SOFTWARE SAFETY

Gerard J. Holzmann

gh@jpl.nasa.gov



IS THERE A PROBLEM?

7 \SDﬁTvE“ﬁ E

HELL



http://www.spectrum.ieee.org/sep05/inthisissue

PROBLEM 1. SOFTWARE GROWS

example: spacecraft control

KNCSL Vi
470,0 600000~
1000000 175000 +~

Mariner 1969 100000 32000
8000 =~
) it 10000 - 3000 e
1000 -
100 { 30

10;,H
1 S

\?go > \r/\/\\ Q@c)\ \@ \?’6)\ ) \??;\ " ’19&\\ Q\\\
A o N A 1 X > Q)ﬁ/
¢ & F ¥ DD §$

D £ & @ O Q N o
& O NI ¢ & v

< g & N ¥

/ ¢d x&\
’ &

the software for Mariner 6 (1969) was
128 words of assembler: equivalent to about 30 lines in C
(It had a backup control system in hardware.)




PROBLEM 2: RESIDUAL DEFECTS

defect insertion

/ regs

design coding

U

testing

a1 4

defect removal

\ defect propagation

I

______

the requirements can be faulty or ambiguous
and they are often incomplete

residual defects
after testing

A

for a good process:
1-10 per KNCSL

for a great process:
0.1-1 per KNCSL

l.e., itis rarely zero



PREVENTION, DETECTION, CONTAINMENT

the process we introduced at JPL

A lab-wide coding standard focused on risk-related rules

* with automated compliance verification

A software developer certification process
* courses focused on SE principles and risk reduction

A senior managers course, focused on software risk

* many senior managers have limited exposure to software

An emphasis on tool-based analysis (and not just people-based)

* including tool-based code review 'semmie
- |
* based on strong static source code analysis Klocworlk

The Proven Leader. Softwa

« and daily checks for coding-rule compliance CodeSonar®

* routine logic model checking for safety-critical parts of the design Spin.y




SYSTEM SAFETY

Design Principles:
the first layer
of defense

simplicity redundancy diversity

Paranoia: the
second layer
of defense

simplified backup fault containment



SOFTWARE SAFETY

* simplicity

 software modules with well-defined rules for
module composition; decoupling; fire-walls

 redundancy
» emphasis on using assertions
* N-version programming is of limited value

+J.C. Knight and N.G. Leveson, “An Experimental Evaluation of the Assumption of Independence in Multi-
version Programming,” IEEE Trans. on SoftwareEngineering,Vol. SE-12, No. 1 (Jan 1986), pp. 96-109.
+L. Sha. “Using Simplicity to Control Complexity,” IEEE Software, July-August 2001, pp. 20-28.

* diversity

* hierarchical redundancy: hierarchies of increasingly
simple and more strongly verifiable modules




DO ASSERTIONS MAKE A DIFFERENCE?

ng the Relationship between Software Assertions and Code Quali
An Empirical Investigation

? Thomas Ball *

irce control systems, Correlations.

1. Introduction

There 1s much literature that makes a case for the use of assertions and d es the potential

benefits of using assertions in software d ment. But to date, there ha en lumited studies

in academia or in industry that empirically address the utility of assertions. Even when we talk to

opers within M ft there are no unified opinions about the usefulness of assertions.

FaulwKLOC

AssenamLOC

Companent A1

Figure 3: Scatter plots between assertion density and fault density

“with an increase in assertion density
there is a statistically significant
decrease in fault density”

There are 250,000 assertions in the
Microsoft Office source code (25M SLOC)
i.e., 1% of the code [C.A.R. Hoare2003]




AN OUNCE OF PREVENTION

Figure 1-4. Cost Growth

200
®
oMV
e TDRSS

°
HST

c
S
=
()
>
o
)
(o)
]
o
=
)
2
[0
o

o Voyager
Ulysses

o ®
10 15 20
Percentage spent predesign

Source: “Customer-centered products — creating successful products through smart requirements management,”
lvy F. Hooks & Kristin A. Farry, Amacom, NY, 2001, 272 pgs, ISBN 13-978-0-8144-0568-0



“The difference between a thing that can break
and a thing that can't break is that when the thing
that can't break breaks then it can't be fixed.”

(Hitchhiker's Guide to the Galaxy, Book 5)

NASA/JPL Laboratory
for Reliable software

10



THE JPL CODING STANDARD FOR C

LOC-1: language compliance
LOC-2: predictable execution
LOC-3: defensive coding

LOC-4: code clarity

LOC-5: MISRA shall compliance
LOC-6: MISRA should compliance

11



THE POWER OF 10 RULES EET,

CIiticaI Code

Restrict to simple control flow constructs

Do not use recursion and give all loops a fixed upper-bound
Do not use dynamic memory allocation after initialization
Limit functions to no more than ~60 lines of text

Use minimally two assertions per function on average
Declare data objects at the smallest possible level of scope

Check the return value of non-void functions; check the validity of
parameters

Limit the use of the preprocessor to file inclusion and simple macros
Limit the use of pointers. Use no more than N level of dereferencing
Compile with all warnings enabled, and use source code analyzers

http://spinroot.com/p10/

12



