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SOFTWARE SAFETY 



IS THERE A PROBLEM? 

2 

http://www.spectrum.ieee.org/sep05/inthisissue


PROBLEM 1: SOFTWARE GROWS 

example:  spacecraft control 
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470,0000 

the software for Mariner 6 (1969) was 

128 words of assembler: equivalent to about 30 lines in C 

(It had a backup control system in hardware.) 

Mariner 1969 

4M 
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reqs design coding testing 

        

defect insertion 

defect propagation 

        

defect removal 

the requirements can be faulty or ambiguous 

and they are often incomplete 

for a good process: 

1-10 per KNCSL 

for a great process: 

0.1-1 per KNCSL 

i.e., it is rarely zero 

residual defects 

after testing 
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PROBLEM 2: RESIDUAL DEFECTS 



PREVENTION, DETECTION, CONTAINMENT 
the process we introduced at JPL 

• A lab-wide coding standard focused on risk-related rules 

• with automated compliance verification 

• A software developer certification process 

• courses focused on SE principles and risk reduction 

• A senior managers course, focused on software risk 

• many senior managers have limited exposure to software 

• An emphasis on tool-based analysis (and not just people-based) 

• including tool-based code review 

• based on strong static source code analysis 

• and daily checks for coding-rule compliance 

• routine logic model checking for safety-critical parts of the design 

5 



SYSTEM SAFETY 

simplicity redundancy diversity 

Paranoia: the 

second layer 

of defense 

simplified backup fault containment 

Design Principles: 

the first layer 

of defense 
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SOFTWARE SAFETY 

• simplicity 

• software modules with well-defined rules for 
module composition; decoupling; fire-walls 

 

• redundancy 

• emphasis on using assertions 

• N-version programming is of limited value 

 

 

• diversity 

• hierarchical redundancy: hierarchies of increasingly 
simple and more strongly verifiable modules 

•J.C. Knight and N.G. Leveson, “An Experimental Evaluation of the Assumption of Independence in Multi-

version Programming,” IEEE Trans. on SoftwareEngineering,Vol. SE-12, No. 1 (Jan 1986), pp. 96-109.  

•L. Sha. “Using Simplicity to Control Complexity,” IEEE Software, July-August 2001, pp. 20-28. 
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DO ASSERTIONS MAKE A DIFFERENCE? 

MSR-TR-2006-54 

There are 250,000 assertions in the 
Microsoft Office source code (25M SLOC) 
i.e., 1% of the code [C.A.R. Hoare2003] 

“with an increase in assertion density 
 there is a statistically significant 
 decrease in fault density” 



AN OUNCE OF PREVENTION 

Source: “Customer-centered products – creating successful products through smart requirements management,” 

Ivy F. Hooks & Kristin A. Farry,  Amacom, NY, 2001, 272 pgs, ISBN 13-978-0-8144-0568-0 



“The difference between a thing that can break 

and a thing that can't break is that when the thing 

that can't break breaks then it can't be fixed.” 

   (Hitchhiker's Guide to the Galaxy, Book 5) 
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THE JPL CODING STANDARD FOR C 

LEVELS OF COMPLIANCE 

• LOC-1: language compliance 

• LOC-2: predictable execution 

• LOC-3: defensive coding 

• LOC-4: code clarity 

• LOC-5: MISRA shall compliance 

• LOC-6: MISRA should compliance 
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1. Restrict to simple control flow constructs 

2. Do not use recursion and give all loops a fixed upper-bound 

3. Do not use dynamic memory allocation after initialization 

4. Limit functions to no more than ~60 lines of text 

5. Use minimally two assertions per function on average 

6. Declare data objects at the smallest possible level of scope 

7. Check the return value of non-void functions; check the validity of 
parameters 

8. Limit the use of the preprocessor to file inclusion and simple macros 

9. Limit the use of pointers. Use no more than N level of dereferencing 

10. Compile with all warnings enabled, and use source code analyzers 

THE POWER OF 10 RULES 

http://spinroot.com/p10/ 
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