
Gerard J. Holzmann

gh@jpl.nasa.gov

SOFTWARE SAFETY

IS THERE A PROBLEM?

2

http://www.spectrum.ieee.org/sep05/inthisissue

PROBLEM 1: SOFTWARE GROWS

example: spacecraft control

30

3000

470000

8000
32000

175000
600000

1

10

100

1000

10000

100000

1000000

KNCSL

172,000,0000

(shuttle+ground software)

470,0000

the software for Mariner 6 (1969) was

128 words of assembler: equivalent to about 30 lines in C

(It had a backup control system in hardware.)

Mariner 1969

4M

3

reqs design coding testing

defect insertion

defect propagation

defect removal

the requirements can be faulty or ambiguous

and they are often incomplete

for a good process:

1-10 per KNCSL

for a great process:

0.1-1 per KNCSL

i.e., it is rarely zero

residual defects

after testing

4

PROBLEM 2: RESIDUAL DEFECTS

PREVENTION, DETECTION, CONTAINMENT
the process we introduced at JPL

• A lab-wide coding standard focused on risk-related rules

• with automated compliance verification

• A software developer certification process

• courses focused on SE principles and risk reduction

• A senior managers course, focused on software risk

• many senior managers have limited exposure to software

• An emphasis on tool-based analysis (and not just people-based)

• including tool-based code review

• based on strong static source code analysis

• and daily checks for coding-rule compliance

• routine logic model checking for safety-critical parts of the design

5

SYSTEM SAFETY

simplicity redundancy diversity

Paranoia: the

second layer

of defense

simplified backup fault containment

Design Principles:

the first layer

of defense

6

SOFTWARE SAFETY

• simplicity

• software modules with well-defined rules for
module composition; decoupling; fire-walls

• redundancy

• emphasis on using assertions

• N-version programming is of limited value

• diversity

• hierarchical redundancy: hierarchies of increasingly
simple and more strongly verifiable modules

•J.C. Knight and N.G. Leveson, “An Experimental Evaluation of the Assumption of Independence in Multi-

version Programming,” IEEE Trans. on SoftwareEngineering,Vol. SE-12, No. 1 (Jan 1986), pp. 96-109.

•L. Sha. “Using Simplicity to Control Complexity,” IEEE Software, July-August 2001, pp. 20-28.

7

8

DO ASSERTIONS MAKE A DIFFERENCE?

MSR-TR-2006-54

There are 250,000 assertions in the
Microsoft Office source code (25M SLOC)
i.e., 1% of the code [C.A.R. Hoare2003]

“with an increase in assertion density
 there is a statistically significant
 decrease in fault density”

AN OUNCE OF PREVENTION

Source: “Customer-centered products – creating successful products through smart requirements management,”

Ivy F. Hooks & Kristin A. Farry, Amacom, NY, 2001, 272 pgs, ISBN 13-978-0-8144-0568-0

“The difference between a thing that can break

and a thing that can't break is that when the thing

that can't break breaks then it can't be fixed.”

 (Hitchhiker's Guide to the Galaxy, Book 5)

10

THE JPL CODING STANDARD FOR C

LEVELS OF COMPLIANCE

• LOC-1: language compliance

• LOC-2: predictable execution

• LOC-3: defensive coding

• LOC-4: code clarity

• LOC-5: MISRA shall compliance

• LOC-6: MISRA should compliance

11

1. Restrict to simple control flow constructs

2. Do not use recursion and give all loops a fixed upper-bound

3. Do not use dynamic memory allocation after initialization

4. Limit functions to no more than ~60 lines of text

5. Use minimally two assertions per function on average

6. Declare data objects at the smallest possible level of scope

7. Check the return value of non-void functions; check the validity of
parameters

8. Limit the use of the preprocessor to file inclusion and simple macros

9. Limit the use of pointers. Use no more than N level of dereferencing

10. Compile with all warnings enabled, and use source code analyzers

THE POWER OF 10 RULES

http://spinroot.com/p10/

12

