
Science of Security:
Historical Perspective

Fred B. Schneider

Samuel B Eckert Professor of Computer Science

Department of Computer Science
Cornell University

Ithaca, New York 14853
U.S.A.

2

“Science” is a moving target

Science:
– An organized body of knowledge gained

through research -versus-

– System of acquiring knowledge based on the
scientific method -versus-

– Laws or theories that are predictive.

3

A Science Of Security?

A body of laws that are predictive…
– Transcend specific systems, attacks, and
defenses.

– Applicable in real settings.
– Provide explanatory value.
§ Abstractions and models
§ Connections and relationships. E.g.,

•  Cannot enforce policy P with mechanism M
•  Interface can leak b bits/sec

4

Kinds of Laws

  Analysis: Given an artifact, predict its
properties…
–  Qualitative properties: What it does.
–  Quantitative properties: How well it works.

  Synthesis: Compose artifacts with given
properties to obtain a new one with predictable
properties.

5

Laws About What?

 Classes of policies
 Classes of attacks
 Classes of defenses

Relationships:
“Defense class D enforces policy

class P despite attacks from
class A.”

“Defense D + Defense D’ = …”

Attacks

Defenses Policies

6

Laws versus reality?

Model à Law
  Logic
  Mathematics
  Game theory

Reality à Model
  Measure and observe
  Hypothesize and experiment

Laws

Models

Reality

7

Selections from history …
… through a Science of Security lens

  Authorization
– Access control mechanisms
–  Information flow policies

  Integrity of mechanism
– Reference monitors
– Moving target defense (code obfuscation)

8

Reality à Model à Laws:

Access control mechanisms

  Reality:
–  Access control lists [CTSS, Mulitics 1965]
–  Capabilities [MIT PDP-1, 1967]

  Model
–  Access control “matrix” (=relation) [Lampson 1971]

  Laws: Can A perform op on Obj?
–  Mono-operational is decidable
–  General case: Reduces to Halting Problem

9

Reality à Model à Laws:

Access control mechanisms

  Reality:
–  Access control lists [CTSS, Mulitics 1965]
–  Capabilities [MIT PDP-1, 1967]

  Model
–  Access control “matrix” (=relation) [Lampson 1971]

  Laws: Can A perform op on Obj?
–  Mono-operational is decidable
–  General case: Reduces to Halting Problem

Attacks

Defenses Policies

ACL, capabilities
à

access control
matrices

HRU undecidability

11

Reality à Model à Laws:

Models of kernel-enforced policies

  Reality: DoD “Need to know”

  Model: [Walter et al, Bell-LaPadula ‘73]
–  Objects have labels (U < C < S < TS)
–  Principals have clearances (U < C < S < TS)
–  Read-down and write-up authorized.

  Laws
–  … xxx is a secure system if and only if …
–  No it isn’t:

§  Not all transitions specified [McLean’s system Z, 1985]
§  Lab(F(x,y)) < Lab(x) /\ Lab(F(x,y)) < Lab(y)

•  E.g., From: P, P è Q Infer: Q

Model

Reality

Reality

12

Reality à Model à Laws:

Models of kernel-enforced policies

  Reality: DoD “Need to know”

  Model: [Walter et al, Bell-LaPadula ‘73]
–  Objects have labels (U < C < S < TS)
–  Principals have clearances (U < C < S < TS)
–  Read-down and write-up authorized.

  Laws
–  … xxx is a secure system if and only if …
–  No it isn’t:

§  Not all transitions specified [McLean’s system Z, 1985]
§  Lab(F(x,y)) < Lab(x) /\ Lab(F(x,y)) < Lab(y)

•  E.g., From: P, P è Q Infer: Q

Model

Reality

Reality

13

Model à Laws:

Onward to integrity …

  Model: [Biba 77]
–  Objects have labels (T < U)
–  Principals have clearances (T < U)
–  Read-down and write-up authorized.

  Laws:
–  Confidentiality and integrity are duals.

14

Confidentiality and Integrity

untrusted

User

Attacker

User trusted

User User

Attacker

secret

program

unclassified

15

The Duality!

Attacker consequences:
– Contamination (dual of leakage)

§ Output := (t, u)
… Predict untrusted input from trusted input and trusted output

untrusted
Program

User

Attacker

User trusted

*Joint work with Michael Clarkson. [Computer Security Foundations, 2010]

16

The Duality is incomplete!

Attacker consequences:
– Contamination (dual of leakage)

§ Output := (t, u)
… Predict untrusted input from trusted input and trusted output

– Suppression (trusted input suppressed from trusted output):
§ n := rand(); Output := t XOR n
… Predict trusted input from trusted output.

– Both contamination and suppression
§ Output := t XOR u

untrusted
Program

User

Attacker

User trusted

*Joint work with Michael Clarkson. [Computer Security Foundations, 2010]

17

Law: Leakage vs Suppression

Declassifier: program that reveals some
information but suppresses the rest.

What isn’t leaked is suppressed…
 LS Thm: Leakage + Suppression = Constant

*Joint work with Michael Clarkson. [Computer Security Foundations, 2010]

Attacks

Defenses Policies

Bell & LaPadula

Biba

Leakage + Suppression = …

19

Reality à Model à Laws:

Execution Monitoring (EM)

Reference monitor [Anderson 1972]
–  Gets control on every policy-relevant event
–  Blocks execution if allowing event would violate policy
–  Integrity of EM protected from subversion.

Essential attributes:
–  Acceptance based solely on the current execution
–  Rejection based on solely prefix of execution

Thm: EM only enforces prefix-closed sets (aka
“safety properties”). [Schneider 2000]

20

Reality à Model à Laws à Reality:

Execution Monitoring (EM)
Examples of EM-enforceable policies:
  Only Alice can read file F.
  Don’t send msg after reading file F.
  Requests processing is FIFO wrt arrival.

Examples of non EM-enforceable policies:
  Every request is serviced
  Value of x is not correlated with value of y.
  Avg execution time is 3 sec.

In-lined reference monitoring: New approach to enforcement
  Safety property à automaton
  Automaton à rewriter

Application

Secure
application Specialize

P”	

P ʹ′
P

Policy
Insert

P
P

SASI
Compile

Attacks

Defenses Policies

EM enforcability

22

Reality à Model à Laws:

Independence by Program Obfuscation

Periodic semantics-preserving random program rewriting
Goals: Attacker does not know:

–  address of specific instruction subsequences.
–  address or representation scheme for variables.
–  name or service entry point for any system service.

Options:
–  Obfuscate source (arglist, stack layout, …).
–  Obfuscate object or binary (syscall meanings, basic block and

variable positions, relative offsets, …).
–  All of the above.

23

Reality à Model à Laws:

The Question …

Given program S, obfuscator computes morphs:
 T(S, K1), T(S, K2), … T(S, Kn)

  Attacker knows:
§  Obfuscator T
§  Input program S

  Attacker does not know:
§  Random keys K1, K2, … Kn
 … Knowledge of the Ki would enable attackers to automate attacks!

Will an attack succeed against a morph?
–  Seg fault likely if attack doesn’t succeed.

 integrity compromise à availability compromise.

24

Reality à Model à Lawsà Reality:

Obfuscation versus Type Checking

Thesis: Obfuscation and probabilistic dynamic type
systems “defend against” the same attacks.

  Type systems:
–  Prevent attacks (always---not just probably)
–  If static, they add no run-time cost
–  Not always part of the language.

  Obfuscation
–  Works on legacy code.
–  Doesn’t always defend.

Attacks

Defenses Policies

Obfuscation vs
type checking

But…
isn’t this all “just”

Computer Science?

27

What about…
Formal Methods and Refinement

If: Pgm sat S and Pgm’ ⊆ Pgm
Then: Pgm’ sat S
 … depends on (=implicit assumptions!)
§ Modeling execution by sequences (or equiv)
§ Equating properties (and pgms) with sets of seqs

  Useful for integrity (access control).
  Useless for confidentiality.
  Need richer model than sets of sequences.

28

What about…

Replication and Masking

Byzantine failure: Arbitrary and malicious
behavior, including collusion.

Client

Servers

Basic recipe (=implicit assumptions):
  …
  Replicas fail independently
  2t+1 replicas tolerate t Byzantine

  Useful for integrity (access control).
  Useless for confidentiality.
  Need: Calculus for independence.

29

What about…

Cryptography

  Sciences of Cryptography:
–  Information theory [Shannon]
–  Computational complexity

  Handles limited kinds properties
–  Confidentiality, integrity, …
–  Not arbitrary computations

  Employs limited set of mechanisms
–  Secrets, channels, storage, obfuscation
–  Ignores isolation, reference monitors (access control), re-

writing, …

If you think cryptography is the answer to your problem,
you don’t know what your problem is. [P.G. Neumann]

30

A Science of Security!

  Concerned with connections between
–  reality,
–  models,
–  laws.

  Reality: Interfaces and actions
  Laws: Ways to predict …

–  qualitative or quantitative
–  analysis or synthesis
–  Classes of defenses, policies, and mechanisms

Attacks

Defenses Policies

ACL, capabilities
à

access control
matrices

HRU undecidability

Bell & LaPadula

Biba

Leakage + Suppression = …

EM enforcability

Obfuscation vs
type checking

32

Some Open “Science” Problems

  Characterize classes of attacks. Eg, identify attack
classes with
–  type-system strength or class of defenses for prevention
–  classes of properties (confidentiality, integrity, …) affected

  Law: Trust cannot be created, it can only be relocated.
–  basis for composing defenses and trust relocation.

  Law: Trade-off between introspective active defenses
and vulnerability to subversion?
–  Consequences for HIV / AIDS / cancer.

  Law: Characterize when components are independent.

