
Formal Program Verification For All
!

High Confidence Software and Systems Conference, Annapolis, May 2014	

!

Yannick Moy, AdaCore, moy@adacore.com

SPARK 2014 is not Ada 2012SPARK 2014 is not Ada 2012

SPARK 2014 is not Ada 2012SPARK 2014 is not Ada 2012

SPARK 2014 is
contract-based practical static verification for Ada

SPARK 2014 is
contract-based practical static verification for Ada

modular

scalable

user-defined
properties

precise

SPARK 2014 is
contract-based practical static verification for Ada

executable
contracts

integration
in IDEs

proof
automation

SPARK 2014 is
contract-based practical static verification for Ada

dataflow
analysis

information
flow analysis

robustness
analysis

functional
analysis

SPARK 2014 is
contract-based practical static verification for Ada

large subset

usable on
existing

codebase

combined
with testing

DEMO

1. cost of adding contracts	

2. not usable on existing code	

• constraints on visibility / program structure	

• very restricted language subset	

• constraints on the control flow graph	

3. limitations of proof	

• floating-point interpreted as real	

• very simple VC generation	

• prover does not handle well disjunctions and quantifiers	

4. not integrated in traditional development process	

• incompatible with testing	

• impossible to debug contracts	

• weak IDE support

1. cost of adding contracts	

2. not usable on existing code	

• constraints on visibility / program structure	

• very restricted language subset	

• constraints on the control flow graph	

3. limitations of proof	

• floating-point interpreted as real	

• very simple VC generation	

• prover does not handle well disjunctions and quantifiers

1. cost of adding contracts	

2. not usable on existing code	

• constraints on visibility / program structure	

• very restricted language subset	

• constraints on the control flow graph

Limitations of Vintage SPARK

1. cost of adding mandatory contracts

1. cost of adding contracts	

2. not usable on existing code	

• constraints on visibility / program structure	

• very restricted language subset	

• constraints on the control flow graph

1. cost of adding contracts	

2. not usable on existing code	

• constraints on visibility / program structure	

• very restricted language subset	

• constraints on the control flow graph	

3. limitations of proof	

• floating-point interpreted as real	

• very simple VC generation	

• prover does not handle well disjunctions and quantifiers

1. cost of adding contracts	

2. not usable on existing code	

• constraints on visibility / program structure	

• very restricted language subset	

• constraints on the control flow graph	

3. limitations of proof	

• floating-point interpreted as real	

• very simple VC generation	

• prover does not handle well disjunctions and quantifiers	

4. not integrated in traditional development process	

• incompatible with testing	

• impossible to debug contracts	

• weak IDE support

Limitations of Vintage SPARKStrengths of SPARK 2014

1. cost of adding mandatory contracts

1. cost of adding contracts	

2. not usable on existing code	

• constraints on visibility / program structure	

• very restricted language subset	

• constraints on the control flow graph

1. cost of adding contracts	

2. not usable on existing code	

• constraints on visibility / program structure	

• very restricted language subset	

• constraints on the control flow graph	

3. limitations of proof	

• floating-point interpreted as real	

• very simple VC generation	

• prover does not handle well disjunctions and quantifiers

1. cost of adding contracts	

2. not usable on existing code	

• constraints on visibility / program structure	

• very restricted language subset	

• constraints on the control flow graph	

3. limitations of proof	

• floating-point interpreted as real	

• very simple VC generation	

• prover does not handle well disjunctions and quantifiers	

4. not integrated in traditional development process	

• incompatible with testing	

• impossible to debug contracts	

• weak IDE support

1. generation of required contracts

Limitations of Vintage SPARKStrengths of SPARK 2014

1. cost of adding contracts	

2. not usable on existing code	

• constraints on visibility / program structure	

• very restricted language subset	

• constraints on the control flow graph	

3. limitations of proof	

• floating-point interpreted as real	

• very simple VC generation	

• prover does not handle well disjunctions and quantifiers

1. cost of adding contracts	

2. not usable on existing code	

• constraints on visibility / program structure	

• very restricted language subset	

• constraints on the control flow graph	

3. limitations of proof	

• floating-point interpreted as real	

• very simple VC generation	

• prover does not handle well disjunctions and quantifiers	

4. not integrated in traditional development process	

• incompatible with testing	

• impossible to debug contracts	

• weak IDE support

1. generation of required contracts1. generation of required contracts	

2. usable on existing code	

• use Ada rules for visibility / program structure	

• subset includes generics, discriminants, etc.	

• allow any loop exit, early return, recursion

Limitations of Vintage SPARKStrengths of SPARK 2014

1. generation of required contracts	

2. usable on existing code	

• use Ada rules for visibility / program structure	

• subset includes generics, discriminants, etc.	

• allow any exit, early return, recursion	

3. powerful automatic proof	

• support IEEE 754 floating-point semantics	

• efficient and precise VC generation	

• use state-of-the-art SMT solver

1. cost of adding contracts	

2. not usable on existing code	

• constraints on visibility / program structure	

• very restricted language subset	

• constraints on the control flow graph	

3. limitations of proof	

• floating-point interpreted as real	

• very simple VC generation	

• prover does not handle well disjunctions and quantifiers	

4. not integrated in traditional development process	

• incompatible with testing	

• impossible to debug contracts	

• weak IDE support

1. generation of required contracts1. generation of required contracts	

2. usable on existing code	

• use Ada rules for visibility / program structure	

• subset includes generics, discriminants, etc.	

• allow any loop exit, early return, recursion

Limitations of Vintage SPARKStrengths of SPARK 2014

1. generation of required contracts	

2. usable on existing code	

• use Ada rules for visibility / program structure	

• subset includes generics, discriminants, etc.	

• allow any exit, early return, recursion	

3. powerful automatic proof	

• support IEEE 754 floating-point semantics	

• efficient and precise VC generation	

• use state-of-the-art SMT solver

1. generation of required contracts	

2. usable on existing code	

• use Ada rules for visibility / program structure	

• subset includes generics, discriminants, etc.	

• allow any exit, early return, recursion	

3. powerful automatic proof	

• support IEEE 754 floating-point semantics	

• efficient and precise VC generation	

• use state-of-the-art SMT solver	

4. integrated in developer toolbox	

• combined with testing	

• contracts can be executed and debugged	

• fine-grain interactions in two IDEs

1. generation of required contracts1. generation of required contracts	

2. usable on existing code	

• use Ada rules for visibility / program structure	

• subset includes generics, discriminants, etc.	

• allow any loop exit, early return, recursion

Limitations of Vintage SPARKStrengths of SPARK 2014

Essential Principles of the Retooling

1. convergence with compiler technology (GNAT)	

• allows to support a larger subset of Ada in SPARK	

• target-dependent & compiler-dependent proofs	

!
2. use of intermediate verification language (Why3)	

• powerful VC generation and transformations	

• rich language features (exceptions, types)	

!
3. use of state-of-the-art SMT solvers (Alt-Ergo + ...)	

• powerful automation of proofs

Tool Architecture
note: all components are Free / Libre / Open Source Software

GNAT
compiler
frontend

GNAT
project
support

Why3
VCgen
& driver

Alt-Ergo
SMT

Solver

Tool Architecture
note: all components are Free / Libre / Open Source Software

Ada Why

ALIAda

VC

flow error
initialization error

runtime error
contract violation

OK OK

VCVC

VCAda Why

•
•
•

GNAT
compiler
frontend

GNAT
project
support

Why3
VCgen
& driver

Alt-Ergo
SMT

Solver

Tool Architecture
note: all components are Free / Libre / Open Source Software

Ada Why

ALIAda

VC

flow error
initialization error

runtime error
contract violation

OK OK

VCVC

VCAda Why

•
•
•

GNAT
compiler
frontend

GNAT
project
support

Why3
VCgen
& driver

Alt-Ergo
SMT

Solver

incremental / parallel / distributed

Case Studies by Airbus Defence & Space

with Vintage SPARK with SPARK 2014
(2011, 182 subp, 44 Pre, 66 Post) (2010-2013, 1500 subp, 1400 Pre, 400 Post)

carried by David Lesens, expert in formal methods	

in Formal Validation of Aerospace Software, DASIA 2013

Case Studies by Airbus Defence & Space

with Vintage SPARK with SPARK 2014
(2011, 182 subp, 44 Pre, 66 Post) (2010-2013, 1500 subp, 1400 Pre, 400 Post)

➕ proved absence of RE ➕ proved absence of RE (93%)

➕ proved functional behavior (98%)

carried by David Lesens, expert in formal methods	

in Formal Validation of Aerospace Software, DASIA 2013

Case Studies by Airbus Defence & Space

with Vintage SPARK with SPARK 2014
(2011, 182 subp, 44 Pre, 66 Post) (2010-2013, 1500 subp, 1400 Pre, 400 Post)

➕ proved absence of RE ➕ proved absence of RE (93%)

➕ proved functional behavior (98%)

➖ language restrictions cause	

 over-cost & limited scope

➕ generics and discriminants support	

 variability in versions & data

carried by David Lesens, expert in formal methods	

in Formal Validation of Aerospace Software, DASIA 2013

Case Studies by Airbus Defence & Space

with Vintage SPARK with SPARK 2014
(2011, 182 subp, 44 Pre, 66 Post) (2010-2013, 1500 subp, 1400 Pre, 400 Post)

➕ proved absence of RE ➕ proved absence of RE (93%)

➕ proved functional behavior (98%)

➖ language restrictions cause	

 over-cost & limited scope

➕ generics and discriminants support	

 variability in versions & data

➖ unacceptable to engineers ➕ usable by non experts

carried by David Lesens, expert in formal methods	

in Formal Validation of Aerospace Software, DASIA 2013

Case Studies by Airbus Defence & Space

with Vintage SPARK with SPARK 2014
(2011, 182 subp, 44 Pre, 66 Post) (2010-2013, 1500 subp, 1400 Pre, 400 Post)

➕ proved absence of RE ➕ proved absence of RE (93%)

➕ proved functional behavior (98%)

➖ language restrictions cause	

 over-cost & limited scope

➕ generics and discriminants support	

 variability in versions & data

➖ unacceptable to engineers ➕ usable by non experts

➖ not combined with test ➕ contracts used for test and proof

carried by David Lesens, expert in formal methods	

in Formal Validation of Aerospace Software, DASIA 2013

Case Studies by Airbus Defence & Space

with Vintage SPARK with SPARK 2014
(2011, 182 subp, 44 Pre, 66 Post) (2010-2013, 1500 subp, 1400 Pre, 400 Post)

➕ proved absence of RE ➕ proved absence of RE (93%)

➕ proved functional behavior (98%)

➖ language restrictions cause	

 over-cost & limited scope

➕ generics and discriminants support	

 variability in versions & data

➖ unacceptable to engineers ➕ usable by non experts

➖ not combined with test ➕ contracts used for test and proof

➖ interactive proof required,	

 too complex and expensive

➕ use test when not proved

carried by David Lesens, expert in formal methods	

in Formal Validation of Aerospace Software, DASIA 2013

EXAMPLE	

OF CONTRACT

rich expressions: quantified (for all,
for some), conditionals (if, case)

proof of absence of RE in contracts	

(Pre should be self-guarded)

need to express contracts by
cases? use Contract_Cases

Expr'Old restricted to minimize
surprises to users

need unbounded arithmetic in
contract? use Overflow_Mode

EXAMPLE	

OF LOOP

INVARIANT

at run time: like an assertion	

in proof: loop invariant (but not Hoare-like)

need to refer to value at loop
entry? use X'Loop_Entry

now: methodology for writing loop invariants	

soon: common patterns of loop invariants	

planned: generation of loop invariants based on patterns

need to prove while-loop
termination? use Loop_Variant

Combining Test & Proof
goal: be at least as good as test alone	

strategy presented in Integrating formal program verification with testing, ERTS 2012	

& Explicit assumptions - a prenup for marrying static and dynamic program verification, Test & Proof 2014

Main_Program (Ada)

Core_Service (SPARK)

Low_Level_Service (Ada)

calls

calls

verification method assumptions

integration tests

units tests

formal verification

Pre respected	

non-aliasing of inputs	

initialization of inputs

Post respected	

no unintended side-effects	

initialization of outputs

Combining Test & Proof
goal: be at least as good as test alone	

strategy presented in Integrating formal program verification with testing, ERTS 2012	

& Explicit assumptions - a prenup for marrying static and dynamic program verification, Test & Proof 2014

Main_Program (Ada)

Core_Service (SPARK)

Low_Level_Service (Ada)

calls

calls

verification method assumptions

integration tests

units tests

formal verification

Pre respected	

non-aliasing of inputs	

initialization of inputs

Post respected	

no unintended side-effects	

initialization of outputs

verified during tests by	

executing contracts

Combining Test & Proof
goal: be at least as good as test alone	

strategy presented in Integrating formal program verification with testing, ERTS 2012	

& Explicit assumptions - a prenup for marrying static and dynamic program verification, Test & Proof 2014

Main_Program (Ada)

Core_Service (SPARK)

Low_Level_Service (Ada)

calls

calls

verification method assumptions

integration tests

units tests

formal verification

Pre respected	

non-aliasing of inputs	

initialization of inputs

Post respected	

no unintended side-effects	

initialization of outputs

verified during tests by	

special compiler instrumentation

Combining Test & Proof
goal: be at least as good as test alone	

strategy presented in Integrating formal program verification with testing, ERTS 2012	

& Explicit assumptions - a prenup for marrying static and dynamic program verification, Test & Proof 2014

Main_Program (Ada)

Core_Service (SPARK)

Low_Level_Service (Ada)

calls

calls

verification method assumptions

integration tests

units tests

formal verification

Pre respected	

non-aliasing of inputs	

initialization of inputs

Post respected	

no unintended side-effects	

initialization of outputs

verified by construction	

or by review

Combining Test & Proof
goal: be at least as good as test alone	

strategy presented in Integrating formal program verification with testing, ERTS 2012	

& Explicit assumptions - a prenup for marrying static and dynamic program verification, Test & Proof 2014

Main_Program (Ada)

Core_Service (SPARK)

Low_Level_Service (Ada)

calls

calls

verification method assumptions

integration tests

units tests

formal verification

Pre respected	

non-aliasing of inputs	

initialization of inputs

Post respected	

no unintended side-effects	

initialization of outputs

known objective of formal verification projects: justify assumptions	

proposal: switch from ad-hoc to tool-assisted assumptions management

Test & Proof in DO-178C
goal: be at least as good as test alone, for all objectives assigned to test	

Testing or Formal Verification: DO-178C Alternatives and Industrial Experience, IEEE Software, June 2013	

& Guidelines for the Use of Theorem Proving in the Certification of Critical Systems, workshop TPC, 2014

Test & Proof in DO-178C
goal: be at least as good as test alone, for all objectives assigned to test	

Testing or Formal Verification: DO-178C Alternatives and Industrial Experience, IEEE Software, June 2013	

& Guidelines for the Use of Theorem Proving in the Certification of Critical Systems, workshop TPC, 2014

Test & Proof in DO-178C
goal: be at least as good as test alone, for all objectives assigned to test	

Testing or Formal Verification: DO-178C Alternatives and Industrial Experience, IEEE Software, June 2013	

& Guidelines for the Use of Theorem Proving in the Certification of Critical Systems, workshop TPC, 2014

Test & Proof in DO-178C
goal: be at least as good as test alone, for all objectives assigned to test	

Testing or Formal Verification: DO-178C Alternatives and Industrial Experience, IEEE Software, June 2013	

& Guidelines for the Use of Theorem Proving in the Certification of Critical Systems, workshop TPC, 2014

as alternative objectives to coverage, need to:	

• justify assumptions	

• specify contracts by cases	

• specify intended dataflows	

• review for absence of dead code

 is the only language and toolset
providing industrial support for both dynamic and

formal contract-based verification of software.

http://www.adacore.com/sparkpro
!

http://www.spark-2014.org

http://www.adacore.com/sparkpro

