ol = %
E 4 H\»“ E H-HH
1500 - = 1500 -
x L -
Hx 0 uu
1000 - 1000 -
X x o x
k4 E 4
00 . W oz &
k. o
D r; - T T T | D rxl T T T T 1
0 500 1000 1500 2000 0 500 1000 1300 2000 2500

Abstract Specification (Lines) Executable Specification (Lines)

Effort vs Proof Size

Proof Effort = work time spent on a proof = money

Is Proof Effort related to Proof Size?

Final Total Sched. | Overall Max
iz ress. iffic. m
Are there small proofs that take very long? Size | Bifort | Press. | Diffie | Ten
CapDL Spec 214 | 275 AV LO 5
Large proofs that were quick to write? e peney 085 | 113| LO | AV I
Abstract-to-
CapDL 20.4 66 AV AV 5
Refinement
Integrity 7.05 28.5 | V.HI HI 4
Info. Flow 27.1 75.9 | V.HI V.HI 8
Exec- to-
Abstract 96.6 368 HI V.HI 6
Manually reconstructed effort from repo logs, Refinement
° Code-to-Ex
meeting notes, and progress reports. Refnement | 5334 [138 | VHI | HI 6
Exec Spec
Measured proof size. Haskell i I B 1
Abstract Spec 4.9 15.3 AV AV 3

Effort vs Proof Size

Pr(\t\-‘ Effard: — wiravl, Finaa crnant Aan a mranf & maAanAaw

400.00—

! 300.007

[I—

100.00=
Manua

m¢

.00

!

I I
40000 60000

Final Size (lines of proof)

I
80000

I
100000

NICTA

tal Sched. Overall Max
lort Press. Diffic. Team
7.5 AV LO 5
1.3 LO AV 1
66 AV AV 5
8.5 V.HI HI 4
59 V.HI V.HI
368 HI V.HI 6
138 V.HI HI 6
92 AV HI 1
5.3 AV AV 3
30

Effort vs Proof Size Qe

TTA

40.00=
& &
Pr(\n‘ EffAvd
400.00=
30.00-
—
2
o~
o
! :
300.00- - "’
— w
3 -~
9 é- 20.00- %\m
Are tl = i
= S 5
2 £
- o
Lar 2 - !
2 200.00- =
— (=]
z = ® ® 5
&= 10.00- *
= : s
TE L 4
= % W 5
- °
100.00- ™
Bt 6
Manua 2 #
.00=
me 6
I I I 1 I I
0 5000 10000 15000 20000 25000 1
.00~ Delta size for all changes (lines of proof) 3

40000 60000 100000
Final Size (lines of proof)

30

Effort vs Proof Size (e

TTA

40.007
& &
Pr(\n-‘ EffAvs
400.00
30.00 Strong linear correlation between effort and proof size.
;‘m [] []
{ S On average, proof lines/hour is constant.
" 300.007 s
Are tl 2 = 2090 Could we achieve more if we could achieve more
—
g 2 “content” per proof line?
— «
Lar é‘ 200.00= E
- =]
E b= # . ? F
a-j 10.004 s
— # o 4
I‘; 6 W o
= o
100.00= o
& 6
Manua ;” #
me .00+ 6
I I | I I |
0 5000 10000 15000 20000 25000 1
.00- Delta size for all changes (lines of proof) 3
I 1 | 1 1 I ! —
{ 0 20000 40000 60000 80000 100000

Final Size (lines of proof)

T T T T TP e ————————————— 30

Spec Size and Proof Size

Spec Size and Proof Size

If proof size = effort/cost,

is there a leading indicator for proof size?

Spec Size and Proof Size

If proof size = effort/cost,

is there a leading indicator for proof size?

How about specification/lemma statement size or complexity?

Spec Size and Proof Size

If proof size = effort/cost,

is there a leading indicator for proof size?

How about specification/lemma statement size or complexity?

Measured: lemma statement size by number of constants, recursively.

Measured: lemma proof script size, recursively for used lemmas.

Proof Size

Spec Size vs Proof Size

Alnvs Refine
Idealised Statement Size vs. Proof Size 5 Idealised Statement Size vs. Proof Size
o
'% —]
8 —
S g
3
o
S - o
& S |
3
3
— o
'CB <
g g 8
3 S 2
3 o
s _| 3
3 8 7
o o —
I I I I I I I I I I I I I
0 200 400 600 800 1000 1200 0 500 1000 1500 2000 2500
|dealised Statement Size |dealised Statement Size

Idealised Statement Size: do not count unused constants

Proof Size

Spec Size vs Proof Size

5000 10000 15000 20000 25000 30000

0

Idealised Statement Size vs. Proof Size

Alnvs Refine
Idealised Statement Size vs. Proof Size

o
o
o —
o
N~ O
o
o
o p—
o
(o]
o
o
O —
o
0
o o
N 8 7
w v
o 9
o 3
— o
o ©
o
o
O p—
o
(qV]
o
o
O p—
S
o _
| | | I I I | | | |
200 400 600 1500 2000 2500
|dealised State Statement Size

Strong Quadratic Correlation

Idealised constants

Proof Size

8000

6000

4000

2000

Spec Size vs Proof Size

Idealised Statement Size vs. Proof Size

Access

Proof Size

I I I I
400 600 800 1000

|dealised Statement Size

1200

10000 15000 20000

5000

InfoFlow
Idealised Statement Size vs. Proof Size

0 500 1000 1500 2000

|dealised Statement Size

Proof Size

AFP Proofs

. JinjaThreads _ SATSolverVerification
Idealised Statement Size vs. Proof Size Idealised Statement Size vs. Proof Size

)

40000
l
20000
l

30000
l

15000
l

20000
|
Proof Size

10000
l

10000
l

5000

0 100 200 300 400 500 600 ! ! ! ! ! ! !
.) 0 20 40 60 80 100 120
Idealised Statement Size , _
|Idealised Statement Size

Also works for some large AFP proofs. But not all.

Proof Size

AFP Proofs

. JinjaThreads _ SATSolverVerification
Idealised Statement Size vs. Proof Size Idealised Statement Size vs. Proof Size

40000

20NNN

Hypothesis

20nNNN

Verification of non-modular code is dominated by invariant proofs.

1iNnNNN

Invariant proofs are roughly quadratic in effort in the number of
“concepts” in the code.

0 20 40 60 80 100 120

Idealised Statement Size
|Idealised Statement Size

Also works for some large AFP proofs. But not all.

Some Hope

Code Size is correlated with Spec Size

Some Hope

Code Size is correlated with Spec Size

Spec Size is correlated with Proof Size

Some Hope

Code Size is correlated with Spec Size

Spec Size is correlated with Proof Size

Proof Size is correlated with Effort

Some Hope

Code Size is correlated with Spec Size

Spec Siz
There may be hope for a prediction model.

Probably applies to verification of non-modular code.

Proof

Unlikely to work for other kinds of proofs, but likely
to transfer to other interactive provers.

Summary e

NICTA

selL4
e Full verification. Full performance.
e Already cost effective for high assurance.

e Open source and open proof.

36

Summary ®

selL4
e Full verification. Full performance.
e Already cost effective for high assurance.

e Open source and open proof.

Proof Engineering

Variation in Productivity Across
Individuals in Two Proofs

* Should become a research discipline. Jj |
e Work has started. A lot more to be done. /

Work (Lines of Proof)

NICTA

Thank You

Google

I'm Feeling_ﬂ%ucky

NICTA Software Systems Research Group

NICTA

Thank You

Google ssreenicTA

I'm Feeling_ﬂ%ucky

NICTA Software Systems Research Group

