
Protecting Sensitive Data in Web
Browsers with ScriptPolice

Brad Karp
UCL

with Petr Marchenko (UCL) and Úlfar Erlingsson (Google)

HCSS 2013
May 7th, 2013

Should you trust your browser?

•  Browsers handle sensitive data
–  e.g., email, online banking, medical records

•  Browser executes untrusted JavaScript written
by multiple parties
–  Pages: code written by site operators
–  Extensions: code written by third-party developers

•  Potential for attacks on confidentiality
–  Pages exploit extensions
–  Extensions leak users’ sensitive data from pages

•  This talk:
–  These attacks are real
– How to defend against them

Browser Primer: Extensions

AdBlock.

Browser Primer:
SOP and Extension Implementation

Browser Primer:
SOP and Extension Implementation

SOP does not apply to extensions

Problem: Malicious Extensions

AdBlock.

10m users

Problem: Malicious Extensions

AdBlock.

10m users

AdBlock.

Problem: Malicious Pages

AdBlock.

Problem: Malicious Pages

Problem: Malicious Pages

AdBlock.

Are Extensions Vulnerable?

•  We’ve found zero-day vulnerabilities in four
popular Chrome extensions…

•  …and designed malicious pages exploiting
these extensions…

Demo: Vulnerable RSS Extension

Demo: Vulnerable RSS Extension

Demo: Vulnerable RSS Extension

Demo: Vulnerable RSS Extension

Demo: Vulnerable RSS Extension

Are Extensions Vulnerable?

•  We’ve found zero-day vulnerabilities in four
popular Chrome extensions…

•  …and designed malicious pages exploiting
these extensions…

•  Carlini et al. studied 100 Chrome extensions;

found 70 vulnerabilities in 40 of them

N. Carlini, A. P. Felt, and D. Wagner. An Evaluation of the
Google Chrome Extension Security Architecture, USENIX
Security 2012

Our Solution: ScriptPolice

•  A policy system for JavaScript execution in
web browsers

•  Policies block exfiltration of sensitive data
•  Policies are simple and general:

–  A few simple policies “baked into” browser
–  These few policies compatible with wide range of

today’s extensions and pages
•  Full working prototype for V8 JIT-compiled

JavaScript engine in Google Chrome browser
•  Performance overhead virtually imperceptible

to users

ScriptPolice: System Overview

•  Browser ships with a few standard policies;
confines extension execution with them
–  Prevention policies block pages from injecting scripts

into vulnerable extensions; implemented with
information flow control (IFC)

–  Containment policies block extensions from
exfiltrating sensitive data to network; implemented
with discretionary access control (DAC)

•  Page developers annotate sensitive page elements
(e.g., bank balance, medical diagnostic test name
and results)

•  Extension developers declare privileges required
by an extension with enhanced extension manifest

ScriptPolice: System Overview

•  Browser ships with a few standard policies;
confines extension execution with them
–  Prevention policies block pages from injecting scripts

into vulnerable extensions; implemented with
information flow control (IFC)

–  Containment policies block extensions from
exfiltrating sensitive data to network; implemented
with discretionary access control (DAC)

•  Page developers annotate sensitive page elements
(e.g., bank balance, medical diagnostic test name
and results)

•  Extension developers declare privileges required
by an extension with enhanced extension manifest

Two key technical contributions:
Run-time code specialization of IFC in V8 JIT
compiler yields high performance
Discretionary access control at sinks yields
broad policy applicability

ScriptPolice: Interposition

 – policy decisions: allow, block, throw exception

Prevention Policy

•  Prevents pages from injecting code
into vulnerable extensions

•  Implemented with object-
granularity IFC for JavaScript
–  Label all page data inbound to

extension’s V8 environment as
<page-origin>

–  Propagate labels during JavaScript
execution

–  Throw exception upon execution of
code labeled <page-origin>

•  IFC for preventing script injection
not new [Djeric and Goel 2010]

•  Our contributions:
–  JIT-compiled IFC for JavaScript
–  Faster IFC through run-time

specialization

•  Previous dynamic, fine-grained IFC systems (e.g.,
taint tracking) emit label propagation code for
every operation

High-Performance IFC:
Specialize for Non-Labeled Data

r = a1 + a2;!

High-Performance IFC:
Specialize for Non-Labeled Data

r = a1 + a2;!

if (IsLabeled(a1) ||!
!IsLabeled(a2))!

 Set(label_flag);!

if (IsSet(label_flag))!
 Label(r, Labels(a1, a2));!

•  Previous dynamic, fine-grained IFC systems (e.g.,
taint tracking) emit label propagation code for
every operation

Generalize for labeled and
non-labeled code later if
required

High-Performance IFC:
Specialize for Non-Labeled Data

Specialize for non-
labeled operations first
(no label propagation
code)

r = a1 + a2;!

if (IsLabeled(a1) ||!
!IsLabeled(a2))!

 Set(label_flag);!

if (IsSet(label_flag))!
 Label(r, Labels(a1, a2));!

r = a1 + a2;!

Generalize for labeled and
non-labeled code later if
required

High-Performance IFC:
Specialize for Non-Labeled Data

Specialize for non-
labeled operations first
(no label propagation
code)

r = a1 + a2;!

if (IsLabeled(a1) ||!
!IsLabeled(a2))!

 Set(label_flag);!

if (IsSet(label_flag))!
 Label(r, Labels(a1, a2));!

r = a1 + a2;!

Only pay overhead when processing labeled data;
non-labeled execution at full speed!

Containment Policy

•  Defends pages against malicious
extensions

•  Blocks exfiltration of sensitive
information via network

•  Implemented with discretionary
access control (DAC) for V8
JavaScript environment
–  Key idea: as needed, apply DAC at

the data sink (browser-network
boundary) or at the data source
(page)

–  Benefits: no implicit flows,
generality, simplicity

•  Our contributions:
–  DAC policies widely compatible with

canonical extension behaviors
–  Automatic policy selection for

extensions based on manifest

Challenge:
DAC for Legacy Extensions

•  Naïve approach: deny extension access to all
DOM elements marked sensitive in page
– Definitely prevents exfiltration of sensitive data by

extension—never sees such data
–  But breaks many extensions that must compute

over sensitive data to do their job, and never
even try to exfiltrate sensitive data!

–  Subtle conflict of interest: page author can mark
data “sensitive” to deny extension access! (e.g.,
ads invulnerable to AdBlock…)

•  Insight: need more flexibility than source-
based DAC provides

Canonical Extension Behaviors

•  Local behavior: read from page, process
locally, display result; no network
communication (e.g., FlashBlock)

•  Remote behavior: read from page, send to
remote server for processing, display
result (e.g., Google Dictionary)

•  Promiscuous behavior: read from page,
send to remote server unknown at
extension installation time, display result
(e.g., Download Master)

Canonical Extension Behaviors

•  Local behavior: read from page, process
locally, display result; no network
communication (e.g., FlashBlock)

•  Remote behavior: read from page, send to
remote server for processing, display
result (e.g., Google Dictionary)

•  Promiscuous behavior: read from page,
send to remote server unknown at
extension installation time, display result
(e.g., Download Master)

Observations and a caveat:
Local extensions don’t need network access
Remote ones do, so risk exfiltrating sensitive data
from pages
Covert channels excluded from threat model for
now

Flexible Containment:
DAC Sink and Source

Evaluation

•  Implemented ScriptPolice for V8 JIT-compiled
JavaScript environment in Google Chrome
browser

•  Evaluated with dozens of extensions and
Alexa top-100 web pages

•  Metrics:
–  Browser performance: users essentially unwilling

to “pay” much for improved confidentiality
–  Policy compatibility with legacy extensions (i.e.,

don’t break them)
–  Policy efficacy at preventing {injection,

exfiltration}

ScriptPolice Is Fast:
YouTube Page Load Latency

•  Page load latencies are for 25th %ile, median,
and 75th %ile over 100 trials

•  For most extensions and pages, ScriptPolice
increases page load times over baseline by
less than 5%, on the order of tens of ms

•  Results for other pages and extensions
broadly similar

•  Ad hoc, porous implementation of SOP is root
of browser vulnerability misery: XSS, CSRF,
third-party image/CSS leaks, &c., &c., &c.

•  Observation: the SOP is a non-interference
IFC policy, but patchily implemented

•  Our ongoing work: replace the SOP with
pervasive, browser-wide IFC, including
exposure of labels to JavaScript code:
–  Stronger isolation than ad hoc SOP
– More flexible than SOP for, e.g., mashup creation

Next Step: Principled Whole-
Browser Security with IFC

•  Ad hoc, porous implementation of SOP is root
of browser vulnerability misery: XSS, CSRF,
third-party image/CSS leaks, &c., &c., &c.

•  Observation: the SOP is a non-interference
IFC policy, but patchily implemented

•  Our ongoing work: replace the SOP with
pervasive, browser-wide IFC, including
exposure of labels to JavaScript code:
–  Stronger isolation than ad hoc SOP
– More flexible than SOP for, e.g., mashup creation

Next Step: Principled Whole-
Browser Security with IFC

In discussions with Google Chrome and Mozilla
Firefox developers about adoption
To learn more, read our HotOS 2013 paper
(appearing next week!), available at:
http://www.cs.ucl.ac.uk/staff/B.Karp/

•  Today’s browsers don’t protect sensitive data robustly,
because SOP doesn’t (and cannot) constrain
extensions

•  Prevention and containment: two general policies that
protect sensitive data in browsers

•  ScriptPolice: practical policy system for V8 JavaScript
engine in Chrome browser [code release imminent!]
–  General: supports Containment and Prevention policies for

wide range of extensions and pages
–  Fast: native-code IFC; negligible overhead per page load

•  Key new techniques:
–  Tailoring DAC Source/Sink to canonical extension behaviors
–  Run-time specialization for fast JIT-compiled IFC

ScriptPolice: Summary

