
Security as a System-Level
Constraint

Dr. Perry Alexander
Information and Telecommunication Technology Center

Department of Electrical Engineering and Computer Science
The University of Kansas

alex@ittc.ku.edu

mailto:alex@ittc.ku.edu
mailto:alex@ittc.ku.edu

“The more I think about language, the more it amazes me that people
 ever understand each other”

- Kurt Gödel

Software Defined Cognitive Radios

Software Defined Radios
Design once, use many

Radios are commodity platforms

Waveforms are IP implemented on
radios

Cognitive Radios
Mission specific configuration

ElectroSpace resource management
Policy adherence

Joint Tactical Radio System
(JTRS)

SDR will implement...

Soldier Radio Waveform (SRW)
SINCGARS and Enhanced SINCGARS
HAVE QUICK II
UHF SATCOM
Enhanced Position Locating Reporting System (EPLRS)
Wideband Networking Waveform
Link-4A, -11B, -16, and -22 tactical data links
VHF-AM Air Traffic Control
Anti-Jam Tactical Radio (NATO)
Identification Friend or Foe (IFF)
Cellular Telephone and PCS
BOMAN UK Tri-Service HF, VHF, and UHF tactical comm
and many, many more...

Waveform Architecture

Encryption

Spreading

Compression

Modulation

Transmit

Error Cntl

Decryption

De-Spread

Decompress

De-Mod

Receive

Error Cntl

Send Data Receive Data

encryption key

frequency, hop rate, hop set

TX RX

Channel

set-up

tear-down

authentication

power

cost

form factor

evaluation
and

certification

confidentiality

integrity
availability

coding scheme

SDR System-Level Modeling Issues

Multiple heterogeneous perspectives
Information security

Analog and digital signal processing

Electromagnetic spectrum, energy, real-time, form factor, cost

Heterogeneous domains
Continuous Time and Frequency domain

Digital signal processing
Temporal and/or Modal logic

Multiple operating modes
Set-up

Operation
Tear-down

System architecture
Component decomposition

Component integration

The Rosetta Language and Semantics

Support for concurrent, system-level design
Facets and components for defining individual models

Domains for defining multiple computation models

Facet Algebra for defining model composition

Interactions for defining cross-domain implications

Formal Semantics
Set theoretic, dependent type system
Coalgebraic semantics for environment specification

Algebraic semantics for local behavior specification
Category theoretic model composition operations

Reflection subsystem

Heterogeneous, extensible domain system
Model-of-computation definitions
Lattice-based organization

Morphisms for domain transformation

What We Take from Rosetta

Facets and Components
Define system and component models

Define system requirements

Record justifications

Domain system
Define modeling semantics

Define specification transformations
Define specification interactions

Facet algebra
Compose models

Define correctness conditions

Analysis and synthesis capabilities

System

Component

Facet

Anatomy of a Specification

Domain
Facet

Domain
Facet

Domain
Facet

Domain

Component

FacetFacet
DomainFacet
Domain

Component

FacetFacet
DomainFacet
Domain

Interaction

Interaction

qamMod(f,t::real,s::word(2))::real is
 amMod(kam,true,f,t,s(0))
 + amMod(kam,false,f,t,s(1));

facet qam_mod_fun
 (i::input word(2); o::output real;
 en::input bit; f::design real) :: discrete_time is
begin
 o' = en*qamMod(f,t,i);
end facet qam_mod;

A facet defines a coalgebraic
system model
Each facet extends a domain
that defines a specification
semantics
Facet terms are boolean
declarations or facet instances
Facet parameters and variables
define state and interface
Functions encapsulate
expressions
All functions are pure with
curried evaluation semantics

Facet Definition Example

Facet Name Parameter List Domain

Terms

Function Name Signature

Body

A component defines a facet in
context

Component definitions play the
same role as facet terms

Component assumptions define
usage assumptions

Component implications define
correctness conditions
Justifications annotate
assumptions and implications
with evidence of truth

assumptions AND definitions
IMPLIES implications

component aes_mod_fcn
 (i::input blockType; o::output blockType;
 key::input keyType) :: discrete_time is
begin
 assumptions

 conf(key);
 end assumptions;
 definitions = aes_mod_req;
 end definitions;
 implications
 conf(o)
 and integ(o)
 and black(o)

 <== “rtc ase_mod.sld”;
 end implications;
end component aes_mod_fcn;

Component Definition Example

Domain
Usage

Assumptions

Correctness
Conditions

Component Name Parameter List

Requirements

Justification

Assembling Component Models

Systems are defined by
composing models

Components are instantiated

Composed in parallel

System provides context for
assumptions and implications

component waveform
 (din::input data; dout::output data;

 k::keyType)::radio is
 cd,ed,ecd,sd,md :: data;
begin
 assumptions
 conf(k);
 end assumptions;
 definitions
 c: compress(datain,cd);
 en: aes_mod_fcn(cd,ed,k);
 ec: errorCtl(ed,ecd);
 s: spread(ecd,sd);
 m: modulation(sd,md);
 t: transmit(md,dataout);
 end definitions;
 implications
 conf(dataout);
 black(dataout);
 end implications;
end facet waveform;

Modeling Domains

Domains define vocabularies for specification
Semantic Units

Models of Computation

Engineering Vocabulary

Domain definitions form a complete lattice
New domains extend existing domains resulting in homomorphisms
Functors define morphisms between domains

Domain interactions model system-level properties
Define when information from one domain is linked to information in
another
Models system impacts of decisions local to individual domains

state_based signal_based

The Domain Lattice

static

continuous discrete

discrete_time

finite_state

continuous_time

frequency

RF digital sequential-machine

Unit-of-Semantics

Model-of-Computation

Engineering
Domains

CSP trace_based

synchronous

null
Prelude

Functors

continuous discrete

discrete-time

finite-state

continuous-time

frequency

RF digital sequential-machine

state-based signal-based
Extensions

CSP trace-based

synchronous

Homomorphisms

General Functors
Abstraction, Concretization

static

null

Domains are descriptors for
categories of facets

The category consists of all extensions
including bottom

The elements of the category ordered by
homomorphism define a lattice

A functor maps elements of one
domain to another

Arrows to arrows and objects to objects

Functors operate on all elements of a
domain

Using Functors For Moving Models

continuous discrete

discrete_time

finite_state

continuous_time

frequency

RF digital

sequential_machine

state_based
security

discrete_security

discrete_time_security

digital_security

Using Functors for Refinement

domain state_based::static is
 state_type::type; s::state_type;
 next(x::state_type)::state_type;
begin
end domain state_based;

domain security::state_based is
 riskType::type is posreal;
 p,nominal::riskType;
 activityType::subtype(real) is
 sel(x::real | x>=0.0 and x=<1.0);
 activity::activityType
begin
 p’=activity*nominal+latent;
end domain security;

domain discrete::state_based is
begin
 state_type=natural;
end domain discrete;

domain discrete_security :: discrete is
begin
 …
end domain discrete_security;

Γ

Γsb

Γd

Γ
Γ ⋅ Γsb

Γd ⋅ Γ

Establish soundness of
abstractions and
concretizations

Sound integration of new domains

Sound integration of synthesis and
analysis tools

(state_based,A,Γ,static) is a Galois
connection
A is the abstraction function

Γ is the concretization function

We can calculate A when Γ is an
extension

No isomorphism unless
A⋅Γ=idsb and Γ⋅A=ids

Using the Galois Connection in the Lattice

domain state_based::static is
 state_type::type; s::state_type;
 next(x::state_type)::state_type;
begin
end domain state_based;

domain security::state_based is
 riskType::type is posreal;
 p,nominal::riskType;
 activityType::subtype(real) is
 sel(x::real | x>=0.0 and x=<1.0);
 activity::activityType
begin
 p’=activity*nominal+latent;
end domain security;

A Γ

Facet Composition

Facet composition combines models to define systems
Vertical composition - Multiple views of a component

Horizontal composition - Multiple pieces of a component

The facet algebra defines vertical composition
Facet algebra provides facet composition operations

Facet expressions define vertical composition

Instantiating and renaming facets defines horizontal
composition

Including instantiated facets as terms in models
Shared variables in interfaces facilitate communication

Facet Algebra Operations and Relations

Operation Syntax
Product f1 * f2 sharing {...}

Sum f1 + f2 sharing {...}
Homomorphism f1 => f2, f2 <= f1

Equivalence f1 == f2

Functor F(f1::D1)::D2 is f2

Instantiation s: f(...);

Parallel Composition s: f(...);
t : f(...);

Composing Models

Component aes_mod_fcn defines
behavior and assumptions in
operational mode

Component aes_mod_boot defines
behavior and assumptions during
boot

Component aes_mod disjointly
composes models defining full
operation

component interface aes_mod_fcn
 (i::input blockType; o::output blockType;
 key::input keyType) :: discrete_time
end component aes_mod;

component aes_mod_boot
 (i::input blockType; o::output blockType;
 key::input keyType) :: discrete_time
begin
 …
end component aes_mod_boot;

component aes_mod
 (i::input blockType; o::output blockType;
 key::input keyType) :: discrete_time is
 aes_mod_fcn(i,o,k)

 + aes_mod_boot(i,o,k);
 + aes_mod_teardown(i,o);

Composing Models

Component aes_confidentiality
defines an operational security policy

Component aes_mod defines the
operational system

Component aes_mod_secure
conjunctively composes models
defining operation under security
constraints

component aes_confidentiality
 (i::input blockType; o::output blockType;
 key::input keyType) :: discrete_time
end component aes_confidentiality;

component aes_mod
 (i::input blockType; o::output blockType;
 key::input keyType) :: discrete_time is
 aes_mod_fcn(i,o,k)

 + aes_mod_boot(i,o,k);
 + aes_mod_teardown(i,o,);

component aes_mod_secure
 (i::input blockType; o::output blockType;
 key::input keyType) :: discrete_time is
 aes_mod(i,o,k)

 * aes_confidentiality(i,o,k);

Facet Product and Sum

A facet A*B is the product of
facets

Product is parallel or conjunction

Result facet type is least fixed point

A facet A+B is the sum of
facets

Sum is alternative or disjunction

Result facet type is greatest fixed point
state_security software_fcn

state_security + software_fcn
ιF ιG

state_security software_fcn

state_security * software_fcn
πF πG

C
F G

(F,G)

C
F G

[F,G]

Homomorphism and Isomorphism

Homomorphism defines the
domain and facet lattices

Domains and facets are partially ordered
by homomorphism

Top and bottom are null and bottom
respectively

Isomorphism is equivalence
Antisymmetric property of the
homomorphism

Must be homomorphism, not simply
functor existence

discrete => state_based

state_based

discrete

continuous => frequency
frequency => continuous

frequency

continuous

Processing Rosetta Specifications

The Raskell frontend is a shared
Parsec-based parser/printer
AlgC automates boilerplate
generation
InterpreterLib defines semantic
algebras and algebra
combinators

Functors are implemented as semantic
algebras

Facet algebra operations become algebra
combinators or semantic algebras

Galois connections are used to assure
transformation properties

Rosetta Syntax

Recursive AST

Non-Recursive AST

pprinter parser

messages parser

Type
Checker Comonadic

Simulators
VectorGen

SDR Synthesis
SPARTACAS

Raskell

InterpreterLib

Well-formedness
Checker SAL

Isabelle

Semantic Algebras

Principled mechanism for
developing interpreters

Static analyzers

Language transformations

Traditional interprters

Define a syntactic functor F
Define modular functors F0-Fn

Compose to form F

Define semantic algebra Φ
Define modular functors Φ0-Φn

Compose to form Φ

Use catamorphism to fold Φ
into F(a)

F0(a) Fn(a)F(a)

a a

Φ0 Φn

F1(a)

a

Φ1

...

...a

Φ

Algebra Combinators

Composition principles for
semantic algebras and
comonadic simulators
Sequence algebra sequences
interpretations

Simple sequence

Paramorphism

Switch algebra selects
alternative interpretations

Modal interpretation

Parallel interpretation

Φ0 Φ1

Φ0

Φ1

?

F(a) F(a)

aa

Comonadic Simulators

Rosetta facets and components
are denoted as coalgebras
If the carrier can be denoted as
a comonad, a simulator results
Coalgebraic simulators are
composable like semantic
algebras

Composed coalgebras are coalgebras

Simulators can be analyzed in
multiple ways

Formally using model checkers and
theorem provers

Informally using traditional execution
techniques

aes_mod_fcn aes_confidentiality

?

a

F(a)

Ψ : a -> F(a)

Current Status

Rosetta Language Definition
Standard in preparation by IEEE DASC P1699 Rosetta Working Group
(currently 70% complete)

Alexander, P., System-Level Design with Rosetta, Morgan Kaufmann
Publishers, November 2006.

Alexander, P., System-Level Design Semantics, Morgan Kaufmann, Dec
2009 (in progress)

Raskell
Parser, printer, recursive AST and non-recursive AST complete and usable

InterpreterLib and algc are complete and functional (GPCE’07, ASE’07
papers)

prototype composable, comonadic simulators are complete and usable
(papers under review)

SAL and Isabelle interfaces being developed
Prototype Eclipse authoring and analysis module is available

Current Status

Active Rosetta/Raskell Applications
Power-aware design

Software Defined Radio Synthesis
Secure system specification and analysis

Trust specification and analysis

More information at http://www.rosetta-lang.org

http://www.rosetta-lang.org
http://www.rosetta-lang.org

