
Software Development in
Haskell

John Launchbury
CEO, Galois Inc
john@galois.com

David Fellows, CTO Comcast, “The future is easy to see, it’s timing that’s hard to get right.”
 -- Despite this, I’m going to make a prediction about the future

Abstract:
Functional languages have been under academic development for over 30 years. Throughout that time they
supplied key innovations to mainstream languages, but did not meet widespread acceptance themselves. All that
is changing now. A new ground swell of interest is emerging in functional languages because of their ability to
provide compelling stories for the critical software challenges of the decade: multicore and software assurance.
Microsoft has noticed this, and recently announced F#, their first functional language product.
In this talk, we show how the functional language Haskell may be used for system development, supporting a
smooth transition from modeling to implementation. More broadly, we examine the industrial forces and trends
and provide case studies, all to explain how and where functional languages will fit within future industrial
software.

1

© 2008 Galois, Inc.

Functional
Object Oriented

Procedural

Era of Functional Languages

 1980 1990 2000 2010

Informally structured

2

This is my claim. I’m going to back it up. By the end of my talk you might even believe me.
I want to show you the way the world is evolving & what’s going on, and show you the implications

Not: “my language is better than yours”
Rather: “here’s my prediction of what’s going to occur”

2

© 2008 Galois, Inc.

What is a “Functional Language”?

Functional style handles
structures as values

3

Load X
Add Y
Store T
Load W
Mul Z
Add T
Store A

Assembly

A := X*Y + W*Z

Procedural

{N is array size}
a := 0;
for i := 1 to N;
do
begin
 a := a+X[i]*Y[i]
end;

Functional

a = sum (zipWith (*) xs ys)

Examples
Haskell, ML, O’CAML, Scheme, F#, Lustre, Erlang, Mercury, Oz

All practical functional languages blend two styles:
 - Purely functional
 - Effects (communication, state, I/O)

3

© 2008 Galois, Inc.

The World Just Changed: Multicore

“It's incredibly tough to program to
multicore; there are not that many people
in the world that can even do it.”
Ray DePaul
CEO RapidMind, 2007

4

4

© 2008 Galois, Inc.

How Bad Can it Get?

Recent email:

I'm on the GPGPU side here at [...].
Does 320 cores sound interesting?
What do you need?

5

Your C programs will not scale

Tesla: 64 core machine

Tesla, 64 core machine

5

© 2008 Galois, Inc.

Von Neumman Assumption

6

Instructions are sequenced
Mainstream languages have this assumption by default

6

© 2008 Galois, Inc.

Non Von Neumman

7

One program spread out over all the processors

7

© 2008 Galois, Inc.

Parallel Haskell

Jun 12 1990, 12:13 pm
Subject: Re: Haskell availability
Someone asked about whether anyone was working on parallel
implementations of Haskell.
Good news: we are; we have a parallel implementation running on
the GRIP multiprocessor, with absolute wall-clock speedup over the
same programs running on a comparable uniprocessor (never to be
taken for granted!) ...
The compiler would port rather easily to a shared-memory
multiprocessor, but we don't have access to one at present.
Simon Peyton Jones, Glasgow University

8

The compiler gets to make lots of choices about compiling expressions
 -- purity is important

Intellectual reach

8

© 2008 Galois, Inc.

Haskell Threads are Cheap

9

C gcc: 57.1s

Haskell GHC: 6.5s

Haskell was 26 times faster than C# on this test
Other tests have different precise orderings of course, C often on top.

The point: functional languages should not be rejected as “slow”
Also: low cost of threads => programmers will use them all over the place

9

© 2008 Galois, Inc.

Haskell on Multicore

• Purely functional language
– Effects are controlled, no inherent sequencing
– Long history of parallel evaluation research
– World-class optimizing compiler

• Threads
– Forking/blocking Haskell threads, as well as OS threads
– Race conditions rarely arise
– Composable concurrency: transactional memory

• Parallel evaluation strategies
– GHC 6.10: parallel GC
– GHC 6.10: -fvectorise – automatic parallel arrays
– Research on `par` discovery

10

Race conditions come from side effects and concurrency

10

© 2008 Galois, Inc.

The Forces at Work

• Multicore !
• Microsoft !!
• Professional engineering discipline
• Productivity and cost

11

11

© 2008 Galois, Inc.

Microsoft’s Functional Language

12

We will ...
fully integrate the F# language into Visual Studio
and continue innovating and evolving F#. In my mind,
F# is another first-class programming language on the
CLR ...”

Soma Somasegar
Microsoft Developer Division Chief
17 Oct 2007

“One of the important themes in programming languages
over recent years has been a move to embrace ideas from
functional programming.
[Ideas] from functional languages are helping us address
some of the biggest challenges facing the industry today,
from the impedance mismatch between data and objects to
the challenges of the multi-core and parallel computing
space...
F# stems from the functional programming tradition (hence
the ‘F’) and has strong roots in the ML family of languages,
though also draws from C#, LINQ and Haskell ...

12

© 2008 Galois, Inc.

The Forces at Work

• Multicore !
• Microsoft !!
• Professional engineering discipline
• Productivity and cost

13

13

© 2008 Galois, Inc.

Fred Brooks

14

“ How Do We Know What to Design?
One easily thinks of the design of complex systems, hardware or software, as
a rational process that has a rational model [...]

Upon examination, though, such models don’t seem to fit the way real
designers work. In particular, I would assert that it is impossible to set the
requirements for such a design before beginning.
[...] in software engineering, at least, the Waterfall Model persists,
tenaciously and disastrously. Why? Is there any hope for remedying this
situation? ”

Cambridge, 17 Oct 2007

Fred’s Solution:
Separate procurement into design and build.

Different phases and contracts (like civil engineering).

1986 - No Silver Bullet

The design contract emphasizes proof-of-concept and fast prototyping.

14

© 2008 Galois, Inc.

Have software built with
the same diligence and analysis
as other engineers build bridges

High Assurance Software

• Let the software itself be
trustworthy
– Software artifacts to speak for

themselves

– ... rather than hoping to rely on the
process that created them

• Use mathematical models to
enable tractable analysis
– Executable models and formal

methods
– A model is an abstraction that allows

thought at a higher level

• Follow open standards
– Build components with high internal

integrity

– Maximize interoperability

15

Rule of signs is an example of an abstract model

15

© 2008 Galois, Inc.

Engineering in Haskell

 Modeling

• Mathematical foundation
– Allows for mathematical guarantees

of behavior
– High assurance

• Very powerful abstraction
– Say what needs to be said, nothing

more
– Easier to build smarter software

• Executable models
– Automatic memory access and

protection
– Flexible and powerful

 Production

• Smooth path from model to product
– The executable model is the first

prototype
– Incremental refinements from

problem focus to solution focus

• Huge productivity benefits
– Shorter (2-10x), clearer, and more

maintainable code
– Reducing time-to-deployment

• Scalable to complex systems
– Concise expression
– Multicore ready !!

16

Web server, federation of media wikis,
Paul Graham: Shop.com --> Yahoo Stores
Erlang in telecom switches
X-Monad: open source in Haskell by one of our engineers

16

© 2008 Galois, Inc.

X-Monad Feedback

“Suspiciously I relate to any software written in the ”exotic”
languages of programming.

Usually either break is obtained or memory gorges much.

But here everything is written on the fashionable nowadays
Haskell, very rapid and memory it does not gorge.”

(Russia)

17

“Over the past twelve months, 31 developers contributed new
code to xmonad. This is one of the largest open-source teams
in the world, and is in the top 2% of all project teams on
Ohloh ...”

Ohloh Metrics, Feb 2008

About 500 lines of code - very well designed
Don’t assume short = quick
(Story about Pascal)

Lot of design work embodied in this code

17

© 2008 Galois, Inc.

QuickCheck: Property-based Testing

• Write properties (using Haskell)
• State a property about other Haskell functions
• Quick Check automatically generates test

cases based on the structure of the type

18

ordered xs = and (zipWith (<=) xs (drop 1 xs))
prop_Insert x xs = ordered xs ==> ordered (insert x xs)

insert x xs = takeWhile (<x) xs++[x]++dropWhile (<x) xs

18

© 2008 Galois, Inc.

Example Coverage Markup

19

19

© 2008 Galois, Inc.

Haskell Program Coverage Dashboard

20

Interaction of property-based testing (e.g. quickcheck) and coverage is fascinating. Worth a paper. Or PhD.

20

© 2008 Galois, Inc.

Haskell Engineering Advice

• Use the type system to enforce properties
• Use QuickCheck as your design assistant
• Use HPC (program coverage) to test QuickCheck’s reach
• Enforce code quality with serious testing on every commit
• Don’t be tempted by partial functions
• Model effectful systems in purely functional data

structures
• Don’t be tempted by side effects
• Be responsive to bug reports
• Look at your competition’s bugs, audit and prevent them

21

“My favorite pro: ease of maintenance! Change the data type and let the
compiler walk you through the entire code base pointing to every single place you
need to worry about.”

21

© 2008 Galois, Inc.

The Forces at Work

• Multicore !
• Microsoft !!
• Professional engineering discipline
• Productivity and cost

22

22

© 2008 Galois, Inc.

Dijkstra on Code Size

A line of code is a cost not an asset

“[...] expressed programmer productivity in terms of ‘number
of lines of code produced’.
[...] I pointed out that a programmer should produce
solutions, and that, therefore, we should not talk about the
number of lines of code produced, but the number of lines
used, and that this number ought to be booked on the other
side of the ledger. ”

E.W. Dijsktra, Sept 1975

23

Factor of 6-10: Assembly -> C
Factor of 6-10: C -> Haskell

23

© 2008 Galois, Inc.

Old Prototyping Study

24

Lines of Code Lines of Doc Hours

Haskell 85 465 10

Ada 767 714 23

C++ 1105 130

Awk 250 150

Haskell vs. Ada vs. C++ vs. Awk vs. ...
An Experiment in Software Prototyping Productivity
Hudak & Jones, 1994

Ericsson: claim a factor of 6 for Erlang, privately say this is grossly understated

24

© 2008 Galois, Inc.

Line Count Breakdown of Web-Server

21%

18%

18%

16%

1%

11%

6%
8%

Server
WebDAV, HTTP
System Support
Wait-fee File System
Audit
Misc
BAC C-code
Other C-code

Total: 54KLOC of Haskell & C

25

10K of code gives a good chunk of major functionality

Use other languages when they are what is needed

25

© 2008 Galois, Inc.

Functional
Object Oriented

Procedural

Era of Functional Languages!

 1980 1990 2000 2010

Informally structured

26

Microsoft

Assurance
Multicore

Code costs

Let’s make a date: HCSS 2018.
 You can praise me for my insightful prophecy,
 or you can throw rotten tomatoes at me.

26

