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Essential Principles of the Retooling

1. convergence with compiler technology (GNAT)	

• allows to support a larger subset of Ada in SPARK	

• target-dependent & compiler-dependent proofs	


!
2. use of intermediate verification language (Why3)	


• powerful  VC generation and transformations	

• rich language features (exceptions, types)	


!
3. use of state-of-the-art SMT solvers (Alt-Ergo + ...)	


• powerful automation of proofs
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       over-cost & limited scope

➕ generics and discriminants support	

       variability in versions & data

➖ unacceptable to engineers ➕ usable by non experts

➖ not combined with test ➕ contracts used for test and proof

➖ interactive proof required,	

       too complex and expensive

➕ use test when not proved

carried by David Lesens, expert in formal methods	

in Formal Validation of Aerospace Software, DASIA 2013



EXAMPLE	

OF CONTRACT





rich expressions: quantified (for all, 
for some), conditionals (if, case) 



proof of absence of RE in contracts	

(Pre should be self-guarded)



need to express contracts by 
cases? use Contract_Cases



Expr'Old restricted to minimize 
surprises to users



need unbounded arithmetic in 
contract? use Overflow_Mode



EXAMPLE	

OF LOOP 

INVARIANT





at run time: like an assertion	

in proof: loop invariant (but not Hoare-like)



need to refer to value at loop 
entry? use X'Loop_Entry



now: methodology for writing loop invariants	

soon: common patterns of loop invariants	


planned: generation of loop invariants based on patterns



need to prove while-loop 
termination? use Loop_Variant



Combining Test & Proof
goal: be at least as good as test alone	


strategy presented in Integrating formal program verification with testing, ERTS 2012	

&  Explicit assumptions - a prenup for marrying static and dynamic program verification, Test & Proof 2014

Main_Program (Ada)

Core_Service (SPARK)

Low_Level_Service (Ada)

calls

calls

verification method assumptions

integration tests

units tests

formal verification

Pre respected	

non-aliasing of inputs	

initialization of inputs

Post respected	

no unintended side-effects	

initialization of outputs



Combining Test & Proof
goal: be at least as good as test alone	


strategy presented in Integrating formal program verification with testing, ERTS 2012	

&  Explicit assumptions - a prenup for marrying static and dynamic program verification, Test & Proof 2014

Main_Program (Ada)

Core_Service (SPARK)

Low_Level_Service (Ada)

calls

calls

verification method assumptions

integration tests

units tests

formal verification

Pre respected	

non-aliasing of inputs	

initialization of inputs

Post respected	

no unintended side-effects	

initialization of outputs

verified during tests by	

executing contracts



Combining Test & Proof
goal: be at least as good as test alone	


strategy presented in Integrating formal program verification with testing, ERTS 2012	

&  Explicit assumptions - a prenup for marrying static and dynamic program verification, Test & Proof 2014

Main_Program (Ada)

Core_Service (SPARK)

Low_Level_Service (Ada)

calls

calls

verification method assumptions

integration tests

units tests

formal verification

Pre respected	

non-aliasing of inputs	

initialization of inputs

Post respected	

no unintended side-effects	

initialization of outputs

verified during tests by	

special compiler instrumentation



Combining Test & Proof
goal: be at least as good as test alone	


strategy presented in Integrating formal program verification with testing, ERTS 2012	

&  Explicit assumptions - a prenup for marrying static and dynamic program verification, Test & Proof 2014

Main_Program (Ada)

Core_Service (SPARK)

Low_Level_Service (Ada)

calls

calls

verification method assumptions

integration tests

units tests

formal verification

Pre respected	

non-aliasing of inputs	

initialization of inputs

Post respected	

no unintended side-effects	

initialization of outputs

verified by construction	

or by review



Combining Test & Proof
goal: be at least as good as test alone	


strategy presented in Integrating formal program verification with testing, ERTS 2012	

&  Explicit assumptions - a prenup for marrying static and dynamic program verification, Test & Proof 2014
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known objective of formal verification projects: justify assumptions	

proposal: switch from ad-hoc to tool-assisted assumptions management
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Test & Proof in DO-178C
goal: be at least as good as test alone, for all objectives assigned to test	


Testing or Formal Verification: DO-178C Alternatives and Industrial Experience, IEEE Software, June 2013	

& Guidelines for the Use of  Theorem Proving in the Certification of Critical Systems, workshop TPC, 2014

as alternative objectives to coverage, need to:	

• justify assumptions	

• specify contracts by cases	

• specify intended dataflows	

• review for absence of dead code



                        is the only language and toolset 
providing industrial support for both dynamic and 

formal contract-based verification of software.

http://www.adacore.com/sparkpro 
!

http://www.spark-2014.org  

http://www.adacore.com/sparkpro

