Proof Robustness in ACL2

Eric Smith
Kestrel Institute and Kestrel Technology

A—J HCSS: High Confidence Software and Systems
ACL2 o

Who am |?

* Researcher at Kestrel Institute and Kestrel Technology
» 20 years of experience with ACL2

* Developed and maintained ACL2 proofs at:
* UT Austin

AMD

Rockwell Collins

Stanford

Kestrel

* Opinions are my own
* |deas and best practices taken from the broader ACL2 community

The proofs we maintain

<> Code Issues 105 Pull requests 1 Actions Projects Wiki Security Insights

* The ACL2 Community Books BT + i o
(g I t h u b CO m/a C I 2/a C I 2) €+ acl2buildserver Merge commit '4fe7e8fc51162b3234d012faf458105faeecb6f7' i.. 646af4c 2 days ago @ 20,869 commits
Developed over the past 30+ years —————————————————

[] SpeCIflcatlonS prOOfS I I bra rles tOOIS Workshop bin Fixed typo in source file comment. Updated date in puri
m ate rl a | etc books . 7'into H... 2 days ago

doc Over 20,000 CommItS! 2 days ago

¢ Ove r 9’400 fl | e s emacs Improved startup banner. Improved value-triple, assert-event, assert!... 6 days ago
L Ove r 9 O’ OOO fu n ct i O n d efi n iti O n S graphics Made a couple of gif files not-executable, as suggested by Keshav. 4 years ago
° Ove r 1 70’ OOO t h e O re m S installation Update installation instructions for SBCL to comment on a potentially... 3 days ago

.gitignore Added make.log.bak to .gitignore (thanks to Eric Smith for noticing t... 12 days ago

i Ove r 3 O’ OOO d O C u m e nta t i O n to p i cs GNUmakefile Eliminate some noise from "make" output when building saved_acl2. 6 days ago
° Ve ry a Ct ive : 10_ 20 n eW CO m m its pe r d ay LICENSE Improved startup banner. Improved value-triple, assert-event, assert!... 6 days ago

12 months ago

2 months ago

Makefile Initial population of trunk (will check in books/tools/include-raw.li... 7 years ago

PY Ke St re I’S p ro p rl eta ry AC L2 I I b ra r I e S README.md After communicating offline with Matt, adding README.md symlink t... 7 years ago
I d h acl2-characters 1. Quoting :doc note-4-4: 7 years ago

D eve O p e Ove r t e p a St 9 + ye a rS acl2-check.lisp Improved startup banner. Improved value-triple, assert-event, assert!... 6 days ago

* Correct-by-construction software, proofs about
Java and x86 programs, Flex theorem prover, etc.

» Axe Toolkit (kestrel.edu/axe)

e (Much of this is being open sourced, slowly)
* Over 12,000 function definitions

 Over 17,000 theorems

These proofs have great value,
so we should try to keep them working.

* The ACL2 libraries represent person centuries of human effort.

Want to be able to build on this stuff
* Use, extend, adapt, modify, fix
* Start new projects without having to rebuild everything
 Verify new versions of hardware / software

Don’t let “proof rot” happen to you!
* Proofs depend on deep supporting hierarchies

* Keeping a live proof working is usually easy ORACLE

* Reviving a dead proof after years of changes can be very hard
* Regression suites let us test proposed changes _

* To libraries, tools, or ACL2 itself ARM ///4 Collins

* If new rules break existing proofs, you want to know about it! Aerospace

* Maybe your new rules are too expensive

e ..ordon’trespect preferred normal forms

* Much of the value in a ACL2 development is in sets of rewrite rules
* Basic princiﬁle: We should always be able to re-play all of our proofs 2 Eengaqalr
from scratch. N i echnology

Changes that can break proofs

Changes to definitions
* Formal models
» Specifications
* Hardware or software artifacts (deeply or shallowly embedded)

« Common changes: bugs fixed; features added; concepts generalized; functions renamed; arguments added,
removed, or reordered; code moved or refactored, dependencies reduced

Changes to reasoning libraries
* Theories of lists, arithmetic, sets, bags, bit vectors, etc.

* Common changes: New rules added that can change the course of proofs, rules replaced with more general
versions, rules turned on or off

Changes to supporting proof tools
e Connections to SMT solvers
e Custom theorem provers (e.g., my Axe prover)
« Common changes: Interfaces, translations, rule sets

Changes in ACL2 itself

* Proof procedures, built-in utilities, system and interface tools

* Conservative approach: Prefer backward compatibili_tY], abort changes that break too many proofs (or slow
things down too much), discuss breaking changes with the community

Infrastructure supporting proof robustness

Scripts that provide single commands to build
large sets of proofs

Automated regression testin
(http://leeroy2.defthm.comﬁ

* Changes must pass regression testing before being
merged into master

* Multiple testing branches, any of which can get pushed
to master when it passes
File-level dependency tracking

e Building everything takes a few hours, even with ~100
cores

e But, ACL2 produces certificates for certified books
* So, only build the stuff that depends on whatever has
changed
Key Idea: Detect failures quickly
* Easier to debug the reason for failures

~ Build History

uuuuuuuuuuuuuuuuuu

aaaaa

aaaaaaaaaaaa
regression-
everything

aaaaa

lisps-weekly
-basic

ffffffff

36 min

10 min

11111

19 min

“Lightweight” Library Development

* Limit what is included by a file
* Limits the effect of changes

* A change to a library you don’t include can’t break your proofs!
* “The best include-book is no include-book.”

e Also limit what is exported
* Don’t make me use the arithmetic library you happened to use.
* Don’t make me take your string library just to get your file-io library
Helps avoid name clashes, clashing normal forms, etc.
Key ACL2 construct: (local (include-book ...))
“The second best include-book is a local include-book.”

I

I

(include ...)
(local (include ...)
(local (include ...)

(local (defun ...))
(local (defthm ...))

(defun ...)
(defthm ...)

O

* Embodied in libraries we are contributing the ACL2 Community Books

* Arithmetic-light, lists-light, strings-light, file-io-light, etc.
* Each book exports a minimal set of definitions and rules
e “Just give me rules about expt”

Best Practices for Robust Proofs

* Developed over time by the ACL2 (defthm expt-of-*
community (equal (expt (* rl r2) i)
(* (expt rl 1)
(expt r2 1)))

° Background: ACL2 proofs are done thints (("Goal" :in-theory (enable expt))))
by supplying “hints” to the prover

(defthm *-of-floor-of-same-when-multiple

* “Turn this rule on” (implies (and (equal 0 (mod y X))

* “Expand this term” (rationalp y)

* “Instantiate this existing theorem” {razlonag’ X))

* “Split into these cases” (equa ;))X (tloor ¥ x))

* “Use this induction scheme” :hints (("Goal" :cases ((equal 0 x)))))

e Some of these are more brittle than
others

Brittle Hints to Avoid

* Hints that depend on the detailed structure of the proof
* :hints ((“Subgoal 2.3.4” ...hints...))

* Means apply hints to the fourth subgoal arising from the third subgoal of the second
main subgoal.

* But subgoal numbering is not robust to prover or library changes
e Better approach: Just attach the hints to “Goal”, if possible
* Even better: avoid the need for the hint

* Hints that mention particular pieces of syntax:
* :cases hints
* :use hints (consider making a rewrite rule instead)
* Names may change, arguments may be added, removed, or re-ordered

 When your proof works, try to remove the hints.

An ldeal Development Style

* Functions developed in layers
* Example: Bit vectors defined in terms of mod, expt, etc

Proofs only require opening one layer of functions
* Use rewrite rules about callees
 Ideally, all hints are “enable” hints, or perhaps guidance on induction schemes

Keep most function definition rules disabled

Avoid nested inductions
» Better to pull out the inner formula into a separate theorem (after generalizing it)
* A sign that you are missing a nice fact / rule

Avoid “Proof Builder” instructions
e Alternate hint mechanism useful for exploring a proof
* Can be brittle “Go to the third argument of the fifth hypothesis”)
* Best not to leave them in your file
* Instead, try to use conventional hints

Prefer rules over hints
* A hint would have to be given for every similar proof
* A rule would rewrite that pattern every time it appears, from now on
* Much of the value of an ACL2 development is in the sets of rewrite rules developed
e Writing strong rewrite rules is an art...

Android model

JVM model

Bit vectors

mod

floor

nonnegative-
integer-quotient

numerator,
denominator

Robustness in Generated Proofs

Many ACL2 proofs are generated by tools
* Example: Kestrel’s APT toolkit (kestrel.edu/apt)

* Example: FTY library for typed programming (sum types, product types, etc)
e Such macro libraries can save a lot of work

But generated proofs must work in any context
 No matter what rules are around
* No matter what prover heuristics decide

Different robustness principles apply than for hand-written proofs

Best practices for robustness (also help in debugging failures)

» Tightly control the theory (set of enabled definitions and rules), often turning off everything
except a small set of desired rules

* Make induction schemes explicit (don’t rely on ACL2’s heuristics)
* Consider making instantiations explicit

* Disable proofs techniques that won’t be needed: generalization, destructor elimination
* Break proof down into atomic steps

How to fix broken proofs

Easy case: A name change, with a nice error message
Hard case: Proof now takes a different path, reason for failure non-obvious

Fix it ASAP
* May be obvious: “l added one rule and this proof broke, so ...”

Sometimes additional rules can complete an alternate proof path

If prover never finishes:
* Debug rewrite loops (cw-gstack)
* Re-run proofs in verbose mode (:set-gag-mode nil) to see what’s happening
* Extreme case: Look at stack trace (set-debugger-enable, re-run and interrupt)

Look for brittle hints

Compare to a working version
* Check out second copy, synced to old commit
* Compare the proofs (emacs: M-x compare-windows)
* Compare Induction scheme used, definitions expanded, rules used
* If rules fail to fire, use “:monitor”
* Advanced technique: grab a failing subgoal and submit it to the old session

Rarely: Just re-do the proof
Very rarely: Give up and remove the failing proof from the regression suite

old
proof

P

Theorem

Conclusion

* Keeping old proofs working has value
e ... and is usually not too hard if you follow these principles.

