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ASSURANCE CHALLENGES

LEARNING-ENABLED COMPONENTS (LEC) THIS 1S YOUR MACHINE LEARNING SYSTETM?
IN SAFETY-CRITICAL SYSTEMS TR

OR “WHY THIS MIGHT |mp|ementation

BE A BAD IDEA’ mmmm@
Verification \ o
STPRT LOOKING RIGHT.

Requirements —

For safety-critical systems, assurance is not just
showing that things work, but also showing that

there are no surprises
« Absence of unintended functionality (DO-178C)

https: //xkcd com/1838/
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DO-178C

SOFTWARE DESIGN ASSURANCE

« Demonstrate that software
implements its requirements

- and nothing else

DO-178C
6.1 Purpose of Software Verification

d. The Executable Object Code satisfies the
software requirements (that is, intended
function), and provides confidence in the
absence of unintended functionality.

DO-248C
FAQ #43: What is the intent of structural
coverage analysis?

Answer: DO-178C/DO-278A sections 6.4.4.2
and 6.4.4.3 define the structural coverage
analysis activities and the possible resolution for
code structure that was not exercised during
requirements-based testing.

2. Provide a means to support demonstration
of absence of unintended functions.
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RUN-TIME ASSURANCE ARCHITECTURE

AN APPROACH TO PREVENT UNINTENDED FUNCTIONALITY

- Learning-Enabled Component (LEC) provides accuracy, performance, efficiency
- But we are unable to establish comprehensive assurance needed for safety
« Unsafe/unexpected behavior may be triggered by new or unanticipated inputs
- How do we guarantee absence of unintended functionality?
* Nothing in LEC source code can be traced to design intent (requirements)
« Can't rely on structural coverage (DO-178) or formal methods (yet)
 Embed LEC in run-time assurance architecture to guarantee that there are no
surprises
* Run-time monitors detect unsafe/unexpected behaviors
«  Switch to alternative safe behavior

- Ideally, use formal methods to verify correctness of the architecture (limit to safe behaviors)

- LEC may still contain surprises, but architecture ensures that there is no impact on system
safety (no unintended functionality)
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ASTM F3269-17

- Standard Practice For Methods To
Safely Bound Flight Behavior Of
Unmanned Aircraft Systems
Containing Complex Functions

« “Complex Function” = LEC

* Monitor LEC to detect and
prevent unintended functionality

Clark, Koutsoukos, Porter, Kumar, Pappas,
Sokolsky, Lee, Pike, “A Study on Run Time

Assurance for Complex Cyber Physical
Systems,” AFRL Report, 2013

Goal is to develop the standard to a level of capability that defines run-time monitoring (RTA) attributes to a level that the FAA will
agree that monitors and architecture developed to this standard are sufficient to allow the UAS to evolve the complex function with
its associated avionics equipment and sensors without requiring vehicle recertification as the CONOPS evolve after initial

certification
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. Pedigreed components

D Non-pedigreed component /

RTA: Run-time Assurance

Complex
Function
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TYPES OF RUN-TIME MONITOR

——— e e

LEC inputs

« Detect regions of input space where LEC is known to
have poor performance or lack robustness

- LEC internal state o — )
« Detect activation patterns that are linked to poor O '
performance, low confidence, or “surprise” »~ ~LEC »~ CTL
« LEC outputs
«  Computed outputs violate specified bounds or
invariants
. PLANT
* Inconsistent outputs
. System state L
* Directly monltor. violations of syste.n.1 safety properties Potetial problem:
- Ex: geofence, flight envelope, position on runway - Can we actually define
\- J monitors and safety backup

QN that are less complex (in terms
= = Collins Aerospace ificati ?
n® of verification) than LEC*




DEMONSTRATION

AUTONOMOUS AIRCRAFT SURFACE MOVEMENT

« LEC estimates runway/taxiway centerline
position based on camera images to guide
steering control

* Ensure that LEC does not cause violation
of aircraft safety requirements
» Keep aircraft on runway / taxiway
* Minimize unnecessary stopping on runway

* Do so in a way that provides assurance of
correctness

* Multiple diverse monitors based on traditional
verified (or verifiable) algorithms

« Continually select monitor with highest
confidence estimate

« Synthesize monitor selector and contingency
manager from formal specifications with proof
of correctness
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Other data

* Braking profiles

Run-time monitors

* Runway database
* Camera calibration
« Other error sources
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RTA COMMANDS SLOW or HALT

Current position

PERFORMANCE VS. SAFETY [SLOW]
LEC responsible
- NORMAL / SLOW / HALT for performance Current position
[NORMAL] HALT]
 SLOW speed command reduces —A— /

stopping distance and allows
more time for

1. LEC to improve its estimate
2. Monitor uncertainty to decrease

* Reduces unnecessary stopping
on the runway
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RUN-TIME MONITORS

DIVERSE MONITORS TO MAXIMIZE AVAILABILITY

«  GPS monitor: Estimate Cross-Track Error (CTE) by integrating GPS velocity signal
+ High performance, preferred estimate
- Computer Vision (CV) monitor: Estimate CTE by detecting center line (edge/pattern detection)
« Use if GPS unavailable or if GPS error > CV error
* Use CV CTE estimate to reset GPS position
* IRS monitor: Estimate CTE by integrating acceleration measurements
« Use if both GPS and CV monitors are unavailable
* Initialize with best CTE estimate from GPS or CV
* LEC confidence monitor: Is LEC input representative of training data?
« Use to allow recovering from temporary SLOW or HALT interventions

N a N

t recover
GPs =2 v IRS CONF >

v \

S

init val
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BEFORE

MORNING-ONLY TRAINING DATA / TIME = 1600 (AFTERNOON)

* Intentionally use poorly trained LEC to simulate unsafe/unexpected behaviors
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AADL ARCHITECTURE FOR RUN-TIME ASSURANCE
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ASSURANCE ARGUMENT

RESOLUTE TOOL FOR ARCHITECTURAL ASSURANCE CASE

Run-time assurance architecture

G27: The error condition can

/

G25: Runtime monitors detect the
error condition and intervene when it

occurs

4
S7: Argue based on
simplex architecture

G28: When the error condition is detected a

v

| G101 : The architecture

be detected when it occurs contingency mechanism intervenes is correct
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Correctness of MS and CM :
\Synthesis with proof
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-- Top-level claim: Runtime monitors detect the error condition and intervene when it occurs

goal G25(Collins_Monitors : component, Monitor_Selector : component, Contingency Manager : cq
** "Runtime monitors detect the error condition and intervene when it occurs™ **
S7(Collins_Monitors, Monitor_Selector, Contingency_Manager, Vehicle_ Management_System)

Simplex architecture G e e e

S — strategy S7(Collins_Monitors : component, Monitor_Selector : component, Contingency_Manager :
S ** "Apgue based on simplex architecture" **
s G27(Collins_Monitors, Monitor_Selector) and G28(Contingency_Manager, Vehicle_Management_S
—
[ 527: Reason over multiple monitors \ Sl:;::\:d:s\;::"wd
—— — 1 B goal G27(Collins_Monitors : component, Monitor_Selector : component) <=
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2
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G111(Contingency Manager) and G112() and G113(Vehicle_Management_System)

G102(Collins_Monitors) and G103(Monitor_Selector)

on runway when there is

G119: Arcraft i stopped
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COLLISION AVOIDANCE

ASSURED AUTONOMY PHASE 2 CHALLENGE PROBLEM

Track Monitor may also observe
- Assurance goal: ADS-B | 3 MON LoATLEC odteuts
- Ensure required separation (“stay well clear”) given X
assumptions about traffic behavior CM
- Develop RTA architecture and system verification Alert: . BAF
: /Hdg/S >
«  Generate LEC test cases based on sequential i %Swﬂ,iﬂippd L8
inputs * Intruder % S N
Qo >
- Verify LEC properties, closed-loop safety J A S LEC gv%’ L AE
» Assurance case integrating static and dynamic | >
evidence : . v
= : | :
t-------------> ACAS F---3 VMS
— ; I

Additional challenge problems:

« Landing / go around decision
« Take-off / reject decision
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Code, papers, videos available at:
Loonwerks.com/projects/aahaa.html

ARCHITECTURE AND ANALYSIS
FOR HIGH-ASSURANCE AUTONOMY
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