
SLIDE 1 UNCLASSIFIED

Robust Verification Tools for Improved
Secure System Evaluation

David Hardin
David Greve

Matthew Wilding

Advanced Technology Center
Rockwell Collins

with contributions by

Tom Johnson and Sung Kim
Rockwell Collins

John Matthews and Lee Pike
Galois Connections

Eric Smith
Stanford University

Bill Young
University of Texas at Austin

UNCLASSIFIEDAdvanced Technology Center

OverviewOverview

• Rockwell Collins Introduction
• AAMP7G Microprocessor

– MILS Certification

• vFaat Program
• SHADE Program

– AAMP7G Instruction Set Formal Model
– AAMP7G tools
– Microcryptol Verifying Compiler
– Compositional Cutpoint Reasoning

• Summary

UNCLASSIFIEDAdvanced Technology Center

Rockwell CollinsRockwell Collins

Communications

Automated Flight Control

Displays / Surveillance

Aviation Services

In-Flight Entertainment

Integrated Aviation Electronics

Information Management Systems

Navigation

A World Leader in Aviation Electronics and Airborne/ Mobile
Communications Systems for Commercial and Military Applications

UNCLASSIFIEDAdvanced Technology Center

The Problem The Problem –– HighHigh--Assurance for Security Assurance for Security
ApplicationsApplications

• Flawed implementations can have grave consequences
–So NSA performs intensive evaluations of critical

encryption devices
• Evaluation process is difficult

– Increasingly numerous crypto implementations
–Trusted experts are scarce
–Review process is time-consuming and expensive
–Optimized crypto algorithms are complex, easy to

overlook corner cases
• Highest Evaluation Assurance Level requires formal proofs

– Industry has very little practical experience in this area

UNCLASSIFIEDAdvanced Technology Center

Rockwell Collins AAMP7G CPU Rockwell Collins AAMP7G CPU

• Developed by RCI Advanced Technology
Center
• Used in RCI GPS and Information
Assurance products
• High Code Density
• Low Power Consumption (250 mW)
• 100 MHz operation
• Screened for full military temp range
• Implements intrinsic partitioning

Intrinsic partitioning
• Computing Platform Enforces Data
Isolation
• “Separation Kernel in Hardware”

X Y Z

AAMP7 in GPS SAASM MCM

UNCLASSIFIEDAdvanced Technology Center

AAMP7G Formal VerificationAAMP7G Formal Verification

AAMP7

Microcode

Low-Level
Model Kernel

Abstract
Model

Formal Verification

Formal Verification

Common Criteria
EAL7 Proof Obligations

Security
Policy

Code-to-Spec Reviews

Abstract
Model

Low-Level
Model Kernel

Microcode

AAMP7G

UNCLASSIFIEDAdvanced Technology Center

AAMP7G Intrinsic Partitioning AAMP7G Intrinsic Partitioning
Formal VerificationFormal Verification

Program Accomplishments

§ Developed formal description of separation for
uniprocessor, multipartition system

§ Modeled trusted AAMP7G microcode

§ Constructed machine-checked proof that
separation holds of AAMP7G model, using ACL2

§ Model subject of intensive code-to-spec review

§ Satisfies NSA MILS formal methods evaluation
requirements patterned after Common Criteria
EAL7+ with respect to ADV

§NSA MILS certificate granted in May 2005

§AAMP7G can concurrently process
Unclassified through Top Secret Codeword
information

• RCI IR&D funded
• Capability developed in multiyear RCI
formal methods research program

UNCLASSIFIEDAdvanced Technology Center

vFaatvFaat: von Neumann Formal Analysis : von Neumann Formal Analysis
and Annotation Tooland Annotation Tool

Program Objectives

• Extend imperative code analysis
techniques to push the state-of-the-art
in formal analysis

• Increase automated analysis
integration into standard development
practices

• Demonstrate these techniques on
RC-relevant examples that provide
assurance required in current
evaluation efforts and help identify
future certification standards

ANALYSIS

ANNOTATION

INPUT

OUTPUT

UNCLASSIFIEDAdvanced Technology Center

PhilosophyPhilosophy

• Build on Experience
– Codify Successful Techniques

• Focus on Proof Structure
– Driven by Control/Data Flow
– Encourage Hierarchy and Abstraction
– Emphasizes Compositional Reasoning

• Target Independence
– State Machines and Data Paths
– Assembly/Object Code
– Microcode
– Software

• Theorem Prover Independence
– Definitional Principle
– Conditional Rewrite Rules

UNCLASSIFIEDAdvanced Technology Center

Eclipse OverviewEclipse Overview

• A multi-language IDE
– World-class Java IDE (JDT)
– Also C and C++ (CDT), Perl, Ada, etc.

• A tool development platform
– Stand-alone Java tools using the JDT
– Plug-in development using the PDE and

existing Eclipse components
• A tool integration platform

– Forms the basis for a highly integrated
engineering environment

– Use a variety of integration methods
(invocation, GUI only, full)

– Support integration of both legacy and
new tools

“an open source software development project dedicated to providing a robust,
full-featured, commercial-quality, industry platform for the development of
highly integrated tools.”

UNCLASSIFIEDAdvanced Technology Center

CompositionComposition

• Proof
– Two Axis Structure

• Function Composition
• Proof Composition

– vFaat Exploits This Duality

• Function Composition
– Big Functions from Smaller Functions
– Managed by Views and CANs
– Encourages Good Library

Development

• Proof Composition
– Big Proofs from Smaller Proofs
– Managed by Strata and Links
– Encourages Generic Proof

Development (Reusable
Specifications)

AAMP7

CRYPT

Function
Composition Proof

Composition
AAMP7

CRYPT

Function
Composition Proof

Composition

UNCLASSIFIEDAdvanced Technology Center

vFaatvFaat CFNCFN

• Imperative Code Emphasis
– Typical of Low Level Models

• Control Flow Node
– Temporal Abstraction of

Imperative Execution
– Hierarchical
– Defines Proof Structure

• Purpose
– Model of Execution
– Provides Template for

• Proof Structure
• Clock Function
• Branch Function
• Assumptions
• Functional Composition

ASSUME

LIFT

PUSH

GUARANTEE

PROOF

B1

B2

B3 B4

BX

ASSUME

LIFT

PUSH

GUARANTEE

PROOF

B1

B2

B3 B4

BX

UNCLASSIFIEDAdvanced Technology Center

vFaatvFaat Tool ChainTool Chain

.o
object

file

AOF
Abstract
Object

File

Modeling
Tool

CFG
Control

Flow
Graph

APO
XML File

vFaat APO
Abstract Proof Outline

APO
XSL
File

Output
Proof Code

Input

PVS

ACL2

Abstractions
(LINK)

User
Proofs

DSD
Data

Structure
Description

DFD
Data
Flow

Description

UNCLASSIFIEDAdvanced Technology Center

Design and Verification FlowDesign and Verification Flow

.o
object

file

CFG
File

APO

Abstract Proof Outline

Output
Proof Code

ACL2

Data Structure Description

DSD
File

Object Code

.c
source

file

Source Code Specification

ACL2

IMPLEMENTATION

VERIFICATION

Control Flow Graph

Processor
Model

UNCLASSIFIEDAdvanced Technology Center

C Source Code ImplementationC Source Code Implementation

mailbox_copy() {

uword32_t input_data;
uword32_t output_data;

while (1) { // forever

if (CHARACTER_INPUT_0_READY && OUTPUT_1_CONSUMED) {

// Consume the character and allow the producer to continue
input_data = READ_INPUT_0;
NOTIFY_INPUT_0_CONSUMED;

WRITE_OUTPUT_1(input_data);

// Notify the consumer that there is output
NOTIFY_OUTPUT_1_READY;

}

if (CHARACTER_INPUT_1_READY && OUTPUT_0_CONSUMED) {

// Consume the character and allow the producer to continue
output_data = READ_INPUT_1;
NOTIFY_INPUT_1_CONSUMED;

WRITE_OUTPUT_0(output_data);

// Notify the consumer that there is output
NOTIFY_OUTPUT_0_READY;

}

} // forever

UNCLASSIFIEDAdvanced Technology Center

Object Code CFGObject Code CFG

UNCLASSIFIEDAdvanced Technology Center

Verification HypothesesVerification Hypotheses

(defun data-structures (offset aamp::st)
(let ((g1 (byte -stream-pointer-block (CHARACTER_INPUT_0_DATA) offset aamp::st))

(g2 (byte -stream-pointer-block (CHARACTER_INPUT_0_READY) offset aamp::st))
(g3 (byte -stream-pointer-block (CHARACTER_INPUT_1_DATA) offset aamp::st))
(g4 (byte -stream-pointer-block (CHARACTER_INPUT_1_READY) offset aamp::st))
(g5 (byte -stream-pointer-block (CHARACTER_OUTPUT_0_DATA) offset aamp::st))
(g6 (byte -stream-pointer-block (CHARACTER_OUTPUT_0_READY) offset aamp::st))
(g7 (byte -stream-pointer-block (CHARACTER_OUTPUT_1_DATA) offset aamp::st))
(g8 (byte -stream-pointer-block (CHARACTER_OUTPUT_1_READY) offset aamp::st))
)
(and
(check-program-image (mailbox_copy_image) offset aamp::st)
(aamp::no-code -data-clash cenv denv)
(bag::unique
(append
(image-footprint footprint cenv pc offset)
(gacc::addresses-of-data-words -univ2 g1)
(gacc::addresses-of-data-words -univ2 g2)
(gacc::addresses-of-data-words -univ2 g3)
(gacc::addresses-of-data-words -univ2 g4)
(gacc::addresses-of-data-words -univ2 g5)
(gacc::addresses-of-data-words -univ2 g6)
(gacc::addresses-of-data-words -univ2 g7)
(gacc::addresses-of-data-words -univ2 g8)
(gacc::addresses-of-data-words 5 denv (+ tos -5))
(gacc::addresses-of-data-words 5 denv lenv)
)))))))

Local Variables

Stack Space

Global Pointers

Code Location
Executable Image

Data/Code Separation

vFaat Generated

UNCLASSIFIEDAdvanced Technology Center

Correspondence ProofCorrespondence Proof

• Statement of Correspondence
–Proof is Driven by CFG

• Much Like Single Stepping a Debugger

(defthm mailbox_copy_21_22_implements_app-io-spec
(implies
(and
(data-structures -102 aamp::st)
(aamp::st-p aamp::st))
(equal (lift (mailbox_copy_21_22_comp kst))

(app::app-io-spec (lift kst)))))

Hypotheses C Function
(Implementation)
vFaat Generated

Low Level
Specification

UNCLASSIFIEDAdvanced Technology Center

Translating HW Specifications to Translating HW Specifications to vFaatvFaat

• Leveraging Existing Translation Platform
–Supports Model Based Development Tools

• Simulink/Scade

–Primary focus is Model Checking

• vFaat Translation outputs:
–Control Flow Graph (CFG) for evaluation order
–Data Structure Description (DSD)
–Data Flow Description (DFD)

UNCLASSIFIEDAdvanced Technology Center

Example Example SimulinkSimulink Hardware Hardware
ComponentComponent

UNCLASSIFIEDAdvanced Technology Center

Generated ACL2 codeGenerated ACL2 code

(defun Fig15_6_MSV_Gen_Combination_comp_step (k st)
(let ((src st)
(dest (default-destT-value)))
(if (uval? k 0)
(let ((dest (let ((src (not (gp (cons :NM_3 nil) src))))
(sp (cons :Logical_Operator nil) src dest))))
(let ((dest (let ((src (not (gp (cons :NM_2 nil) src))))
(sp (cons :Logical_Operator1 nil) src dest))))
(let ((dest (let ((src (not (gp (cons :NM_3 nil) src))))
(sp (cons :Logical_Operator2 nil) src dest))))
(let ((dest (let ((src (not (gp (cons :NM_1 nil) src))))
(sp (cons :Logical_Operator3 nil) src dest))))
(let ((src (not (gp (cons :MSV_SEL nil) src))))
(sp (cons :Logical_Operator4 nil) src dest))))))
(if (uval? k 1)
(let ((dest (let ((src (and (and (and (and (gp (cons :Logical_Operator2 nil) src)
(gp (cons :NM_0 nil) src))
(gp (cons :NM_2 nil) src))
(gp (cons :Logical_Operator3 nil) src))
(gp (cons :TS_RSLT nil) src))))
(sp (cons :Logical_Operator5 nil) src dest))))
(let ((src (and (and (gp (cons :Logical_Operator nil) src)
(gp (cons :NM_0 nil) src))
(gp (cons :Logical_Operator1 nil) src))))
(sp (cons :Logical_Operator6 nil) src dest)))
(if (uval? k 2)
…

CFG
steps

“NOT” gate

“AND” gate

UNCLASSIFIEDAdvanced Technology Center

Secure, High Assurance Development Secure, High Assurance Development
Environment (SHADE)Environment (SHADE)

Program Objectives

§ Provide a “nuts-and-bolts” partitioned
development environment.

§ Develop tools and techniques to provide formal
analysis at the instruction level for the AAMP7
processor

§ Develop a verifying compiler for an “embeddable”
subset of the Cryptol cryptographic language
targeting the AAMP7

§ Demonstrate a convenient, high-assured
toolchain path from high-level algorithm
description to load image.

RCI subcontractors: Galois Connections,
University of Texas at Austin

AAMP7G development board

Eclipse-based AAMP7G development
environment

UNCLASSIFIEDAdvanced Technology Center

SHADE SummarySHADE Summary

GenerateGenerate

Cryptol
Spec

AAMP7
Code

ACL2
Spec

Proof

Linker/
Loader/

Debugger

AAMP7
Simulator

AAMP7

User
Interface

Configuration

UNCLASSIFIEDAdvanced Technology Center

SHADE Software ComponentsSHADE Software Components

• Eclipse-Based AAMP7G Partitioning Development Tools
– Target Monitor
– Target Board Editor
– Multipartition Builder
– Eclipse: Very large and capable Java-based IDE construction

framework
• µCryptol -> AAMP7 verifying compiler

– Generates ACL2, as well as AAMP7 assembly, AAMP7 binary
– OCaml-based

• Instruction-level formal AAMP7G model
– Written in the language of the ACL2 Theorem Prover
– Applicative subset of Common Lisp

• AAMP Legacy Tools
– Compilers, Linkers, Assemblers, etc.
– Mostly Ada

UNCLASSIFIEDAdvanced Technology Center

AAMP7 InstructionAAMP7 Instruction--Set Formal ModelSet Formal Model

• Provides instruction-level simulator for the AAMP7
• Written in ACL2

– ~100 KSLOC with all RCI support books
– ~750 MB Lisp heap required

• Can be used as a processor simulator, as well as a vehicle for proof
– Validated by loading AAMP processor diagnostic tests into

(simulated) memory, and running the model
• Utilizes ACL2 single threaded object (stobj) to model CPU state; stobj

updates are performed “in place”, greatly reducing garbage generation
at model execution time

• GACC (Generalized Accessor) library used to model memory, same as
used in AAMP7 separation proofs

• New bitvector library, “super-ihs”, extends ACL2 Integer Hardware
Specification (IHS) library

UNCLASSIFIEDAdvanced Technology Center

AAMP7G Partition Views

UNCLASSIFIEDAdvanced Technology Center

µCryptol compiler, mcc,
interpreter interaction,

targeting ACL2 AAMP7G
formal model

UNCLASSIFIEDAdvanced Technology Center

AAMP7G ACL2
Formal Model

Integration with
Eclipse AAMP7G

Tools

Disassembly

Process Stack

Console

ACL2 session

UNCLASSIFIEDAdvanced Technology Center

CryptolCryptol

• Galois’ domain-specific language for cryptography algorithms
http://www.cryptol.net

• Cryptol features:
• Purely functional
• Size-indexed bitvector types, no limits on bitvector size
• Lazy infinite streams
• Not Turing-complete

• µCryptol
• Cryptol subset, tailored for systems with constrained memory
• Formal semantics
• Designed for verification
• Creating a verifying compiler targeting the AAMP7G
• See paper in HCSS06 Proceedings

UNCLASSIFIEDAdvanced Technology Center

Why a verifying compiler for Why a verifying compiler for µµCryptolCryptol??

• Cryptographic systems need to be correct
– NSA is a demanding customer

• Cryptographic systems are difficult, expensive to certify
– A verifying compiler could markedly reduce code-to-spec review costs and

reduce time-to-market for cryptographic devices
• Reference Cryptol specifications for common crypto algorithms are

available
• A domain-specific language, such as Cryptol, seems to present lower

risk than attempting a verifying compiler for a general-purpose
programming language

• Cryptol is a Galois Connections design, so we can state its
specification precisely

• The AAMP7G is an “easy” code generation target (think JVM)
• The AAMP7G is a Rockwell Collins design with a precise specification
• Theorem prover technology has matured sufficiently to make this

program feasible

UNCLASSIFIEDAdvanced Technology Center

Compiler Architecture Compiler Architecture

indexed
program

µCryptol
program

AAMP7
program

front-end
transforms

SHADE
Compiler

code
generationcanonical

program

middle-end
transforms

UNCLASSIFIEDAdvanced Technology Center

Example: factorial (mod 2Example: factorial (mod 288))

fac : B^32 -> B^8;
fac i = facs @@ i
where {

rec
idx : B^8^inf;
idx = [1] ## [x + 1 | x <- idx];

and
facs : B^8^inf;
facs = [1] ## [x * y | x <- facs

| y <- idx];
};

idx = [1, 2, 3, 4, 5, 6, 7, 8, …]
facs = [1, 1, 2, 6, 24, 120, 208, 176, …]

Stream values:

1

+

1
idx

facs

1

*

UNCLASSIFIEDAdvanced Technology Center

Stage 1: Compile to indexed form Stage 1: Compile to indexed form

indexed
program

µCryptol
program

AAMP7
program

front-end
transforms

SHADE
Compiler

code
generationcanonical

program

middle-end
transforms

UNCLASSIFIEDAdvanced Technology Center

Stage 1: Compile to indexed formStage 1: Compile to indexed form

• Each stream represented as first-order function taking
index to stream element

• Nested definitions lambda-lifted to top-level
• Pattern-matching and stream/vector comprehensions

compiled away
• Program can now be shallowly embedded into ACL2

idx : nat -> B^8;
idx n = if n = 0 then 1

else idx (n-1) + 1;

facs : nat -> B^8;
facs n = if n = 0 then 1

else facs (n-1) * idx (n-1);

fac : B^32 -> B^8;
fac i = facs (toNat i);

UNCLASSIFIEDAdvanced Technology Center

Stage 2: Compile to canonical form Stage 2: Compile to canonical form

indexed
program

µCryptol
program

AAMP7
program

front-end
transforms

SHADE
Compiler

code
generationcanonical

program

middle-end
transforms

UNCLASSIFIEDAdvanced Technology Center

Stage 2: Compile to canonical formStage 2: Compile to canonical form

• Each clique of mutually recursive stream functions represented by
single tail-recursive function

• Each tail-recursive function takes an extra tuple of history buffers
• Stream dependency analysis calculates minimum length of each

history buffer
• Complex Cryptol primitives left unchanged, some simple ones are

inlined

UNCLASSIFIEDAdvanced Technology Center

Stage 2: Compile to canonical formStage 2: Compile to canonical form

• Factorial program contains two single-element history
buffers

• Running time
– Factorial in indexed form: quadratic
– Factorial in canonical form: linear

*+

1

UNCLASSIFIEDAdvanced Technology Center

Stage 2: Verification Architecture Stage 2: Verification Architecture

• Use ACL2 to verify compiler middle-end
transformations

indexed
program

µCryptol
program

AAMP7
program

first-order
functions

front-end
transforms

SHADE
Compiler

code
generation

ACL2

canonical
program

tail-
recursive
functions

middle-end
transforms

shallow
embedding

shallow
embedding

equivalence
proof

UNCLASSIFIEDAdvanced Technology Center

ResultsResults

• ACL2 macro that can automatically prove
equivalence of indexed to canonical forms, for all
examples
– factorial, alt-factorial
–Fibonacci, 3-Fibonacci, 5-Fibonacci
–TEA, AES, RC6

• AES proof takes about 20 minutes on a 1.5 GHz G4
Powerbook

• See paper in HCSS06 Proceedings for more details

UNCLASSIFIEDAdvanced Technology Center

Stage 3: Generate machine code Stage 3: Generate machine code

indexed
program

µCryptol
program

AAMP7
program

front-end
transforms

SHADE
Compiler

code
generationcanonical

program

middle-end
transforms

UNCLASSIFIEDAdvanced Technology Center

Stage 3: Generate machine codeStage 3: Generate machine code

• History buffers represented as circular imperative
arrays
–Optimized away if history length is small

• Compiler statically allocates history buffers
• Calls library routines for multiple-word Cryptol

primitives such as arithmetic, shift, rotate, etc.

UNCLASSIFIEDAdvanced Technology Center

Stage 3: Verification Architecture Stage 3: Verification Architecture

indexed
program

µCryptol
program

AAMP7
program

first-order
functions

AAMP7
state

machine

front-end
transforms

SHADE
Compiler

deep
embedding

code
generation

ACL2

canonical
program

tail-
recursive
functions

middle-end
transforms

shallow
embedding

shallow
embedding

equivalence
proof

equivalence
proof

UNCLASSIFIEDAdvanced Technology Center

Desired Theorems (in general)Desired Theorems (in general)

• If machine starts at a state satisfying program’s
precondition (entrypoint assertion), then
–Partial correctness: if the machine ever reaches an

exitpoint state, then the first exitpoint reached
satisfies the program’s postcondition (exitpoint
assertion).

–Termination: the machine will eventually reach an
exitpoint

• However, we don’t want to
–write and verify a VCG
–manually define a clock function

• computes for each program state exactly how many steps
are needed to reach the next exitpoint

UNCLASSIFIEDAdvanced Technology Center

Underlying Verification Method Underlying Verification Method ––
Compositional Compositional CutpointCutpoint TechniqueTechnique

• Sound and automatic theorem proving technique
for generating verification conditions from a
small-step operational semantics

• Inspired by J Moore presentation at HCSS 2004
• Cutpoints and their state assertions for a given

subroutine must be specified
• Symbolic simulation of processor model takes us

from cutpoint to cutpoint, until we reach
subroutine exit

• Compositionality: Once cutpoint proof is done for
a given subroutine, we don’t have to reason
about it again if it’s called by another subroutine

• No Verification Condition Generator required
• See Verification Condition Generation via

Theorem Proving
John Matthews, J Moore, Sandip Ray, Daron
Vroon, 2006 (submitted for publication)

• Has been used it to verify a 600-line JVM program
implementing a generic CBC-mode encryption

Entry

Exit

Cutpoint

UNCLASSIFIEDAdvanced Technology Center

AAMP7G Machine Code Proofs using AAMP7G Machine Code Proofs using
Compositional Compositional CutpointCutpoint MethodMethod

• Preconditions, e.g.
– Code to be proved is loaded into memory
– Input parameter is within range for a given algorithm

• Postconditions
– e.g., fact(x) on top of stack after running AAMP7G machine code for

factorial
• Frame Conditions

– e.g., Only local variables and operand stack memory needed to
implement factorial are modified by executing AAMP machine code
for factorial

• Compositional Cutpoint Proof Technique
– No Verification Condition Generator required

• Generation of the above information can be done mostly automatically

UNCLASSIFIEDAdvanced Technology Center

Example Program Example Program –– Iterative FactorialIterative Factorial

#x02 ;; Proc Header -- 2 words of locals
#x00

;
#x10 ;; LIT4 0
#x11 ;; LIT4 1

; local0 is a counter counting from 1 up to local2
#xc0 ;; ASNDL 0

; accumulator lives on stack; initialize it to 1
#x10 ;; LIT4 0
#x11 ;; LIT4 1

; L2 loop top -------------------------------------- CUTPOINT
#x30 ;; REFDL 0
#x32 ;; REFDL 2

; if local0>local2, goto L
#xa5
#x0e ;; GRUD
#x5b ;; SKIPNZI
#x0c ;; L (+12)
#x30 ;; REFDL 0

; multiply local0 into the accumulator on the stack
#xa5
#x2a ;; MPYUD

; increment local0
#x30 ;; REFDL 0
#x10 ;; LIT4 0
#x11 ;; LIT4 1
#xa5
#x28 ;; ADDUD
#xc0 ;; ASNDL 0
#x19 ;; LIT8N
#x11 ;; L2 (-18)
#x59 ;; SKIP
#x14 ;; LIT4 4
#x5f ;; RETURN

UNCLASSIFIEDAdvanced Technology Center

Machine Code Proofs Machine Code Proofs –– Preconditions Preconditions
ExampleExample

(defund f-precondition (s)
(declare (xargs :non-executable t))
(and

(equal (starting-program-counter) 131394 ;(+ 2 (iter-fact-address)))
(not (equal 4294967295 (aamp::read-two-local-words 2 s)))
;argument isn't the largest int...

(< (aamp::aamp.lenv s)
(gacc::read-data-word (aamp::aamp.denvr s) (+ -1 (aamp::aamp.lenv s)) (aamp::aamp.ram s)))

;;the operand stack should be empty just after fact is called
;;(the argument is passed in as a "local")
(equal 0 (aamp::stack-height s))

(aamp::st-p s)
(aamp::aamp-normal-statep s)
(aamp::no-code-data-clash (aamp::aamp.cenvr s) (aamp::aamp.denvr s))

;;factorial code is loaded where we expect it to be. Since the program
;;begins with two bytes of header, the code actually starts 2 bytes
;;before the first instruction.
(iter-factorial-program-loaded (+ -2 (starting-program-counter)) ;(nth *aamp.pc* st)

(aamp::aamp.ram s))

(aamp::code-fetches-allowed 100 #x0002 #x0140 (nth 17 s))
(AAMP::DATA-WRITES-ALLOWED 65536 (NTH 2 S) 0 (NTH 17 S))
(AAMP::DATA-READS-ALLOWED 65536 (NTH 2 S) 0 (NTH 17 S))))

UNCLASSIFIEDAdvanced Technology Center

Machine Code Proofs Machine Code Proofs –– PostconditionsPostconditions
ExampleExample

(defund f-poststate (s0 s)
(declare (xargs :non-executable t))
(aamp::modify s0

;;the 4-word stack mark gets popped off along with 4 words of
;;args/locals, then two words of RV get pushed on, so the
;;stack shrinks by 6.
:tos (aamp::inc-tos 6 s0)

:pc (get-saved-callers-pc s0)
:lenv (get-saved-callers-lenv s0)
:cenvr (get-saved-callers-cenv s0)

;; Memory access temporaries – artifact of the applicative model
:memtmp (loghead 16 (aamp::aamp.memtmp s))
:memtmp8 (loghead 8 (aamp::aamp.memtmp8 s))
:memtmp32 (logext 32 (aamp::aamp.memtmp32 s))

<<continued on next slide>>

UNCLASSIFIEDAdvanced Technology Center

Machine Code Proofs Machine Code Proofs –– PostconditionsPostconditions
Example (contExample (cont’’d.)d.)

:ram (gacc::write-data-words
2
(aamp::aamp.denvr s0)
(+ 6 (aamp::aamp.tos s0))

;;the mathematical factorial of the argument:
(fact
(gacc::read-data-words 2 (aamp::aamp.denvr s0) (+ 2 (aamp::aamp.lenv s0))

(aamp::aamp.ram s0)))

;;This says we are allowed to make a mess of the entire
;;stack. Restrict this to just the amount used
;;(determined from the argument to factorial).

(copy-over-n-words 12
(aamp::aamp.denvr s0)
(+ -10 (aamp::aamp.lenv s0))
(aamp::aamp.ram s)

(aamp::aamp.denvr s0)
(+ -10 (aamp::aamp.lenv s0)) ;write starting at address 0
(aamp::aamp.ram s0)))))

UNCLASSIFIEDAdvanced Technology Center

Issue: Verifying compiler frontIssue: Verifying compiler front--endend

indexed
program

µCryptol
program

AAMP7
program

first-order
functions

AAMP7
state

machine

front-end
transforms

SHADE
Compiler

deep
embedding

code
generation

ACL2

canonical
program

tail-
recursive
functions

middle-end
transforms

shallow
embedding

shallow
embedding

equivalence
proof

equivalence
proof

UNCLASSIFIEDAdvanced Technology Center

Extended Verification Architecture Extended Verification Architecture

• Use Isabelle/HOLCF to verify front-end compiler
transformations

indexed
program

µCryptol
program

AAMP7
program

first-order
functions

AAMP7
state

machine

front-end
transforms

SHADE
Compiler

deep
embedding

generate
code

HOLCF ACL2

HOLCF
functions

shallow
embedding

first-order
functions

translate

deep embedding of ACL2 in HOL

canonical
program

tail-
recursive
functions

middle-end
transforms

shallow
embedding

shallow
embedding

UNCLASSIFIEDAdvanced Technology Center

Translating ACL2 to IsabelleTranslating ACL2 to Isabelle

• Mike Gordon, Matt Kaufmann, Warren Hunt and James
Reynolds are building an ACL2 external oracle for HOL4
– Defined ACL2 universe as sexp datatype in HOL
– Used ACL2 axioms to define ACL2 primitives in HOL
– Expressions and formulas defined over sexp invoke ACL2
– Result of ACL2 is trusted

• John Matthews has developed a prototype sexp datatype
for Isabelle, and proved equivalence between a shallow
embedding of the µCryptol factorial example into
Isabelle/HOLCF and a translated version of indexed form
using the sexp datatype

UNCLASSIFIEDAdvanced Technology Center

Bonus Proof!Bonus Proof!

• As an extra credit assignment, John Matthews
recently proved that the shallow embedding of the
µCryptol factorial example into Isabelle/HOLCF
provides mathematical factorial, mod 28

lemma fac_math_fac_ind:

“fac$(Def n) = Def (fac_math n mod 2^8)

/\ ind_idx$(Def n) = Def ((n + 1) mod 2^8)”

UNCLASSIFIEDAdvanced Technology Center

SummarySummary

Rockwell Collins and partners have developed robust
techniques and tools to improve high-assurance
system evaluations by:

• Making use of automated theorem provers to
provide formal proofs as required by EAL 7

• Producing executable formal models of computing
platforms that can also be validated by execution
of production tests

• Pioneering techniques for automating hardware,
microcode, and software verification

• Designing and implementing a verifying compiler
for a subset of the Cryptol language

