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Background
Deep Reinforcement Learning

A Markov decision process (MDP) is defined as 

•  is the state space

•  is the action space

•  is the transition probability of environment

•  is the reward function

•  is the discount factor

(S, A, R, p, γ)
S
A
p : S × A → P(S)
R : S × A × S → R
γ
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•

δ (s)

ν(s) = s + δ, ∥δ∥p ≤ ϵ

Source: Zhang et al., 2020
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Attacking Method

• A common attack on Deep Q-Network (DQN) aims maximize cross-entropy loss 
 with respect to  (adversarial perturbation), 

where  is the vector of Q values over all actions in state .


• A PGD (projected gradient descent) attack updates  iteratively:
  

over a fixed number of iterations with .


• A special class of PGD is FGSM (fast gradient sign method), where PGD is 
executed for only a single iteration and .

ℒ(Softmax(Q(s + δ; θ)), π(s)) δ
Q(s) s

δ
δk+1 ← δk + α ⋅ sign(∇δℒ(Q(x + δk; θ), π(s)))

∥δ∥∞ ≤ ϵ

α = ϵ
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Adversarial Deep Reinforcement Learning

• The goal is to train a robust RL agent (i.e., achieve a high reward when under 
adversarial attack ).


• The SOTA method is RADIAL [Oikarinen et al., 2021], where they leveraged 
interval bound propagation to increase the robustness of RL agent  
(e.g., robust up to 5/255 for Pong game).


• Our goal is to increase the robustness of the RL agent further (robust against 
higher values of ).

∥δ∥∞ ≤ ϵ

ϵ



BCL Framework
Overview

• We propose Bootstrapped Opportunistic Adversarial Curriculum Learning (BCL), a novel 
flexible adversarial curriculum learning framework for robust reinforcement learning.


• Begins by creating a baseline curriculum: an increasing sequence of  attack budgets 
, with , where  is our target robustness level.


• In each phase, we run adversarial training (AT) up to  times, where each AT run is 
bootstrapped by the best model obtained thus far. 


• For example, based on observed performance, we could speed up the training by

• Performing fewer than  runs for each curriculum phases; 

• Skipping forward the curriculum phases.

L
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Experiments

• We evaluate the proposed approach using four Atari-2600 games from the 
OpenAI Gym with discrete action space:

Pong Freeway BankHeist RoadRunner



Experiments
Benchmark Models

• DQN (Vanilla)

• SA-DQN (Convex) [Zhang et al., 2020]

• RADIAL-DQN [Oikarinen et al., 2021]


• AT-DQN (standard adversarial training)

• NCL-AT-DQN (naive curriculum learning with adversarial examples)

• NCL-RADIAL-DQN (naive curriculum learning with RADIAL method)



Experiments

• Our BCL models trained with adversarial examples (BCL-C/MOS-AT-DQN) 
significantly outperforms all benchmark models for higher values of .ϵ

Results — Pong



Experiments
Results — BankHeist

• Our BCL models outperform all benchmarks.


• BCL-RADIAL+AT-DQN models yield the most significant results.



• BCL-MOS-AT-DQN significantly reduces training time (in terms of the number 
of training phases) and the performance is as good as BCL-C-AT-DQN.

Maximum Opportunistic Skipping
BCL-C-AT-DQN vs BCL-MOS-AT-DQN

Pong

Freeway

BankHeist

RoadRunner

Total

0 55 110 165 220

BCL-C-AT-DQN BCL-MOS-AT-DQN

Average number of runs conducted.
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Conclusion

In summary, we make the following contributions:


• A novel flexible adversarial curriculum learning framework for reinforcement learning 
(BCL), in which bootstrapping each phase from multiple executions of previous phase plays a 
key role.


• A novel opportunistic adaptive generation variant that opportunistically skips forward in the 
curriculum.


• An approach that composes interval bound propagation and FGSM-based adversarial input 
generation as a part of adaptive curriculum generation.


• An extensive experimental evaluation using OpenAI Gym Atari games (DQN-style) and 
Procgen (PPO-style, Appendix) that demonstrates significant improvement in robustness 
due to the proposed BCL framework.


