
© 2011 Carnegie Mellon University

Robustness Assurance for

Systems at Scale

John Goodenough

November 2011

2

SCC 2011

John Goodenough

© 2011 Carnegie Mellon University

Limitations of Component Certification

Certifying components is insufficient to ensure against catastrophic
system failure because:

• The component specification omits some behavior that is critical to the
context in which the component is used

• Unidentified assumptions on which the component’s certification is based do
not hold under some circumstances of actual system operation

• The specification is interpreted differently by the developer, the certifier,
and/or by those deploying the component in a larger system context

• Despite certification, the component will occasionally fail to satisfy its
specification

– Software bug

– Hardware failure

3

SCC 2011

John Goodenough

© 2011 Carnegie Mellon University

Going Beyond Component Certification

System certification is the goal

• Must consider the effects of possible component misbehavior

The context of a component’s use determines

• Whether its behavior is appropriate

• The impact of its behavior on the rest of the system

What can be done to better assure ourselves (and others) that systems
are robust against “unlikely” component misbehaviors?

4

SCC 2011

John Goodenough

© 2011 Carnegie Mellon University

A Large-Scale System Failure Context

A

B

5

SCC 2011

John Goodenough

© 2011 Carnegie Mellon University

A Large-Scale System Failure Context

A

B

6

SCC 2011

John Goodenough

© 2011 Carnegie Mellon University

The incident

Node A had a hardware failure and notified node B that it was out of service

Node A recovered and signaled node B that it was working by sending a call
request to B

While updating its status tables, node B received two additional requests from
node A, which derailed B’s updating process, corrupting some data

Node B went down and signaled other nodes that it was not working. Its backup
system failed too (same software)

Node B came back up very quickly and signaled other nodes it was up by
sending call requests, which arrived at just the right time to cause some other
nodes to go down while updating their status tables

The amount of time spent updating status tables began to increase, making it
more likely that call requests would be received when the node software was
vulnerable

Eventually essentially all processing time was spent in updating the system state
because nodes were failing and recovering so rapidly

7

SCC 2011

John Goodenough

© 2011 Carnegie Mellon University

Analysis

The nodes were behaving according to spec wrt sending out messages
about their status, updating the changing status of other nodes, and
auto-recovering from self-detected failures

The bug (a race condition) was revealed by external stimulus patterns
(the arrival of call requests in quick succession while updating status)

• This is a bug that is revealed only by how the component is being used by the
rest of the system

• It is a bug that depends on the timing of external requests

• The external event pattern was very unlikely, but there were large numbers of
events

There was an assumption that the interval between auto-recovery and
the next failure would not be rapid

8

SCC 2011

John Goodenough

© 2011 Carnegie Mellon University

Robustness Assurance

Hazard identification

• Interconnected, replicated software increases vulnerability to cascading
failures

• Auto-recovery actions in such systems can be a source of cascading failure

• Auto-recovery is designed for small scales; at larger scale, such actions can
prevent recovery by increasing “non-productive” network load

Hazard mitigation is architectural, e.g.,

• Throttle dissemination of status messages or rate of auto-recovery actions

• Design to be less vulnerable to inconsistent state

System design makes a system robust against unlikely but potentially
catastrophic behaviors

9

SCC 2011

John Goodenough

© 2011 Carnegie Mellon University

Summary: Robustness Assurance

Components cannot be guaranteed against unexpected failure, i.e.,
behavior that does not satisfy their specification

What unexpected behaviors are conceivable? (These are hazards)

• Examine “typical” mistaken assumptions for large-scale systems

• Look at behavior allowed by the design if components misbehave

• Unlikely events are not necessarily rare

What collective misbehavior effects are possible?

• What mitigations are in place to correct or mitigate these effects

• Consider monitoring and on-the-fly correction

If we aren’t aware of these potentials for catastrophic failure, how can
we justifiably conclude that system behavior is adequately constrained?

10

SCC 2011

John Goodenough

© 2011 Carnegie Mellon University

Contact

John B. Goodenough

Fellow

System of Systems Software Assurance

Telephone: 412-268-6391

Email: jbg@sei.cmu.edu

U.S. Mail:

Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue

Pittsburgh, PA 15213-3890

SEI Fax: 412-268-5758

mailto:lmn@sei.cmu.edu

11

SCC 2011

John Goodenough

© 2011 Carnegie Mellon University

Delivered

System

Building the System

Building the Case

Acceptance

Case

Building Justified Confidence

Released

System

Explanation of

why confidence

is justified

12

SCC 2011

John Goodenough

© 2011 Carnegie Mellon University

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the
rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission
is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The
Government of the United States has a royalty-free government-purpose license to use,
duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under
the clause at 252.227-7013.

mailto:permission@sei.cmu.edu

