
Proof Robustness in ACL2
Eric Smith

Kestrel Institute and Kestrel Technology

HCSS: High Confidence Software and Systems 
May 3, 2021



Who am I?

• Researcher at Kestrel Institute and Kestrel Technology
• 20 years of experience with ACL2
• Developed and maintained ACL2 proofs at:

• UT Austin
• AMD
• Rockwell Collins
• Stanford
• Kestrel

• Opinions are my own
• Ideas and best practices taken from the broader ACL2 community



The proofs we maintain
• The ACL2 Community Books 

(github.com/acl2/acl2)
• Developed over the past 30+ years
• Specifications, proofs, libraries, tools, workshop 

material, etc.
• Over 9,400 files
• Over 90,000 function definitions
• Over 170,000 theorems
• Over 30,000 documentation topics
• Very active: 10-20 new commits per day

• Kestrel’s proprietary ACL2 libraries
• Developed over the past 9+ years
• Correct-by-construction software, proofs about 

Java and x86 programs, Flex theorem prover, etc.
• Axe Toolkit (kestrel.edu/axe)
• (Much of this is being open sourced, slowly)
• Over 12,000 function definitions
• Over 17,000 theorems

Over 20,000 commits!



These proofs have great value,
so we should try to keep them working.
• The ACL2 libraries represent person centuries of human effort.
• Want to be able to build on this stuff

• Use, extend, adapt, modify, fix
• Start new projects without having to rebuild everything
• Verify new versions of hardware / software

• Don’t let “proof rot” happen to you!
• Proofs depend on deep supporting hierarchies
• Keeping a live proof working is usually easy
• Reviving a dead proof after years of changes can be very hard

• Regression suites let us test proposed changes
• To libraries, tools, or ACL2 itself
• If new rules break existing proofs, you want to know about it!
• Maybe your new rules are too expensive
• … or don’t respect preferred normal forms
• Much of the value in a ACL2 development is in sets of rewrite rules

• Basic principle: We should always be able to re-play all of our proofs 
from scratch.



Changes that can break proofs
• Changes to definitions

• Formal models
• Specifications
• Hardware or software artifacts (deeply or shallowly embedded)
• Common changes: bugs fixed; features added; concepts generalized; functions renamed; arguments added, 

removed, or reordered; code moved or refactored, dependencies reduced

• Changes to reasoning libraries
• Theories of lists, arithmetic, sets, bags, bit vectors, etc.
• Common changes: New rules added that can change the course of proofs, rules replaced with more general 

versions, rules turned on or off

• Changes to supporting proof tools
• Connections to SMT solvers
• Custom theorem provers (e.g., my Axe prover)
• Common changes: Interfaces, translations, rule sets

• Changes in ACL2 itself
• Proof procedures, built-in utilities, system and interface tools
• Conservative approach: Prefer backward compatibility, abort changes that break too many proofs (or slow 

things down too much), discuss breaking changes with the community



Infrastructure supporting proof robustness
• Scripts that provide single commands to build 

large sets of proofs
• Automated regression testing 

(http://leeroy2.defthm.com/)
• Changes must pass regression testing before being 

merged into master
• Multiple testing branches, any of which can get pushed 

to master when it passes
• File-level dependency tracking

• Building everything takes a few hours, even with ~100 
cores

• But, ACL2 produces certificates for certified books
• So, only build the stuff that depends on whatever has 

changed
• Key Idea: Detect failures quickly

• Easier to debug the reason for failures



“Lightweight” Library Development

• Limit what is included by a file
• Limits the effect of changes
• A change to a library you don’t include can’t break your proofs!
• “The best include-book is no include-book.”

• Also limit what is exported
• Don’t make me use the arithmetic library you happened to use.
• Don’t make me take your string library just to get your file-io library 
• Helps avoid name clashes, clashing normal forms, etc.
• Key ACL2 construct: (local (include-book …))
• “The second best include-book is a local include-book.”

• Embodied in libraries we are contributing the ACL2 Community Books
• Arithmetic-light, lists-light, strings-light, file-io-light, etc.
• Each book exports a minimal set of definitions and rules
• “Just give me rules about expt”

(include …)
(local (include …) 
(local (include …)

(local (defun …))
(local (defthm …))

(defun …)
(defthm …)



Best Practices for Robust Proofs
• Developed over time by the ACL2 

community

• Background: ACL2 proofs are done 
by supplying “hints” to the prover
• “Turn this rule on”
• “Expand this term”
• “Instantiate this existing theorem”
• “Split into these cases”
• “Use this induction scheme”

• Some of these are more brittle than 
others

(defthm expt-of-*
(equal (expt (* r1 r2) i)

(* (expt r1 i)
(expt r2 i)))

:hints (("Goal" :in-theory (enable expt))))

(defthm *-of-floor-of-same-when-multiple
(implies (and (equal 0 (mod y x))

(rationalp y)
(rationalp x))

(equal (* x (floor y x))
y))

:hints (("Goal" :cases ((equal 0 x)))))



Brittle Hints to Avoid

• Hints that depend on the detailed structure of the proof
• :hints ((“Subgoal 2.3.4” …hints…))
• Means apply hints to the fourth subgoal arising from the third subgoal of the second 

main subgoal.
• But subgoal numbering is not robust to prover or library changes
• Better approach: Just attach the hints to “Goal”, if possible
• Even better: avoid the need for the hint

• Hints that mention particular pieces of syntax:
• :cases hints
• :use hints (consider making a rewrite rule instead)
• Names may change, arguments may be added, removed, or re-ordered

• When your proof works, try to remove the hints.



An Ideal Development Style
• Functions developed in layers

• Example: Bit vectors defined in terms of mod, expt, etc
• Proofs only require opening one layer of functions

• Use rewrite rules about callees
• Ideally, all hints are “enable” hints, or perhaps guidance on induction schemes

• Keep most function definition rules disabled
• Avoid nested inductions

• Better to pull out the inner formula into a separate theorem (after generalizing it)
• A sign that you are missing a nice fact / rule

• Avoid “Proof Builder” instructions
• Alternate hint mechanism useful for exploring a proof
• Can be brittle “Go to the third argument of the fifth hypothesis”)
• Best not to leave them in your file
• Instead, try to use conventional hints

• Prefer rules over hints
• A hint would have to be given for every similar proof
• A rule would rewrite that pattern every time it appears, from now on
• Much of the value of an ACL2 development is in the sets of rewrite rules developed
• Writing strong rewrite rules is an art…

JVM model

Bit vectors

mod

floor

nonnegative-
integer-quotient

numerator,
denominator

Android model



Robustness in Generated Proofs

• Many ACL2 proofs are generated by tools
• Example: Kestrel’s APT toolkit (kestrel.edu/apt)
• Example: FTY library for typed programming (sum types, product types, etc)
• Such macro libraries can save a lot of work

• But generated proofs must work in any context
• No matter what rules are around
• No matter what prover heuristics decide

• Different robustness principles apply than for hand-written proofs
• Best practices for robustness (also help in debugging failures)

• Tightly control the theory (set of enabled definitions and rules), often turning off everything 
except a small set of desired rules

• Make induction schemes explicit (don’t rely on ACL2’s heuristics)
• Consider making instantiations explicit
• Disable proofs techniques that won’t be needed: generalization, destructor elimination
• Break proof down into atomic steps



How to fix broken proofs
• Easy case: A name change, with a nice error message
• Hard case: Proof now takes a different path, reason for failure non-obvious

• Fix it ASAP
• May be obvious: “I added one rule and this proof broke, so …”

• Sometimes additional rules can complete an alternate proof path
• If prover never finishes:

• Debug rewrite loops (cw-gstack)
• Re-run proofs in verbose mode (:set-gag-mode nil) to see what’s happening
• Extreme case: Look at stack trace (set-debugger-enable, re-run and interrupt)

• Look for brittle hints
• Compare to a working version

• Check out second copy, synced to old commit
• Compare the proofs (emacs: M-x compare-windows)
• Compare Induction scheme used, definitions expanded, rules used
• If rules fail to fire, use “:monitor”
• Advanced technique: grab a failing subgoal and submit it to the old session

• Rarely: Just re-do the proof
• Very rarely: Give up and remove the failing proof from the regression suite

old
proof

new rule

miss
ing r

ule

QED

Theorem



Conclusion

• Keeping old proofs working has value 
• … and is usually not too hard if you follow these principles.


