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Cyber-Physical Systems
We are heading towards (living in?) a sensor-driven world

need control systems capable of operating in
Penn malicious environments PRECISE
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CPS security incidents
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« Soviets stole control software from Canadian company.

« US influence Canadian company to alter code such that
pipeline pressures would build up.

 explosion could be seen from space.
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CPS security incidents
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CPS security incidents
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CPS security incidents
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CPS security incidents
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Typical CPS Architecture
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What is CPS Security?

« A CPS attack whose goal is to (negatively)
affect the interaction between a CPS and the
physical world

— Originates through any attack surface
 cyber, physical, or any combination of cyber/physical

* CPS security concerns the development of
technologies for defending against CPS
attacks

— e.g., discovering new vulnerabilities, techniques
for detection/mitigation/recovery, ...

B4R 408
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CPS Attack Surfaces

« Cyber attack surfaces

— e.g., communication,
networks, computers,
databases, ...

* Physical attack surfaces
- e.g.,

 Environmental attack surfaces
— e.g., GPS signal, electro-

magnetic interference, battery

draining/cycling/heating, ...

« Human attack surfaces

— e.g., phishing, bribing,
blackmail, etc.

Penn 11
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CPS Security Challenges

* Foundational Challenges
— How to build an ideal resilient CPS?

— Quantifying CPS attacks effectiveness
 wide variability in metrics for CPS security
» concerns depend on the CPS mission
— System evolution
« operate in many different physical environments
« adapt to physical surroundings
— Operating scenarios restrict defensive capabilities
» patching and frequent updates, are not well suited for control systems

 real-time availability provides a stricter operational environment than
most traditional IT systems.

» legacy systems may not be updated
« Social and Legal Challenges
— What solutions will be accepted by practitioners?

— Who/what is liable when such a system fails due to security and
privacy attacks?

&tenn B PRECISE



Improving CPS security

« Apply suitable best (cyber) security practices

e CPS can provide additional information
— CPS architecture / physical-world interface
* e.g., multiple sensors, actuators, controllers
— Environmental context
* e.g., operating conditions (rain/snow), geographic location
— Physical constraints and guarantees

* e.g., laws of physics, bounds on power, CPU speed, network
bandwidth

 How to leverage additional information to improve
CPS security?

Penn “ PRECISE
ng]neerlng



Attacks on Control Systems

1. Sensor attacks

« The attacker can arbitrarily change Pl
sensor measurements. 2
2. Actuator attacks v oV i\ A
« The attacker can arbitrarily change 5 c S S
actuator values. a e...| 2 R R
< & < <
3. Communication attacks I A A
« The attacker can change
messages sensors->controllers, Network e
and controllers->actuators.
4. Controller attacks I

« The attacker can change the
controllers’ parameters (e.g.,
execution model) or even the Controller e

controllers’ code.

&tenn b PRECISE



Platform-Aware CPS Design Framework

— Control-level techniques

Physical Environment

 Attack detection and identification
using redundant sensing and
model of the system’s dynamics

Attack
models

Control Design  Attack-resilient control
" Attack detection | ! Attack-resilient - ‘: architectures
\ and identification ! __ _controllers __
Configuration Control — COde'Ievel teChniqueS
parameters Algorithm
Code Generation * Ensure that the control code is
)|1" " “Platform 1" Platform correctly implemented and
dependent :. independent : int ted
| wrappercode '\ code Integrate

" Proof '<: System Integration |

* Preventing malicious code
______ injection into the controller

Goal: Ensure that a CPS maintain a degree of control even
when the system is under cyber and/or physical attack
Penn. PRECISE



Security-Aware Control Design

* Physical world abides by the laws of physics!

* Physical interfaces introduce new attack vectors!

 How can we exploit limited knowledge of laws of physics
(system model) for control and attack
detection/identification

* Approach

—Analyze the difference between observed
measurements and ‘expected’ system behavior over a
time window for different attack models

&tenn PRECISE



Attack-Detection and ldentification (ADI)

The Cloud

« Problem: How can we detect and HEE
identify which system sensors have @ Internet
been compromised Qe S R
, Gon S— 0
> e » @
 Approach: Exploit spatial and Sensors  Local(control) network  Actuatrs
PP P P = e
temporal redundancy I = b —
N
— sensor fusion 3 ’ | ‘83)
. . 2 &
— resilient state estimator Physical world
Penn K PRECISE
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The rest of the talk

* Dealing with sensor attacks

— Sensor fusion based on abstract sensor
models

— Attacks vs. transient faults
— Resilient state estimator

» Security-aware CPS architecture
— Human-in-the-loop
— Checkpointing and recovery

Penn 18
Engl'neering
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DEALING WITH SENSOR
ATTACKS
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Motivation

 Modern CPS are equipped with multiple
sensors (e.g., GPS, encoder, camera, IMU)

— Can separately estimate the same physical
variable (e.g., velocity)

— This redundancy can be used to improve system
performance

« Some sensors may be vulnerable to sensor
attacks (e.g., GPS spoofing)

« Low-precision sensors can be used to improve
attack detection and identification (e.g.,
ambient FM signals)

* How can redundancy improve system
resilience?

Penn 20 PRECISE
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Abstract Sensor Model

 Most sensor models assume probabilistic noise
— Used to argue about expected operation
— Not applicable to analyzing rare events (e.g., attacks)

 Interval containing all points that may be the true value
* No assumption on noise distribution

* The size of the interval reflects the accuracy of the
sensor

« Well-suited for worst-case analysis

0 (true value)

abstract measurement _l—
(interval) :

&tenn S L L PRECISE



Fusion Algorithm

Based on algorithm developed by Marzullo*
Input are n real intervals and a number f

At most f sensors under attack (f < [g])

Output is a “fusion interval”
— Smallest to largest point contained in n — f intervals

Sensor : _I_
Measurements _: : n = 5
| | —
| |
I —
| |
----------- J--------*-----------
| |
Fusion Interval ——]
* Marzullo, K., "Tolerating Failures Of Continuous-Valued Sensors." ACM Transactions on Computer Systems,
= P vol. 8, (no. 4), pp. 284-304, Nov. 1990
&K/Lenn PRECISE
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Sensor Fusion under Attack over Time

* Our approach

— Extend Marzullo’s work to attacks
and over time

— Use a dynamic system
# faulty
X(t —+ 1) — AX(t) —+ w Sensors

Marzullo
 where w is a disturbance, and /.\/

« we know A with some

uncertainty
« Using time will help us isolate i
malicious sensors ?
— Attacker no longer able to give
unreasonable measurements HACMS
Penn * PRECISE
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Our Results

 |dentified a mapping method: is this optimal?

Map from t to t+1

Complute fSlack phareisderval

 l|dentified an “optimal” attack strategy for attacker
* |n addition:

— Analyze this optimal attack policy with the above mapping

— App to Integrate sensor measurements from smartphones with On-
Board Diagnostic (OBD) system (for American Built Car)

Penn 2 PRECISE
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* Use system dynamics to incorporate past measurements
— Map x(t) to time t+1 using system dynamics:

Identified 5 algorithms
of using past
measurements

Penn
Eng]'neering
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Size

Results

 Theorem: pairwise intersect is the best of all five
methods™

« Simulations — estimate velocity/position
— Camera, GPS and two encoders
— One sensor always under attack
— Red: Volume of fusion polyhedron with no history
— Blue: Volume of fusion polyhedron with pairwise intersect
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Attack Detection

« Sensor fusion
— produce a better measurement - improve performance

« Attack detection
— identify and discard attacked sensors - improve resilience

0 (true value)

- S,
_— e A@ S, " Attack | Sensor
Detection discard Fusion
attacked
Sensors
—— Sy
Penn 27 PRESISE
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Attacks vs. Faults

* The sensor-fusion approach is too conservative in that
they treat faults and attacks in the same way

« Types of sensor measurements and faults
— Noise vs. faulty measurement
— Transient faults: occur shortly and disappear
— Non-transient (permanent) faults: persist for a longer period of
time
— This work: focus on attacks that manifest as permanent faults

transient fault non-transient fault
measurement
Ceviat @ o 094
eviation | . ()
from true f------------ ‘ ------ ’ ---------------------------------------------------
value @) @)
o 0 ©°00%%%99% 0 ¢ o
Penn ame 28 PRECISE
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Transient Fault Model (&, e, w)

Error bound ¢ signifies the worst case noise threshold l ﬂ |

Transient threshold (e, w)
— allows at most e faulty measurements within window size w
— If exceeded, fault is non-transient

Not conforming to transient fault model - considered as attacked

(e,w) = (4,10)
deviation _
from transient fault attack faulty
true value P I o o 0° ® measurement

€

(true value) O

Penn time 29 :




Two Problem Statements

* Problem 1 (Transient Fault Modeling)

— Develop a transient fault model for each
sensor from training data

* Problem 2 (Detection and Identification)

— Given transient fault model (g,e,w) for each
sensor, develop an algorithm to detect and
identify sensor attacks

20 Penn. ©  PRECISE



Problem 1: Transient Fault Modeling

Sometimes provided by manufacturer
— E.g., Bosch
Otherwise, have to choose them based on data
e : the number of faults within time window size of w

€ : error bound (the worst case noise bound)
— Choose ¢ small enough: observe faulty measurements
— Choose ¢ big enough: do not treat noise as faults

N W=1 8 —---—-—---—--‘- ----------------
1 -
@
deviation @
from
€ true value (]
w
ratio of the
number of faults O (] (] ®
within a window
(true value) m. [ 1)
N .
2 € time

knee points error bound

Penn 3 PRECISE
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Problem 2: Attack Detection and Identification

Transient Fault Model

t=1 t=2 t=3 t=4

(e,w;)

(1,3)

Sensor

s2

(1,3)

—
3 e e i — i — s3

Measurement

(1,3)

« Pairwise inconsistency of sensor measurements

— unknown true value - unknown whether faulty or not
 Weak inconsistency

— Two sensors are too far from each other at a certain time
« Strong inconsistency

(¢ is the half of
interval size)

— Two sensors are frequently inconsistent over a time window

Penn 32
Engl'neering
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Attack Detection: Weak Inconsistency

* Two sensors s; and s; are weakly inconsistent at time ¢
— iff one of them provides a faulty measurement
— Thatis, WI(Zvjvt)EF(th)\/F(Jat)
where F(i,t) signifies that s; provides a faulty measurement at t
« Cannot decide in general — true value not known

— Sufficient condition exists: if the two sensors’ intervals do not
overlap. That is:

|y,§t) — y§t)\ >e€ +¢e;, = WI(i,j,t)

True value

Penn 33 PRECISE
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Attack Detection: Strong Inconsistency

« Two sensors s; and s; are strongly inconsistent
— iff one of them is non-transiently faulty
— Thatis, S1(¢,5,t) = NTF(i,t) V NTF(j,1)
where NTF(i,t) signifies that s; is non-transiently faulty at time t
* Again, cannot decide in general

— Sufficient condition exists: the sensors are weakly inconsistent
frequently. That is,
t

> WI(i,5,t") > e +e; = SI(i,j,t)

t—min(w;,w;)+1

t=1 t=2 t=3 : . .
e . =e. =1 3 inconsistencies in
W= = — — — a window of 3
1= W2 ™
& Lenn “ PRECISE
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Attack ldentification

» For identification, it is necessary to assume that there exist at most
‘a’ attacked sensors (where a < n-1).

« If sensor s; is strongly inconsistent with ‘a’ other sensors, then s; is
attacked, i.e., given i,

deg(i) > a = A(7)

Penn 3 PRECISE
ng]neerlng



t=1 t=2 t=3 t=4 t= t=6
S —— — —_— — — —
Sensor S, —— - — A — —_—
Measurement S; e [R— J— N — —
T e I e ] — —
S5 —— e ! — EE- . e
(D () (0 o 0, 0,
WI Graph @! o Q@ (5) @q‘}@ ) () | (5) ®
\ J </ \ I><(/ \ <"/
) @ ) W ORO Q) W Q) W ®
® ® O, O O
sreaph @ @ @ OO OO @."/@ ovggo C%% go
®O ®® O, ® 640 O
n=>5 (€,.€,W))
: : a=2 1 1,1,6
. The attack is detected at time 3 - E - 5;
* The attacked sensors s; and s, are identified s3 | (1,1,4)
at time 6 s4 | (1,26)
s5 (1,1,5)
&, Penn 3 PRECISE
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Case Study: Experiment Setup

* Driving an unmanned ground vehicle (called LandShark)
In a straight line

« Gathering velocity measurements

— Separately from left wheel encoder, right wheel encoder and
GPS unit

— Atarate of 10 Hz

Penn
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Transient Fault Model Parameter Selection

16 ::
YV
| GPS
0.8}
ratio of the 0.7r
number of 0.6+ —-w=10
op s —>—w=30
faults withina = 05! . W=50
window o) ——w=100
0.4} —=-w=200
0.3}
0.2+
0.1} © \
0 L —_—“ )
0 0.1 0.2 0.3 0.4 0.5
knee poin 1 ' - Y ) error bound ¢
noise profile fault profile
Penn 3 PRECISE
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Detection Performance

* Detection rate vs. elapsed time

slow to detect

|
|
100 €\ —7 = \w :u u: 100 r I
y 90 . )
|
N 80} . 80 1 —A-SF
2 70t | " —Plio
Py 1 ) _PI
£ 60t —4 = A 60 | > F 15
o a —A-SF 50 O —E—"Ta00
5 | = 5
‘8 40 ¢ Pl 40+ g
g _E,_PI200 301l -
20 20+
10+
OD 1 1 1 1 1 0 =A% 1 | ‘IA 1 - 1
0 50 100 150 200 250 O 50 100 150 200 250
Elapsed time since the attack began Elapsed time since the attack began
Biased attack Random attack
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Detection Performance (cont.)

 Detection rate vs. false alarm rate when
error bounds are varie

W : ]
10%00 ey &<) O o 0 |00\?\ _I:I/ o
90,5 90+ o
_ 80+ 80 °
< 70t 70+
2 . A SF i A SF
g 5 o F)|1o *0 o I3'10
c 90 PI 50+ A, PI
o 50 50
3 40 o Pl 40t A 5 Plaoo
2 30 30t
20T 20}
13A 10% 9
DAL R S . Gk O e R .
0 0.5 1 1.5 2 2.5 3 _0 0.5 1 1.5 2 2.5 3
False Alarm Rate (%) False Alarm Rate (%)
Biased attack Random attack
Penn 40 PREEISE
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Summary

» Sensor fusion based on abstract sensors using spatial and temporal
redundancy and dynamics
« Attack detection in the presence of transient faults
— Transient fault model / modeling
— Detection algorithms based on pairwise inconsistencies (Pl)

« Case study with an unmanned ground vehicle
— Pl-based detectors outperform SF-based detector

— Pl-based detector with a bigger window size
« pros: higher detection rate, lower false alarm rate, more robust
« cons: slightly slower to detect

S1
New work
Attack
So Detection > Sensor Fusion
Discard
compromised
sensors
Sn Bus
B4
&, Penn 4 PRECISE

@ Engl'neering



Extensions

» Can this be adapted to dynamically
changing environment?

— Adjusting parameters (g, e, w) based on
context information; e.g., vehicle speed

» Learning transient fault models (g, e, w) at
run-time

2o Penn. PRECISE



RESILIENT STATE ESTIMATOR
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Attacks on Control Systems: Attack
Space
1. Sensor attacks

* The attacker can arbitrarily change sensor measurements

x(t+1)=Ff(x
y(t)=g(x,u) Plant
e//(t) - the value injected by the 3 | g 2
attacker in sensor j
Network

If no attack is injected e/(t)=0

X(tH1)=c(Xe¥) | controller
u(t)=g¢(Xey)

&tenn “ PRECISE



Sensor Attacks
Goal: Design adecoder  X,_y41 = N(yt_NH,-.-,yt,ut_NH,--.,ut_l)

Approach: Formulate the problem as an optimization problem

N N-2
r —> YN = |:ytN+1ytN+2 - CBut—NH""yz o Z CAlButli:|
i=0

mxln = HY N ) NX I, K} Sensor and actuator history
‘ D yx = lCX‘CAJC‘...CAN‘Ix] System

dynamics

min = HYN —-P,x
X L/1,

‘ The history of attacks e(t-1), e(t-2)...

~~

- Identify attacked sensors

%k
Y, — D, x :[e + v ‘...e + v 1 :
N N t—-N+1 (=N+1]""1-1 t=1, for low-level measurement noise



Intrusion Detection for Sensor and
Actuator Attacks

* Intrusion Detection for actuator attacks can be handled
In a similar manner!

How many attacked sensors and actuators that can be tolerated?

* p — number of sensors, g — number of attacked sensors and actuators

* In the best case, we can deal with p/2 —1] attacked sensors

q=> g — impossible to detect an attack!
P — detection depends on the system dynamics
q
2 (i.e., matrices A, B and (C)
& Lenn PRECISE
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Case Study

» Constant-speed cruise control for
LandShark

— Ensure that the vehicle can maintain speed when
some of the sensors are under attacked

B 7th order skid
' steering model

rol " - = \'2
& mosmU mE / \\
TR f
1 NN3J e l-LV-
.uud




Attack-Resilient Cruise Control Demo

CRUISE CONTROL UNDER ATTACK

5+ -
Under Attack/
No protected
— Encoder Left
4- . —— Encoder Right
—GPS
3.;

VELOCITY [m/sec]
7

T

ok
W
1 | I
ESTIMATED AND REFERENCE VELOCITY VS. INPUT

250
B under Attack/ No protected
—— Estimated Velocity

o - - - Reference Velocity
Input

VELOCITY [m/sec]
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Attack-Resilient Cruise Control Demo

Comtrol nangaton
SetSpeed " Ml CMD M REF Odometry ] SPEED [l REF

08 Set

-t
-t
-t
Trim
* aoo7 *
owos M GPS M LE M RE
Actual Speed
n
U

Estimated Speed
s N
wencrodr L) LU
Stopping Crulse Controller
Stopped Cr @ Controller

Starting Cruise Controll
** Started Cruise Controller




Challenge Problem — Cruise Control

e (Case studies under analysis

k,

—>

Discrete-time

maam

~ Penn
!‘, Engineering

controller

|

<«—— 7' = Desired speed
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Attack-resilient State Estimator

t)
o u(t)_|x(t + 1) = Ax(t) + Bu(t) ¥(
« State estimation from —>
y(t) = Cx(¢) + es(t)
sensor measurement -
history
State-based | x(t) Resilient
. Feedback | State

 Requires accurate model Controller estimator ||

* In practice, we have process and measurement noise, and
modeling errors (including jitter, latencies, etc)

Problems
 Can we still use the same detector?

« Can the attacker exploit the noise to destabilize the system?

« Can we bound the error of the state estimation?

M. Pajic, J. Weimer, N. Bezzo, P. Tabuada, O. Sokolsky, é.1Lee, and G. J. Pappas, “Robustness of Attack-resilient
State Estimators®, ICCPS 2014. (Best Paper Award)



u(t) | x(t + 1) = Ax(t) + Bu(®) + v(e) | YO

Robustness of the Attack-resilient State ]
Estimator L

. E If the state-feedback
Po(Y): i [1E{1, controller utilizes the
Y—-—®dx=E

 Then the closed-loop
(Xo, E) = argmin P,(Y) system will remain stable

v

when at most q,,., sensors

9 have been compromised. >

. E We have derived a design-time
PO,A (Y): ,{‘E‘]}R% | ”lo procedure to calculate an upper

_ASY-PdPx—E<A bound of the estimation error

%0, — Xol|2
(X0, E) = argmin Py 5 (Y)

Penn 52 -



Attack-resilient state estimator for
American Built Car

e CarSim Simulation to obtain the model
* In-Car Implementation

Sensors
/
Actuator

GUI

| )



Attack-resilient state estimator for
American Built Car

Penn PRECISE



Extensions to Resilient State Estimators

Challenges:
— non-linear dynamics
— realistic fault models

— Impact of execution platform
(computation & communication) on
attack-resilient control

Improve ADI when different types of
sensors are used (continuous &
discrete-events sensors) - sensor
fusion with context

Develop data-driven methods to
handle non-linear dynamics and to
derive better fault models

Develop a framework for cross-layer
analysis of platform effects on our
resilient algorithms

— Timing/scheduling effects

— Resource constraints

— Adaptation of attack-resilient control

Penn
Engineering

System
Dynamics
Attack
Model

95

Attack
models

c
o
=]
©
S
=]
wv
i

Estimated State
- Attack Identification

- Attack Detection

‘ Performance guarantees

_____________

Configuration
parameters

i

Control P
lgorithm

erformance
uarantees

System Integration
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SECURITY-AWARE CPS
ARCHITECTURE
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Attack-Resilient Architecture

» (Goal: develop an architecture that
— Leverages multiple security techniques to provide stronger guarantees

— Enables adjusting the level of resilience to match the changing environment
— Applicable to both legacy and clean-slate CPS

« Approach el |
— Combine high-performance low-resilience {
techniques with high-resilience lower-performance
techniques : 1 :
— Switch between techniques using attack detectors N I i %_* :
— Capture assumptions and guarantees of each (=T

technique to enable architecture-level analysis of

system security (- o m .= =,”\
— Human-on-the-loop, exploit the role of supervisors ’ -t 1 :
« Challenge: how to balance | —
— available systems resources Sy é \

— desired control performance
— resiliency guarantees

Penn " PRECISE
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« Autonomous CPS system
— Read sensors

Human-on-the Loop
— Process data (making decisions)

L
— Command actuators

* Human-on-the-loop R i B Estimator
— Setting/Updating objectives |

— Intermittent monitoring
Actuators Controller

— Active (vs. passive) monitoring

— Complementing the autonomy where it fails: Alarm

Uncertainty
* Challenges

— Increase system resiliency, without
information overload

— Ensuring system objectives are met

High Level Control

Path Planning
Mission Objectives

P 58 €&
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CPS Checkpointing and Recovery

» Detection algorithms and control architecture provide
detection guarentees

— time-to-detection
— detection rate

« Cyber-Physical Checkpointing
— Checkpoint generation: when/where/what to log

— Use property of controller software and physical process to
reduce amount of logged data

— Secure logger: tamper-proof logging

« Safe Recovery of Controllers

— When attack is detected, the control system may need to be
reset to a safe state with respect to the control physical process

— Develop (formal) techniques to guarantee safety of recovery
process

Penn “  PRECISE
nglneerlng



Checkpoint Generation Issues

« Single-loop control scenario
— log subset inputs/outputs

— exploit physical dynamics to reduce amount of logging
necessary

 Distributed control scenario
— conservative logging of all inputs and outputs is impractical
— find minimal sets of data and when to store them
— exploit concepts from distributed control system monitoring

* Logging always happens, but recovery is rare

— balance tradeoff between recovery and logging
costs/requirements

— require secure logging capability

Penn “  PRECISE
nglneerlng



Safe Recovery of Controllers

* Problem: After an attack is detected, how can we
perform controller recovery while guaranteeing
system safety

» Goal: How to ensure consistency between the control

mode and state of the physical plant? & o @
S o

« Challenges Gl |
— Safe recovery AR
« Ensure system recovery to a correct state

« Guarantee real-time recovery w/o loss of control
functionality
— Bounded recovery time

&tenn “ PRECISE



Some Problems in CPS Recovery

* Developing the right notion of consistent
global state in CPS

* Determining when to roll-back and how far
to roll-back

* Developing strategies for roll-forward

&tenn PRECISE



CPS Checkpointing

¢« e - ¢ >
P o—o > o | >
v w v v o >
« A system with checkpointing discovers an error ...
Penn. " PRECISE
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CPS Checkpointing

1

{ ) >

o—o o o*

|

@ o« @ *—o >
|

& o - o @ >
1

« Classical checkpointing rolls back the entire system to a logically
consistent state

Peml 64 :



CPS Checkpointing

@ S
—@ =
@ S

* In CPS, it may not be possible to roll back all states
— e.g., physical states such as “position”

» Rolling back only a subset of the states may not be consistent/safe

Peml 65 :



CPS Checkpointing

1

v - v o ¥ >
1
i

——@—e: 00— >
i

—o—o S >
1

* In CPS, it may not be possible to roll back all states
— e.g., physical states such as “position”

» Rolling back only a subset of the states may not be consistent/safe

« Challenge: how to checkpoint states that can be rolled back to
ensure “safe rollback”
— “safe” but may have reduced operational capabilities

Penn & PRECISE
nglneerlng



CPS Recovery

-

« Challenge: How to ensure recovery to a safe state

— Guarantee real-time recovery to ensure robust
system operation

maam
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CPS Recovery

1
1
1
I
> ——o o - oo 0000 s
|
:
S @ -
|
1

« Challenge: How to ensure recovery to a safe state

— Guarantee real-time recovery to ensure robust
system operation

maam
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CPS Recovery

- - - - o o o 0o 0 o
—o o v o wooooooee -
S o e io *—0 oo

bounded time
recovery

« Challenge: How to ensure recovery to a safe state

— Guarantee real-time recovery to ensure robust
system operation

maam
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Platform-Aware CPS Design Framework

— Control-level techniques

Physical Environment

 Attack detection and identification
using redundant sensing and
model of the system’s dynamics

Attack
models

Control Design  Attack-resilient control
" Attack detection | ! Attack-resilient - ‘: architectures
\ and identification ! __ _controllers __
Configuration Control — COde'Ievel teChniqueS
parameters Algorithm
Code Generation * Ensure that the control code is
)|1" " “Platform 1" Platform correctly implemented and
dependent :. independent : int ted
| wrappercode '\ code Integrate

" Proof '<: System Integration |

* Preventing malicious code
______ injection into the controller

Goal: Ensure that a CPS maintain a degree of control even
when the system is under cyber and/or physical attack
Penn. PRECISE



Additional CPS Security Challenges

 Data-driven CPS

— Attacks on training data

* How to retrofit legacy systems to be resilient
to newly discovered attacks

* Human-in-the-loop CPS
* Privacy
» Assurance cases for security (and safety)

* Which solutions will be accepted by
practitioners?

* Who/what is liable when such a system fails
due to security and privacy attacks?

&tenn PRECISE
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