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OverviewOverview

• Rockwell Collins Introduction
• AAMP7G Microprocessor 

– MILS Certification

• vFaat Program
• SHADE Program

– AAMP7G Instruction Set Formal Model
– AAMP7G tools
– Microcryptol Verifying Compiler 
– Compositional Cutpoint Reasoning

• Summary
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Rockwell CollinsRockwell Collins

Communications

Automated Flight Control

Displays / Surveillance

Aviation Services

In-Flight Entertainment

Integrated Aviation Electronics

Information Management Systems

Navigation

A World Leader in Aviation Electronics and Airborne/ Mobile 
Communications Systems for Commercial and Military Applications
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The Problem The Problem –– HighHigh--Assurance for Security Assurance for Security 
ApplicationsApplications

• Flawed implementations can have grave consequences
–So NSA performs intensive evaluations of critical 

encryption devices
• Evaluation process is difficult

– Increasingly numerous crypto implementations
–Trusted experts are scarce
–Review process is time-consuming and expensive
–Optimized crypto algorithms are complex, easy to 

overlook corner cases
• Highest Evaluation Assurance Level requires formal proofs

– Industry has very little practical experience in this area
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Rockwell Collins AAMP7G CPU Rockwell Collins AAMP7G CPU 

• Developed by RCI Advanced Technology 
Center
• Used in RCI GPS and Information 
Assurance products
• High Code Density
• Low Power Consumption (250 mW)
• 100 MHz operation
• Screened for full military temp range 
• Implements intrinsic partitioning

Intrinsic partitioning
• Computing Platform Enforces Data 
Isolation
• “Separation Kernel in Hardware”

X Y Z

AAMP7 in GPS SAASM MCM
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AAMP7G Formal VerificationAAMP7G Formal Verification

AAMP7

Microcode

Low-Level
Model Kernel

Abstract
Model

Formal Verification

Formal Verification

Common Criteria
EAL7 Proof Obligations

Security
Policy

Code-to-Spec Reviews

Abstract
Model

Low-Level
Model Kernel

Microcode

AAMP7G
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AAMP7G Intrinsic Partitioning AAMP7G Intrinsic Partitioning 
Formal VerificationFormal Verification

Program Accomplishments

§ Developed formal description of separation for 
uniprocessor, multipartition system

§ Modeled trusted AAMP7G microcode

§ Constructed machine-checked proof that 
separation holds of AAMP7G model, using ACL2

§ Model subject of intensive code-to-spec review

§ Satisfies NSA MILS formal methods evaluation  
requirements patterned after Common Criteria 
EAL7+ with respect to ADV

§NSA MILS certificate granted in May 2005

§AAMP7G can concurrently process  
Unclassified through Top Secret Codeword 
information

• RCI IR&D funded
• Capability developed in multiyear RCI 
formal methods research program
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vFaatvFaat: von Neumann Formal Analysis : von Neumann Formal Analysis 
and Annotation Tooland Annotation Tool

Program Objectives

• Extend imperative code analysis 
techniques to push the state-of-the-art 
in formal analysis

• Increase automated analysis 
integration into standard development 
practices

• Demonstrate these techniques on 
RC-relevant examples that provide 
assurance required in current 
evaluation efforts and help identify 
future certification standards

ANALYSIS

ANNOTATION

INPUT

OUTPUT
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PhilosophyPhilosophy

• Build on Experience
– Codify Successful Techniques

• Focus on Proof Structure
– Driven by Control/Data Flow
– Encourage Hierarchy and Abstraction
– Emphasizes Compositional Reasoning

• Target Independence
– State Machines and Data Paths
– Assembly/Object Code
– Microcode
– Software

• Theorem Prover Independence
– Definitional Principle
– Conditional Rewrite Rules
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Eclipse OverviewEclipse Overview

• A multi-language IDE
– World-class Java IDE (JDT)
– Also C and C++ (CDT), Perl, Ada, etc.

• A tool development platform
– Stand-alone Java tools using the JDT
– Plug-in development using the PDE and 

existing Eclipse components
• A tool integration platform

– Forms the basis for a highly integrated 
engineering environment

– Use a variety of integration methods 
(invocation, GUI only, full)

– Support integration of both legacy and 
new tools

“an open source software development project dedicated to providing a robust,
full-featured, commercial-quality, industry platform for the development of
highly integrated tools.”
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CompositionComposition

• Proof
– Two Axis Structure

• Function Composition
• Proof Composition

– vFaat Exploits This Duality

• Function Composition
– Big Functions from Smaller Functions
– Managed by Views and CANs
– Encourages Good Library 

Development

• Proof Composition
– Big Proofs from Smaller Proofs
– Managed by Strata and Links
– Encourages Generic Proof 

Development (Reusable 
Specifications)

AAMP7

CRYPT

Function
Composition Proof

Composition
AAMP7

CRYPT

Function
Composition Proof

Composition
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vFaatvFaat CFNCFN

• Imperative Code Emphasis
– Typical of Low Level Models

• Control Flow Node
– Temporal Abstraction of 

Imperative Execution
– Hierarchical
– Defines Proof Structure

• Purpose
– Model of Execution
– Provides Template for

• Proof Structure
• Clock Function
• Branch Function
• Assumptions
• Functional Composition

ASSUME

LIFT

PUSH

GUARANTEE

PROOF

B1

B2

B3 B4

BX

ASSUME

LIFT

PUSH

GUARANTEE

PROOF

B1

B2

B3 B4

BX
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vFaatvFaat Tool ChainTool Chain
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Design and Verification FlowDesign and Verification Flow

.o
object

file

CFG
File

APO

Abstract Proof Outline

Output
Proof Code

ACL2

Data Structure Description

DSD
File

Object Code
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source

file

Source Code Specification
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Control Flow Graph

Processor 
Model
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C Source Code ImplementationC Source Code Implementation

mailbox_copy() {

uword32_t input_data;
uword32_t output_data;

while (1) { // forever

if (CHARACTER_INPUT_0_READY && OUTPUT_1_CONSUMED) {

// Consume the character and allow the producer to continue
input_data = READ_INPUT_0;
NOTIFY_INPUT_0_CONSUMED;

WRITE_OUTPUT_1(input_data);

// Notify the consumer that there is output
NOTIFY_OUTPUT_1_READY;

}

if (CHARACTER_INPUT_1_READY && OUTPUT_0_CONSUMED) {

// Consume the character and allow the producer to continue
output_data = READ_INPUT_1;
NOTIFY_INPUT_1_CONSUMED;

WRITE_OUTPUT_0(output_data);

// Notify the consumer that there is output
NOTIFY_OUTPUT_0_READY;

}

} // forever
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Object Code CFGObject Code CFG
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Verification HypothesesVerification Hypotheses

(defun data-structures (offset aamp::st)
(let ((g1 (byte -stream-pointer-block (CHARACTER_INPUT_0_DATA)  offset aamp::st))

(g2 (byte -stream-pointer-block (CHARACTER_INPUT_0_READY) offset aamp::st))
(g3 (byte -stream-pointer-block (CHARACTER_INPUT_1_DATA)  offset aamp::st))
(g4 (byte -stream-pointer-block (CHARACTER_INPUT_1_READY) offset aamp::st))
(g5 (byte -stream-pointer-block (CHARACTER_OUTPUT_0_DATA)  offset aamp::st))
(g6 (byte -stream-pointer-block (CHARACTER_OUTPUT_0_READY) offset aamp::st))
(g7 (byte -stream-pointer-block (CHARACTER_OUTPUT_1_DATA)  offset aamp::st))
(g8 (byte -stream-pointer-block (CHARACTER_OUTPUT_1_READY) offset aamp::st))
)
(and
(check-program-image (mailbox_copy_image) offset aamp::st)
(aamp::no-code -data-clash cenv denv)
(bag::unique
(append
(image-footprint footprint cenv pc offset)
(gacc::addresses-of-data-words -univ2 g1)
(gacc::addresses-of-data-words -univ2 g2)
(gacc::addresses-of-data-words -univ2 g3)
(gacc::addresses-of-data-words -univ2 g4)
(gacc::addresses-of-data-words -univ2 g5)
(gacc::addresses-of-data-words -univ2 g6)
(gacc::addresses-of-data-words -univ2 g7)
(gacc::addresses-of-data-words -univ2 g8)
(gacc::addresses-of-data-words 5 denv (+ tos -5))
(gacc::addresses-of-data-words 5 denv lenv)
)))))))

Local Variables

Stack Space

Global Pointers

Code Location
Executable Image

Data/Code Separation

vFaat Generated
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Correspondence ProofCorrespondence Proof

• Statement of Correspondence
–Proof is Driven by CFG

• Much Like Single Stepping a Debugger

(defthm mailbox_copy_21_22_implements_app-io-spec
(implies
(and
(data-structures -102 aamp::st)
(aamp::st-p aamp::st))
(equal (lift (mailbox_copy_21_22_comp kst))

(app::app-io-spec (lift kst)))))

Hypotheses C Function
(Implementation)
vFaat Generated

Low Level
Specification
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Translating HW Specifications to Translating HW Specifications to vFaatvFaat

• Leveraging Existing Translation Platform
–Supports Model Based Development Tools

• Simulink/Scade

–Primary focus is Model Checking

• vFaat Translation outputs: 
–Control Flow Graph (CFG) for evaluation order
–Data Structure Description (DSD)
–Data Flow Description (DFD)
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Example Example SimulinkSimulink Hardware Hardware 
ComponentComponent
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Generated ACL2 codeGenerated ACL2 code

(defun Fig15_6_MSV_Gen_Combination_comp_step (k st)
(let ((src st)
(dest (default-destT-value )))
(if (uval? k 0)
(let ((dest (let ((src (not (gp (cons :NM_3 nil) src))))
(sp (cons :Logical_Operator nil) src dest))))
(let ((dest (let ((src (not (gp (cons :NM_2 nil) src))))
(sp (cons :Logical_Operator1 nil) src dest))))
(let ((dest (let ((src (not (gp (cons :NM_3 nil) src))))
(sp (cons :Logical_Operator2 nil) src dest))))
(let ((dest (let ((src (not (gp (cons :NM_1 nil) src))))
(sp (cons :Logical_Operator3 nil) src dest))))
(let ((src (not (gp (cons :MSV_SEL nil) src))))
(sp (cons :Logical_Operator4 nil) src dest))))))
(if (uval? k 1)
(let ((dest (let ((src (and (and (and (and (gp (cons :Logical_Operator2 nil) src)
(gp (cons :NM_0 nil) src))
(gp (cons :NM_2 nil) src))
(gp (cons :Logical_Operator3 nil) src))
(gp (cons :TS_RSLT nil) src))))
(sp (cons :Logical_Operator5 nil) src dest))))
(let ((src (and (and (gp (cons :Logical_Operator nil) src)
(gp (cons :NM_0 nil) src))
(gp (cons :Logical_Operator1 nil) src))))
(sp (cons :Logical_Operator6 nil) src dest)))
(if (uval? k 2)
…

CFG
steps

“NOT” gate

“AND” gate
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Secure, High Assurance Development Secure, High Assurance Development 
Environment (SHADE)Environment (SHADE)

Program Objectives

§ Provide a “nuts-and-bolts” partitioned 
development environment.

§ Develop tools and techniques to provide formal 
analysis at the instruction level for the AAMP7 
processor

§ Develop a verifying compiler for an “embeddable”
subset of the Cryptol cryptographic language 
targeting the AAMP7

§ Demonstrate a convenient, high-assured 
toolchain path from high-level algorithm 
description to load image.

RCI subcontractors: Galois Connections,
University of Texas at Austin

AAMP7G development board

Eclipse-based AAMP7G development 
environment
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SHADE SummarySHADE Summary

GenerateGenerate

Cryptol
Spec

AAMP7
Code

ACL2
Spec

Proof

Linker/
Loader/

Debugger

AAMP7
Simulator

AAMP7

User
Interface

Configuration
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SHADE Software ComponentsSHADE Software Components

• Eclipse-Based AAMP7G Partitioning Development Tools
– Target Monitor
– Target Board Editor
– Multipartition Builder
– Eclipse: Very large and capable Java-based IDE construction 

framework
• µCryptol -> AAMP7 verifying compiler

– Generates ACL2, as well as AAMP7 assembly, AAMP7 binary
– OCaml-based

• Instruction-level formal AAMP7G model
– Written in the language of the ACL2 Theorem Prover
– Applicative subset of Common Lisp

• AAMP Legacy Tools
– Compilers, Linkers, Assemblers, etc.
– Mostly Ada
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AAMP7 InstructionAAMP7 Instruction--Set Formal ModelSet Formal Model

• Provides instruction-level simulator for the AAMP7
• Written in ACL2

– ~100 KSLOC with all RCI support books
– ~750 MB Lisp heap required

• Can be used as a processor simulator, as well as a vehicle for proof
– Validated by loading AAMP processor diagnostic tests into 

(simulated) memory, and running the model
• Utilizes ACL2 single threaded object (stobj) to model CPU state; stobj

updates are performed “in place”, greatly reducing garbage generation 
at model execution time

• GACC (Generalized Accessor) library used to model memory, same as 
used in AAMP7 separation proofs

• New bitvector library, “super-ihs”, extends ACL2 Integer Hardware 
Specification (IHS) library
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AAMP7G Partition  Views
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µCryptol compiler, mcc,  
interpreter interaction, 

targeting ACL2 AAMP7G 
formal model
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AAMP7G ACL2 
Formal Model 

Integration with 
Eclipse AAMP7G 

Tools

Disassembly

Process Stack

Console

ACL2 session
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CryptolCryptol

• Galois’ domain-specific language for cryptography algorithms
http://www.cryptol.net

• Cryptol features:
• Purely functional
• Size-indexed bitvector types, no limits on bitvector size
• Lazy infinite streams
• Not Turing-complete

• µCryptol
• Cryptol subset, tailored for systems with constrained memory
• Formal semantics
• Designed for verification
• Creating a verifying compiler targeting the AAMP7G
• See paper in HCSS06 Proceedings
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Why a verifying compiler for Why a verifying compiler for µµCryptolCryptol??

• Cryptographic systems need to be correct
– NSA is a demanding customer

• Cryptographic systems are difficult, expensive to certify
– A verifying compiler could markedly reduce code-to-spec review costs and 

reduce time-to-market for cryptographic devices
• Reference Cryptol specifications for common crypto algorithms are 

available
• A domain-specific language, such as Cryptol, seems to present lower 

risk than attempting a verifying compiler for a general-purpose 
programming language 

• Cryptol is a Galois Connections design, so we can state its 
specification precisely

• The AAMP7G is an “easy” code generation target (think JVM)
• The AAMP7G is a Rockwell Collins design with a precise specification
• Theorem prover technology has matured sufficiently to make this 

program feasible
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Compiler Architecture Compiler Architecture 

indexed
program

µCryptol
program

AAMP7
program

front-end
transforms

SHADE
Compiler

code
generationcanonical

program

middle-end
transforms
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Example: factorial (mod 2Example: factorial (mod 288))

fac : B^32 -> B^8;
fac i = facs @@ i
where {

rec
idx : B^8^inf;
idx = [1] ## [x + 1 | x <- idx];

and 
facs : B^8^inf;
facs = [1] ## [x * y | x <- facs

| y <- idx];
};

idx = [1, 2, 3, 4, 5,   6, 7,   8, …]
facs = [1, 1, 2, 6, 24, 120, 208, 176, …]

Stream values:

1

+

1
idx

facs

1

*
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Stage 1: Compile to indexed form Stage 1: Compile to indexed form 

indexed
program
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front-end
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generationcanonical

program

middle-end
transforms
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Stage 1: Compile to indexed formStage 1: Compile to indexed form

• Each stream represented as first-order function taking 
index to stream element

• Nested definitions lambda-lifted to top-level
• Pattern-matching and stream/vector comprehensions 

compiled away 
• Program can now be shallowly embedded into ACL2

idx : nat -> B^8;
idx n =  if n = 0 then 1

else idx (n-1) + 1;

facs : nat -> B^8;
facs n =  if n = 0 then 1

else facs (n-1) * idx (n-1);

fac : B^32 -> B^8;
fac i = facs (toNat i);
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Stage 2: Compile to canonical form Stage 2: Compile to canonical form 

indexed
program

µCryptol
program

AAMP7
program

front-end
transforms

SHADE
Compiler

code
generationcanonical

program

middle-end
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Stage 2: Compile to canonical formStage 2: Compile to canonical form

• Each clique of mutually recursive stream functions represented by 
single tail-recursive function 

• Each tail-recursive function takes an extra tuple of history buffers
• Stream dependency analysis calculates minimum length of each 

history buffer
• Complex Cryptol primitives left unchanged, some simple ones are 

inlined
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Stage 2: Compile to canonical formStage 2: Compile to canonical form

• Factorial program contains two single-element history 
buffers

• Running time
– Factorial in indexed form: quadratic
– Factorial in canonical form: linear

*+

1
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Stage 2: Verification Architecture Stage 2: Verification Architecture 

• Use ACL2 to verify compiler middle-end 
transformations

indexed
program

µCryptol
program

AAMP7
program

first-order
functions

front-end
transforms

SHADE
Compiler

code
generation

ACL2

canonical
program

tail-
recursive
functions

middle-end
transforms

shallow
embedding

shallow
embedding

equivalence
proof
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ResultsResults

• ACL2 macro that can automatically prove 
equivalence of indexed to canonical forms, for all 
examples
– factorial, alt-factorial
–Fibonacci, 3-Fibonacci, 5-Fibonacci 
–TEA, AES, RC6

• AES proof takes about 20 minutes on a 1.5 GHz G4 
Powerbook

• See paper in HCSS06 Proceedings for more details
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Stage 3: Generate machine code Stage 3: Generate machine code 

indexed
program
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program
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program

front-end
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SHADE
Compiler

code
generationcanonical

program

middle-end
transforms
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Stage 3: Generate machine codeStage 3: Generate machine code

• History buffers represented as circular imperative 
arrays
–Optimized away if history length is small

• Compiler statically allocates history buffers
• Calls library routines for multiple-word Cryptol 

primitives such as arithmetic, shift, rotate, etc.
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Stage 3: Verification Architecture Stage 3: Verification Architecture 
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Desired Theorems (in general)Desired Theorems (in general)

• If machine starts at a state satisfying program’s 
precondition (entrypoint assertion), then 
–Partial correctness: if the machine ever reaches an 

exitpoint state, then the first exitpoint reached 
satisfies the program’s postcondition (exitpoint
assertion).

–Termination: the machine will eventually reach an 
exitpoint

• However, we don’t want to
–write and verify a VCG
–manually define a clock function

• computes for each program state exactly how many steps 
are needed to reach the next exitpoint
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Underlying Verification Method Underlying Verification Method ––
Compositional Compositional CutpointCutpoint TechniqueTechnique

• Sound and automatic theorem proving technique 
for generating verification conditions from a 
small-step operational semantics

• Inspired by J Moore presentation at HCSS 2004
• Cutpoints and their state assertions for a given 

subroutine must be specified
• Symbolic simulation of processor model takes us 

from cutpoint to cutpoint, until we reach 
subroutine exit

• Compositionality: Once cutpoint proof is done for 
a given subroutine, we don’t have to reason 
about it again if it’s called by another subroutine

• No Verification Condition Generator required
• See Verification Condition Generation via 

Theorem Proving
John Matthews, J Moore, Sandip Ray, Daron 
Vroon, 2006 (submitted for publication)

• Has been used it to verify a 600-line JVM program 
implementing a generic CBC-mode encryption

Entry

Exit

Cutpoint
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AAMP7G Machine Code Proofs using AAMP7G Machine Code Proofs using 
Compositional Compositional CutpointCutpoint MethodMethod

• Preconditions, e.g.
– Code to be proved is loaded into memory
– Input parameter is within range for a given algorithm

• Postconditions
– e.g., fact(x) on top of stack after running AAMP7G machine code for 

factorial
• Frame Conditions

– e.g., Only local variables and operand stack memory needed to 
implement factorial are modified by executing AAMP machine code 
for factorial

• Compositional Cutpoint Proof Technique
– No Verification Condition Generator required

• Generation of the above information can be done mostly automatically
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Example Program Example Program –– Iterative FactorialIterative Factorial

#x02           ;; Proc Header -- 2 words of locals
#x00           

; 
#x10            ;; LIT4 0
#x11            ;; LIT4 1

; local0 is a counter counting from 1 up to local2
#xc0            ;; ASNDL 0

;    accumulator lives on stack; initialize it to 1
#x10            ;; LIT4 0
#x11            ;; LIT4 1

;    L2 loop top -------------------------------------- CUTPOINT
#x30            ;; REFDL 0
#x32            ;; REFDL 2

;    if local0>local2, goto L
#xa5
#x0e            ;; GRUD
#x5b            ;; SKIPNZI
#x0c            ;;  L (+12)
#x30            ;; REFDL 0

;   multiply local0 into the accumulator on the stack
#xa5
#x2a            ;; MPYUD

;  increment local0
#x30            ;; REFDL 0
#x10            ;; LIT4 0
#x11            ;; LIT4 1
#xa5
#x28            ;; ADDUD
#xc0            ;; ASNDL 0
#x19            ;; LIT8N  
#x11            ;;  L2 (-18)
#x59            ;; SKIP
#x14            ;; LIT4 4
#x5f            ;; RETURN
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Machine Code Proofs Machine Code Proofs –– Preconditions Preconditions 
ExampleExample

(defund f-precondition (s)
(declare (xargs :non-executable t))
(and

(equal (starting-program-counter) 131394 ;(+ 2 (iter-fact-address)))
(not (equal 4294967295 (aamp::read-two-local-words 2 s))) 
;argument isn't the largest int...

(< (aamp::aamp.lenv s) 
(gacc::read-data-word (aamp::aamp.denvr s) (+ -1 (aamp::aamp.lenv s)) (aamp::aamp.ram s)))

;;the operand stack should be empty just after fact is called 
;;(the argument is passed in as a "local")
(equal 0 (aamp::stack-height s))

(aamp::st-p s)
(aamp::aamp-normal-statep s)
(aamp::no-code-data-clash (aamp::aamp.cenvr s) (aamp::aamp.denvr s))

;;factorial code is loaded where we expect it to be.  Since the program
;;begins with two bytes of header, the code actually starts 2 bytes
;;before the first instruction.
(iter-factorial-program-loaded (+ -2 (starting-program-counter)) ;(nth *aamp.pc* st)

(aamp::aamp.ram s))

(aamp::code-fetches-allowed 100 #x0002 #x0140 (nth 17 s)) 
(AAMP::DATA-WRITES-ALLOWED 65536 (NTH 2 S) 0 (NTH 17 S))
(AAMP::DATA-READS-ALLOWED 65536 (NTH 2 S) 0 (NTH 17 S))))
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Machine Code Proofs Machine Code Proofs –– PostconditionsPostconditions
ExampleExample

(defund f-poststate (s0 s)
(declare (xargs :non-executable t))
(aamp::modify s0

;;the 4-word stack mark gets popped off along with 4 words of
;;args/locals, then two words of RV get pushed on, so the
;;stack shrinks by 6.
:tos (aamp::inc-tos 6 s0) 

:pc (get-saved-callers-pc s0)
:lenv (get-saved-callers-lenv s0)
:cenvr (get-saved-callers-cenv s0)

;; Memory access temporaries – artifact of the applicative model
:memtmp (loghead 16 (aamp::aamp.memtmp s)) 
:memtmp8 (loghead 8 (aamp::aamp.memtmp8 s))
:memtmp32 (logext 32 (aamp::aamp.memtmp32 s))

<<continued on next slide>>
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Machine Code Proofs Machine Code Proofs –– PostconditionsPostconditions
Example (contExample (cont’’d.)d.)

:ram (gacc::write-data-words 
2 
(aamp::aamp.denvr s0) 
(+ 6 (aamp::aamp.tos s0))

;;the mathematical factorial of the argument:
(fact
(gacc::read-data-words 2 (aamp::aamp.denvr s0) (+ 2 (aamp::aamp.lenv s0))       

(aamp::aamp.ram s0)))

;;This says we are allowed to make a mess of the entire
;;stack.  Restrict this to just the amount used
;;(determined from the argument to factorial).

(copy-over-n-words 12
(aamp::aamp.denvr s0)
(+ -10 (aamp::aamp.lenv s0)) 
(aamp::aamp.ram s) 

(aamp::aamp.denvr s0)
(+ -10 (aamp::aamp.lenv s0))  ;write starting at address 0
(aamp::aamp.ram s0)))))
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Issue: Verifying compiler frontIssue: Verifying compiler front--endend
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Extended Verification Architecture  Extended Verification Architecture  

• Use Isabelle/HOLCF to verify front-end compiler 
transformations

indexed
program

µCryptol
program

AAMP7
program

first-order
functions

AAMP7
state

machine

front-end
transforms

SHADE
Compiler

deep
embedding

generate
code

HOLCF ACL2

HOLCF
functions

shallow
embedding

first-order
functions

translate

deep embedding of ACL2 in HOL

canonical
program

tail-
recursive
functions

middle-end
transforms

shallow
embedding

shallow
embedding



UNCLASSIFIEDAdvanced Technology Center

Translating ACL2 to IsabelleTranslating ACL2 to Isabelle

• Mike Gordon, Matt Kaufmann, Warren Hunt and James 
Reynolds are building an ACL2 external oracle for HOL4
– Defined ACL2 universe as sexp datatype in HOL
– Used ACL2 axioms to define ACL2 primitives in HOL
– Expressions and formulas defined over sexp invoke ACL2
– Result of ACL2 is trusted

• John Matthews has developed a prototype sexp datatype
for Isabelle, and proved equivalence between a shallow 
embedding of the µCryptol factorial example into 
Isabelle/HOLCF and a translated version of indexed form 
using the sexp datatype
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Bonus Proof!Bonus Proof!

• As an extra credit assignment, John Matthews 
recently proved that the shallow embedding of the 
µCryptol factorial example into Isabelle/HOLCF 
provides mathematical factorial, mod 28

lemma fac_math_fac_ind:

“fac$(Def n) = Def (fac_math n mod 2^8)

/\ ind_idx$(Def n) = Def ((n + 1) mod 2^8)”
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SummarySummary

Rockwell Collins and partners have developed robust 
techniques and tools to improve high-assurance 
system evaluations by:

• Making use of automated theorem provers to 
provide formal proofs as required by EAL 7

• Producing executable formal models of computing 
platforms that can also be validated by execution 
of production tests

• Pioneering techniques for automating hardware, 
microcode, and software verification

• Designing and implementing a verifying compiler 
for a subset of the Cryptol language


