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Machine	Learning as	a	strategy

• “security	is	sometimes	thought	of	as	a	chess	game	between	two	players.	For	a	
player	to	win,	it	is	not	only	necessary	to	have	an	effective	strategy,	one	must	also	
anticipate	the	opponent’s	response	to	that	strategy.”	[Huang	et.	al.	2011]
• Should	we	anticipate	that	adversaries	would	try	to	cause	our	machine	learning	algorithms	to	
fail	in	many	ways?

• In	many	cybersecurity	applications	(including	intrusion	detection)	modelled	
phenomenon	are	not	stationary.
• Normal-user/Adversary	behavior	changes	over	time.	
• We	are	required	to	frequently	retrain	our	learning-based	detection	models	to	cope	with	
moving	concepts.

• Thus,	the	lack	of	stationarity	and	frequent	retraining	provide	great	opportunity	
for	sophisticated	adversaries	to	poison the	learning	process	– sometimes	in	a	
targeted	manner.
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ML	cannot	be	treated	as	a	black-box	in	
cybersecurity!
• Exploratory	attacks:	runtime
• Find	model	vulnerabilities	
• Utilize	invariant	features

• Causative	attacks:	training	time
• Data	Sanitization	(e.g.,	RONI)
• Robust	Learning

[Szegedy et.	al.	2014]

Gibbon	 Sample

[Rubinstein	 et.	al.	2009] 3



Anomaly-based	IDS:	Challenges

• Problem:	the	identification	of	points	which	do	not	
conform	to	an	expected	structure	in	a	given	dataset.

• E.g.,	anomaly-based	IDS:
• Build	model(s)	M explaining	the	expected	behaviors	(i.e.,	non-malicious)	.
• For	a	given	point	x,	measure	the	likelihood	of	generation	p(x|M).
• Declare	anomalousness		based	on	the	computed	likelihood.	

• Challenges:
• What	if	“expected	normal”	changes	over	time	(i.e.,	concept	drift)?	
• Can	adversary	exploit the	coping	mechanism(s)	for	introducing	malicious	data	
points?	

• What	are	the	affects	of	introduced	contamination	on	the	subsequent	generated	
models?
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Deep	Autoencoders

• Is	an	artificial	neural	network	(ANN),	where	the	purpose	of	output	
layer		is	to	reconstruct the	input	of	the	network.

• For	input	x
• encoding,	i.e.,	f(x)
• decoding,	i.e.,	g(f(x))
• optimize	for	loss	function,	
i.e.,	L(x,	g(f(x)))

• It	exploits	the	idea	that	data	concentrates	around	a	low-dimensional	
manifold(s).
• It	will	learn	the	structure	of	the	manifold(s).
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Deep	Autoencoders	for	Anomaly	Detection

• Deep	autoencoders learn	sophisticated	manifolds	thanks	to	cascaded	
layers	of	nonlinear	computational	units	(i.e.,	neurons)	
• Once	trained,	the	amount	of	incurred	
loss	of	reconstructed	input	can	serve
as	measure	of	deviation	of	input	X
in	respect	to	the	expected	dataset
the	deep	autoencoder is	representing.

• The	threshold	C is	set	empirically	to	achieve
desired	sensitivity	and	acceptable
rate	of	false-positive.
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Deep	Autoencoders	for	Anomaly	Detection:
the	good,	the	bad,	and	the	ugly

• General	idea
• Train	a	deep	autoencoder on	a	non-malicious	dataset.
• Measure	how	good it	can	reconstruct	non-malicious	data	points.
• Empirically	compute	decision	threshold	value	C based	on	desired	rate	of	false-
positive.
• Measure	how	bad it	reconstructs	malicious	data	points.

• Our	trained	deep	autoencoder specification
• Categorical	values	are	processed	using	one-hot	encoding	
• Two	hidden	layers	of	size	50	sigmoid	neurons	and	one	hidden	layer	of	10	
sigmoid	neurons.	
• Stochastic	Gradient	Descent	
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The	Experiments:	the dataset

• NSL-KDD	(Tavallaei et.	al.	2009)	
• Resolved	statistical	flaws	of	the	original	KDD’99	intrusion	detection	dataset	
such	as	record	redundancies.	

• Used	812,814 normal instances (i.e.,	non-malicious)	to	train the deep
autoencoder.	

• Used	29,378 attack	instances	and	47,911 normal	instances	(from	test	
set)	to	evaluate	the	trained	deep	autoencoders.
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The	Experiments:	(1)	intrusion	detection

• How	well the	deep	autoencoder is	capable	of	reconstructing	normal	
instances?
• [In	the	heatmaps bellow,	each	row	is	representing	a	normal	instance	(vertical	axis)	and	each	
column	is	representing	corresponding	feature	value	(horizontal	axis).]

Original Normal	Instance	Heatmap Reconstructed Normal	Instance	Heatmap
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The	Experiments:	(1)	intrusion	detection	- cont’d

• How	bad the	deep	autoencoder constructed	malicious	instances?
• [In	the	heatmaps bellow,	each	row	is	representing	a	normal	instance	(vertical	axis)	and	each	
column	is	representing	corresponding	feature	value	(horizontal	axis).]

Non	Malicious	Instances

VS
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The	Experiments:	(1)	intrusion	detection	- cont’d

• Compared	anomaly	detection	performance	of	the	deep	autoencoder
with Principle	Component	Classifier (PCC)	by	Shyu et.	al.	2003
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But,	how	about	robustness?

• ANTIDOTE		(Rubinstein	et.	al.	2009)	proposed	set	of	invariant	feature	
transformations	to	make	PCC	more	robust	against	training	data	noise.
• Principle	Component	Analysis,	though	easy	to	implement	and	scale,	is	
extremely	sensitive	to	presence	of	noise.
• PCC’s	boundary	decisions	can	manipulated	using	adversarial	contaminations.	

• How	deep	autoencoders perform	under	noise	and/or	adversarial	
contaminations?	
• Recall,	the	non-malicious	data	distribution(s)	that	are	used	for	model	training	
is	not	stationary.
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Our	Proposed	Framework:	for	evaluating	
detection	models	under	adversarial	influence
• Our	goal	is	to	measure	robustness	of	adaptive	(i.e.,	online)	anomaly-based	IDS	

that	update	in	an	unsupervised	fashion	
• Assumption:	use	newly	classified	data	points	with	high	confidence	to	construct	retraining	

dataset
• Normal	data	drift	slowly	and	gradually
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Our	Proposed	Framework	– cont’d

• The	main	idea:
1. Initially	train	a	classifier	for	detecting	malicious	activities.
2. Construct	some	test	dataset	containing	both	malicious	and	normal	data	

points.
3. Let	the	trained	classifier	to	classify	data	points	and	capture	classification	

performance.
4. Use	an	arbitrary	selection	function	to	choose	recently	classified	data	points	

for	enhancing	the	training	dataset.
• False-positive	classified	data	points	will	result	in	loosing	valuable	new	data	points	for	
enhancing	the	training	dataset.

• False-negative	classified	data	points	will	result	in	contaminating	existing	training	dataset.
5. Retraining	the	classifier	using	enhanced	dataset.
6. Repeat	and	track	recorded	detection	performance!	
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Robustness	of	the	Deep	Autoencoder vs	PCC
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Discussions	and	Future	work

• Deep	Autoencoders	maintain	a	more	stable	sensitivity	in	the	light	of	
contaminations,	and	it	suffers	less	in	respect	to	other	subspace	
analysis	methods	such	as	PCA.
• Retraining	deep	autoencoders can	be	done	by	running	new	training	
examples	through	the	existing	network	without	start	the	training	
from	scratch	->	Online	Learning	by	default
• Deep	Autoencoders	can	be	used	to	estimate	the	underlying	
probability	distributions	explaining	the	training	dataset.
• It	can	be	used	to	compute	inference	– a	different	notion	to	measure	anamoly.
• Can	be	used	to	generate	examples	– adversarial	examples	to	evaluate	
arbitrary	detection	models.
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