
Semantic Backplane for
Model-Based Development

Dr. Daniel Balasubramanian, Senior Research Scientist
Institute for Software Integrated Systems, Vanderbilt University

Collaborators: Dr. Janos Sztipanovits, Dr. Qishen Zhang, Vanderbilt University
Dr. Eunsuk Kang, Carnegie Mellon University

Outline

● Background
● Semantic backplane uses
● Open problems

2

Background: DARPA V-SPELLS Program

● Goal: enable the verification
of enhancements to legacy
systems using
domain-specific languages
(DSLs)

○ Ensure updates and security
patches are compatible with
existing system

3
V-SPELLS: Verified Security and Performance Enhancements of Large Legacy Systems

V-SPELLS program vision

Background: DARPA V-SPELLS Program

● Goal: enable the verification
of enhancements to legacy
systems using
domain-specific languages
(DSLs)

○ Ensure updates and security
patches are compatible with
existing system

4

Example V-SPELLS enhancement

V-SPELLS: Verified Security and Performance Enhancements of Large Legacy Systems

Background: DARPA V-SPELLS Program

● Goal: enable the verification
of enhancements to legacy
systems using
domain-specific languages
(DSLs)

○ Ensure updates and security
patches are compatible with
existing system

● Challenges:
○ How do we verify

cross-domain properties?
○ How do we “complete” the

missing pieces of a system?

5

Example V-SPELLS enhancement

V-SPELLS: Verified Security and Performance Enhancements of Large Legacy Systems

Background: DARPA AVM Program

● Goal: revolutionize the
development of complex CPS

○ META program: create a tool
chain for model-based design

6
AVM: Adaptive Vehicle Make

How do we fit everything in the
hull?

What is the survivability?

Do I satisfy mobility requirements? Are there thermal issues?

How fast will it run?

Are there deadlocks?

Background: DARPA AVM Program

● Goal: revolutionize the
development of complex CPS

○ META program: create a
model-based design flow and tool
chain

● Challenges:
○ How do we integrate

heterogeneous models and
languages?

7

How do we fit everything in the
hull?

What is the survivability?

Do I satisfy mobility requirements? Are there thermal issues?

How fast will it run?

Are there deadlocks?

How do we
organize the
models and

results?

Components are heterogeneous and
span multiple domains and tools

AVM: Adaptive Vehicle Make

Background: DARPA AVM Program

● Goal: revolutionize the
development of complex CPS

○ META program: create a
model-based design flow and tool
chain

● Challenges:
○ How do we integrate

heterogeneous models and
languages?

○ How do we verify cross-domain
properties?

8

Models are different Tools are different

A design tool chain covering all CPS
modeling abstractions is unrealistic

AVM: Adaptive Vehicle Make

V-SPELLS Semantic Backplane

● System architecture on the right
● Semantic backplane:

○ FORMULA 2.0: formal specifications of
DSLs

○ WebGME: graphical user interface for
modeling

● Enables:
○ Analysis of cross-domain properties
○ Complete the missing pieces of the

system

9

Compositional DSLs for Enhancing Software (CODES) Architecture

Cross-domain
modeling

Cross-domain
Analysis

Translation to
external tools

Semantic Backplane

● Semantic backplane:
○ WebGME: metamodeling/modeling
○ FORMULA 2.0: formal specifications

■ Z3 is the solver for FORMULA’s
model finding procedure

● Enables:
○ Composition of heterogeneous

models and languages through a
model-integration langage

○ Verification of properties across
domains

AVM Semantic Backplane

10

WebGME FORMULA 2.0 Z3 SMT Solver

Modeling Formal Specifications Solving

Integration
Language

Enables

Outline

● Background
● Semantic backplane uses
● Open problems

11

FORMULA 2.0

● Language and tool for formally
specifying DSLs

● Originally developed at Microsoft
Research

○ Fork actively maintained at Vanderbilt
● Open-world Logic Programming

(OLP) with
○ Algebraic data types
○ First-order logic with fix-point

operations
● Automated reasoning is enabled

by symbolic execution and Z3

12

Given this software
component domain

We can check whether
this concrete model is
valid

We can generate
values for x and y that
make this partial
model valid

AVM Model Integration Language

● A design tool chain covering all
CPS modeling abstractions is
unrealistic

● Instead, we created a Model
Integration Language

○ MIL changed frequently because
component models are built with
different tools

● Created FORMULA specs for:
○ Interface semantics
○ Model integration constructs
○ Model transformations

13

V-SPELLS: Cross-Domain Reasoning

14

● Use case: I want to update
the hardware and flight plan

● Questions:
○ Can the drone fly without

running out of battery?
○ How much battery do I need?

● Requires:
○ Reasoning over multiple,

cross-cutting domains
○ Symbolic analysis to “fill-in” the

required amount of battery

V-SPELLS: Cross-Domain Reasoning

Mission
Domain

Energy
Domain

Hardware
Domain

Mission spec
(XML)

Hardware spec
(XML)

Cross-domain composition in FORMULA

Energy
consumption

model

“Can the drone run
out of battery during

the mission”?

Developer
queries

domain BatteryChecker extends Energy, Mission
{
 missionConsumption ::= (String, Real).
 batteryExceeded ::= (String, Real, Real).

 batteryExceeded(missionName, consumed, available) :-
 missionConsumption(missionName, consumed),

 batteryCapacity(available),
 consumed > available.

 conforms no batteryExceeded(n, c, a).

}
15

Use case: I want to
change the hardware
and flight plan.

Mission Domain Model in FORMULA

domain Mission {
 Loc ::= new (x : Real, y : Real).
 MissionItem ::= new (label : String, src : Loc,

 dest : Loc, dist : Real, vel : Real).
 Mission ::= new (m : MissionItem,

 remainder : any Mission + {NIL}).
 itemDuration ::= (String, Real).

 itemDuration(name, t) :- MissionItem(name, _, _, dist, vel),
 t = dist/vel.

}

Mission spec

● Each mission is a sequence of mission items (travel between waypoints)
● Each mission item is associated with its estimated duration
● Representative of the Mission API in MAVSDK; could be extracted from source code

16

Battery & HW Models in FORMULA
domain WeightSpec {
 Component ::= new (label : String, weight : Real).
}

domain Battery includes WeightSpec {
 Battery ::= new (label : String, weight : Real,

 capacity : Real).
 rate ::= (Real).
 batteryCapacity ::= (Real).

 rate(r) :- x = sum(0, {cw | cw = w*(9.8), Component(_, w)}),
 r = (x + bw*9.8)/(3*0.7), Battery(_, bw, _).

 batteryCapacity(c) :- c = sum(0, {bc | Battery(_, _, bc)}).
}

Energy consumption
model

Hardware spec

where mk: drone + battery + payload mass
 r: lift-to-drag ratio
 𝜂: power transfer efficiency

Energy consumption models for delivery drones: A comparison and assessment (Zhang et al., 2021)
17

Cross-Domain Composition in FORMULA
domain BatteryAnalysis includes Battery, Mission {
 missionConsumption ::= (String, Real).
 batteryExceeded ::= (String, Real, Real).

 missionConsumption(name, c) :- Mission(MissionItem(name, _, _, _, _),

 Mission(MissionItem(name2, _, _, _, _), _)),
 itemDuration(name, t1),

 missionConsumption(name2, c2),
 rate(r),
 c = t1*r + c2.

 ...
 batteryExceeded(missionName, consumed, available) :-
 missionConsumption(missionName, consumed),

 batteryCapacity(available),
 consumed > available.

 conforms no batteryExceeded(n, c, a).
}

Computes the total energy
consumed for mission “name”

What it means for a mission
to exceed available battery

Check to ensure mission “n”
does not exceed battery

18

Specifying Instances in FORMULA
model sample_drone of BatteryAnalysis
{
 Component("payload1", 5).
 Component("payload2", 3).
 Component("body", 10).
 Battery("battery1", 5, 200).

 t1 is MissionItem("task1", Loc(40.00, 5.00), Loc(47.00, 8.00), 7.62, 0.4).
 t2 is MissionItem("task2", Loc(47.00, 8.00), Loc(52.00, 2.00), 7.81, 0.2).

 m2 is Mission(t2, NIL).
 m1 is Mission(t1, m2).
}

● FORMULA checks the conformance constraints against the given instance (model)

19

Instance Finding in FORMULA
partial model sample_drone of BatteryAnalysis
{
 Component("payload1", 5).
 Component("payload2", 3).
 Component("body", 10).
 Battery("battery1", 5, x).

 t1 is MissionItem("task1", Loc(40.00, 5.00), Loc(47.00, 8.00), 7.62, 0.4).
 t2 is MissionItem("task2", Loc(47.00, 8.00), Loc(52.00, 2.00), 7.81, 0.2).

 m2 is Mission(t2, NIL).
 m1 is Mission(t1, m2).
}

● Given a partial model, we can generate values for symbolic variables
○ e.g., “Find me the battery capacity sufficient to support the given mission”

Symbolic variable “x”;
defines a partial instance

20

Outline

● Background
● Semantic backplane uses
● Open problems

21

Open problems

1. System model is
extracted. Model may
be “missing” elements

2. A heuristic search
“guesses” new elements

Example: Component (“a”, x)

4. Solver output extracted

5. How can we help users (1) understand,
(2) debug, and (3) repair models?

22

3. Model finding fails
-> Constraints not satisfiable

Open problem: explanation generation

2. A heuristic search
“guesses” new elements

Example: Component (“a”, x)

4. Solver output extracted

23

3. Model finding fails
-> Constraints not satisfiable

Solution 1: map core to
terms and rules

1. System model is
extracted. Model may
be “missing” elements

Open problem: debugging models

24

Derived terms after
execution

Constraints for selected
term to be present

Solution

Idea: use a debugger-style
interface to understand

model execution

Open problem: model repairs

Idea: use fine-tuned
LLMs to generate (1)
explanations, and (2)

repairs

25

Examples available online

● Drone example (and others)
available online at:
https://formula.isis.vanderbilt.edu

○ Periodically taken down for updates
○ Please report issues to

https://github.com/VUISIS/formula/issues

26

https://formula.isis.vanderbilt.edu
https://github.com/VUISIS/formula/issues

Contributions

● Presented our experiences building a semantic backplane for CPS
○ Tools: WebGME + FORMULA 2.0
○ Tight integration between “traditional” modeling tools and formal specification languages is

essential
○ Cross-domain reasoning is essential

● Semantic backplane enables:
○ Integration of heterogeneous modeling languages
○ Cross-domain verification and symbolic analysis

● Open problems
○ Explanation generation, model debugging, model repair

27

Additional slides

28

WebGME

● Meta-programmable, visual
modeling tool

○ Multi-user, collaborative, concurrent
modeling

● Web application (thick
browser-based client)

● Graphical interface can be
customized to match domain
notations

29

FORMULA 2.0 example: specification and verification

● Example: is every list of four
integers sortable via adjacent
compare and swaps?

Example and algorithms described in MSR Technical Report MSR-TR-2013-55
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2013-55.pdf

Defines types

Define what a counterexample is: an input
that does not generate a sorted trace

Recursively generate new traces

We want to try to find a counterexample

Our input model contains one list

30

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2013-55.pdf

FORMULA 2.0 example: specification and verification

● Example: is every list of four
integers sortable via adjacent
compare and swaps?

● Partial execution trace:

Example and algorithms described in MSR Technical Report MSR-TR-2013-55
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2013-55.pdf

input(a, b, c, d)
trace(a, b, c, d)
trace(b, a, c, d), a > b
trace(a, b, c, d), a > b, b > a

✅
✅
⛔

Term not generated;
Recursion terminates

31

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2013-55.pdf

