Software Assurance Tools to Improve
Evidence Strength

Elizabeth Fong

NIST
SCC Workshop, January 7 and 8 2013

Disclaimer — Any products/companies mentioned are for
information only - no endorsement implied



How Much Evidence Is Enough
to Certify systems?

» - Users need information to establish
required metrics (acceptance criteria)

— e.g. Reliabllity, Trustworthiness, etc.

* - Produce evidences to support argument
— Test results
— Artifacts



Measurement of Evidence that the operational and maintenance
requirements and constraints are identified correctly and satisfied

Outline

- Software Metrics and
Measurement

- Software Assurance Tool
Evaluation

- Software Code Label
- Research leading to Scoring



Some Current SAMATE Activities

Static Analysis tool Exposition (SATE)
SAMATE Reference Dataset (SRD)

Precisely Define Some Common Weakness
Enumeration (CWE) Entries (CWE
Formalization/Effectiveness)

Statistics and Universe of Program
Workshop Planning (SUPER Workshop)



Software Metrics Classification

For Product Metrics:
- Size Metrics (No. of elements)

- Structure Metrics (component and structure
levels)

- Complexity Metrics (computational,
algorithmic, logical, functional, etc.)

- Quality Metrics (functional, non-functional,
reliability, usability, efficiency, maintainability, portability)




Measurement Scales

Nominal:
placing it into a category of some kind

Ordinal:

Ranking the various data values

Interval

Can be ranked between values

Ratio

possess an absolute zero




Measurement Methods

Measurable with units:
l.e., LOC, No. of Source Files, No. of defects per thousand LOC

Measurable with scales:
I.e., Cyclomatic complexity, risk (H,M,L)

Assurance Case with claims, arguments, evidence

l.e., Safety case

Scoring and checklist
l.e., SCAP, CVSS




Determine the Strength of the
Evidence Data

- Application of Software Assurance tools based
upon the tool types



Software Assurance Tool Types

- Static Source Code Analysis Tool
- Dynamic Analysis Tool

- Special Purpose Tool
Security-orient tool
Compliance-orient tool
Pedigree analysis tool



Static Analysis tools

- Grep-like (pattern matching, lots of False
Positive, not smart)

-  Smart tool (understand flow, discriminate)
- General tool (broad coverage of

weaknesses)

- Specialized tool (cover only a few

weakness but more depth)



Dynamic Analysis tool

- Web application scanner
- Penetration tester
- Fuzzing tool



Software Label

Software Facts should be:

— Voluntary

— Absolutely simple to produce

— In a standard format for other claims

What could be easily supplied?

— Source available? Yes/No/Escrowed

— Default installation is secure?

— Accessed: network, disk, ...

— What configuration files? (registry, ...)

— Certificates (e.g., "No Severe weaknesses

found by CodeChecker ver. 3.2")

Cautions

— A label can give false confidence.

— A label shut out better software.

— Labeling diverts effort from real
Improvements.

Software Facts

[Name InvadingAlienOS
Version 1996.7.04
|Expected numberof users 15

Modules 5 483 Modules from libraries 4 102

% Vulnerability

Cross Site Scripting 22 65%

Reflected 12 55%
Stored 10 55%

| sQL Injection 2 10%
Buffer overflow 5 95%

| Total Security Mechanisms 284 100%
Authentication 15 5%
Access control 3 1%
Input validation 230 81%
Encryption 3 1%

AES 256 bits, Triple DES

Re port security flaws to: ciwnmeyi@mothership.milkyway

| Total Code 3.1415x107 function points 100%
C 1.1x10° function points 35%
Ratior 2.0415x10° function points 65%

| Test Material 2.718x10° bytes 100%
Data 2.69x10° bytes 99%
Executables 27.18x10° bytes 1%

Documentation 12 058 pages 100%
Tutorial 3971 pages 33%
Reference 6 233 pages 52%
Design & Specification 1 854 pages 15%

Libraries: Sun Java 1.5 runtime, Sun J2EE 1.2.2,

Jakarta log4j 1.5, Jakarta Commons 2.1,
Jakarta Struts 2.0, Harold XOM 1.1rc4, Hunter JDOMv1

Compiled with gcc (GCC) 3.3.1

Stripped of all symbols and relocation information.




Software Rating systems

« OWASP Application Security Verification Standard
(ASVS)

4 levels of security rating: L1 — verified by SwA tools
L2 — Verified manually
L3 - Verified at design phase
L4 — Verified internally

« Veracode Security Rating System

— e.g. AAA (First A represents testing by static analysis.
Second A represents testing by dynamic analysis.
Third A represents human testing)

« Coverity Software Integrity Rating

— Level 1, Level 2 (determined by Coverity static analysis)



How Are Facts Verified and
Certified

Government versus Private
Mandatory versus voluntary
Self-claimed versus Third Party
Open versus Closed



Scoring Systems with CWRAF

- Business Value Context
- Technical Impact scorecard

- Example of Scoring
- CVSS
- CWSS



How Much Evidence Is Enough?

* Progress in tool capabilities

« Standardized dictionary of weaknesses
(CWES)

« Quality of analysis
 Independent V&V

— Labeling
— Scoring




