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Suppose

♦ … you could compute solutions to one of the world’s 
largest and most complex computational problems

by filling in some blanks in a table
♦ … your code ran up to 100 times faster (and more) 

than typical schedulers for the same problems
♦ … you could prove the solutions are correct
♦ … you could change your system in a fraction of the 

time required for today’s practices
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Computer Aided Mission Planner (CAMPS)

Well, the Air Force could.  

The Air Force Mobility Command will field 
CAMPS with a capability like that by the end of 
2001.

CAMPS is built with an generator based on Kestrel 
Institute’s software synthesis technology.
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Kestrel’s mission is wide spectrum

♦ Conduct basic computer science research
♦ Build prototype applications
♦ Transfer technology
♦ Incubate technology
♦ Spin-out technology companies

…and our focus on program synthesis is obsessive
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30 year technology path
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Presentation Outline

♦ What is Specware?
♦ What can you do with it?
♦ How do you use it?
♦ How does it supply leverage?
♦ Who has used it?
♦ How do you work with us?
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Specware provides an environment…

…for high assurance computing
…by means of clear expression of design theories
…and for those theories

♦ …a computing framework to evaluate them
♦ …tools for refining them
♦ …inference systems to reason about them
♦ …semantic rigor to trust them
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What can you do with Specware?
♦ Build specifications

♦ Write, parse, compile, save 
♦ Combine, reuse, revise, import, refine
♦ Parametrize on other specifications

♦ Refine specifications to code
♦ Specware 2000, Boeing equipment layout, etc.
♦ Lisp, C (under re-construction), Java (under development)

♦ Prove correctness of the specifications
♦ Choice of several provers: Snark, Gandalf, other

♦ Analyze specifications and code
♦ Motorola AIM
♦ Java BCV, SVA (NSA), MoBIES (DARPA) 
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How do you build specifications?

♦ Use the basic Specware language to:
♦ Introduce sorts, constants, definitions, operations
♦ Express axioms to restrict the behavior of components
♦ Build a domain specification language

♦ Get system help for: 
♦ Defining, importing, and revising specifications
♦ Composing and refining specifications 
♦ Proving theorems about specifications

♦ Use built-in automation to:
♦ Assist construction of composite specifications from 

their component modules
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Example specification from bootstrapping Specware

spec Category = 
import translateSpec ReflexiveGraph

[“Node”  “Obj”,
“Edge”   “Arr”]

sort Composable = { (f, g) : Arr × Arr | dom(f) = cod(g) }
op compose : Composable → Arr   
axiom dom-compose is ∀ (f, g) (dom  compose)(g,f) = dom(f)
axiom cod-compose is ∀ (f, g) (cod  compose)(g,f) = cod(g)
axiom assoc  is ∀ (f, g, h) compose(h, compose(g,f)) = 

compose(compose(h, g), f)
axiom r-unit  is ∀ (f) compose(f, (ident  dom) f) = f
axiom l-unit  is ∀ (f) compose((ident  cod) f, f) = f

end-spec
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Main spec activity: composition and refinement

Sets Passwords

Sets of Passwords

Refinement??
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Specware diagrams have design arrows

flow of control calling tree structure

design arrows

Composition & refinement with semantics = Design    You reach executability via design.
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Benefits 

♦ Keep concepts isolated
♦ Smaller, clearer, more tractable

♦ Efficient composition
♦ Common elements unified

♦ Separation
♦ “what” from “how”
♦ “how” can be implemented in stages (stepwise 

refinement)
♦ Assurance

♦ Proof obligations identified
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Refinement example: Sets

Program (Lists)

Refinement

Refinement

Refined
Specification (Sequences)

Specification (Sets)
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Refinement example: Passwords

Program (Integers)

Refinement

Refinement

Refined
Specification (Naturals)

Specification (Passwords)
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Refinement of a composition

Sets
of
Passwords

Sequences
of
Naturals

Lists
of
Integers
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Code Synthesis

Boolean
Integer
Function
If-then-else
Fun-app

Base Specs

Target Code

public class Verifier {

…

…

}

Formal 
specifications
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Source of Specware’s leverage

Libraries of 
optimizations, 
tactics, design 
strategies

Composition & 
refinement engine

Categories

Morphisms

Colimits 

Divide & conquer

Partial evaluation

Finite differencing

Context dependent simplification

Global search

…and more 

Diagrams of diagrams

Grothendieck construction

Natural transformations

Software Design Knowledge

Sound Mathematical Foundation
Logics

p-specs

…and more 
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Using Specware’s leverage

Plus … family of 
related applications

Payoff:
–Assurance

–Maintainability

–Reuse

–Performance

Application 
Domain 

Knowledge

•Theory #1
•Theory #2
.
.
•Theory #T
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From research to operations

Policy
Requirements

Research
Prototype

Domain
Models

Operation
Requirements

Software
Expert
(Ph.D.) Application

Expert
(Ph.D.) Policy

Analysts
(M.S., C.S.) Operations

Manager

e.g. “divide-and-
conquer design 

knowledge”
add

e.g. ship model
e.g. crew 

scheduling

location-specific
schedule 
generator
FAA, DOD

caption

level of knowledge required

operation
schedule
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A structured spec for scheduling

Reservation
= Resource×Task×Time

Resource

Time, Quantity

po

Task

Schedule
= Set(Reservation)

1-Sort

Set

Scheduler
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Transportation domain modeling

Synchronously Reusable

examples: ship, aircraft, truck
constraints: synchronized blocks of reservations

min separation between blocks

Exact Capacity
example: wafer oven
constraint: lb = ub on capacity

Nonsharable
examples: berth, runway, crew
constraint: capacity = 1

Resource

Consumable
examples: fuel, crew time
constraint: cum. use ≤ cum. avail

cumulative
availability

cumulative
usage

time time

time

time

Reusable

time

examples: parking lots, ramp space,
parallel processors, power

constraints: upper bound on capacity
finite usage intervals
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Set(A×B×C)

Map(A, Set(A×B×C))

A, B, C

Map

A, B, C

Time, Quantity

Task

Resource

Reservation
= Resource×Task×Time

Schedule
= set(Reservation)

Time, Quantity

Task

Resource

Reservation
= Resource×Task×Time

Schedule
= Map(Resource, Set(Reservation))

Map

Diagram Refinement
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Planware Generator

Resource Parameter Lower
Bound Exact Value Upper Bound

Start Time Task.release Task.pick-up

Resource-type Multi-choice menu Sum of task
req’d resources

Instantaneous
Demand Sum of task demands
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Planware Generator–2

Resource

Reusable
resource

Parameter Lower
Bound Exact Value Upper Bound

Start Time Task.release Finish - Dur Task.pick-up

Resource-type Multi-choice menu Sum of task
req’d resources

Instantaneous
Demand min-cap Sum of task demands max-cap

Duration 0 Finish – Start

Finish Time Task.ead Start + Dur Task.due-date

Max-capacity r.r-type.max-cap

Also: Precedes, Min-capacity
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Planware Generator–3

Synchronous
resource

Resource

Reusable
resource

Parameter Lower
Bound Exact Value Upper Bound

Start Time Task.release Finish - Dur Task.pick-up

Resource-type Multi-choice menu Sum of task
req’d resources

Instantaneous
Demand min-cap Sum of task demands max-cap

Duration 0 Finish – Start

Finish Time Task.ead Start + Dur Task.due-date

Max-capacity r.r-type.max-cap

Separation 0 r.r-type.separation

Also: Precedes, Min-capacity
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Performance

time

KI Airlift
Scheduler

JFAST Airlift
Simulator

FLOGEN Airlift
Scheduler

3-8 minutes

2.5 hours

36 hours

~25x
slower

~350x
slower

Notes:

• 10000 item movements

• data from 1997
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Important users

♦ Motorola
♦ NSA
♦ Boeing
♦ Kestrel Institute (KI)
♦ Kestrel Technology LLC (KT)
♦ Other (Georgia Tech, Lockheed Martin, …)
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Motorola work

♦ Peter White, Conan Dailey, et al.
♦ Used Specware 1.x to create a specification 

for an OS separation kernel
♦ Successful application

♦ Security proven to NSA 
♦ Embedded in commercially available AIM 

processor
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NSA experiment
Bake-Off : Two teams given
• same requirements document
• same time
• same funds

Each team implemented the 
system independently, and a 
third party tested code and 
awarded reliability scores.

Methodologies Used
Specware
Specware specification & code synthesis
CMM
Software Engineering Institute Capability 
Maturity Model Level 4 with UML 
specification & initial design

Distribution of Code Errors

Module
1

Module
2

Module
3

Module
4

. . .

Module
1

Module
2

Module
3

Module
4

. . .

error
rate

error
rate

CMM

Specware
0

Reliability Scores for Critical Functionality

56%

77%

98% predicted reliability with
specification validation

CMM Specware

R
el

ia
bi

lit
y
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Boeing work

♦ FAA-compliant 
electronic equipment 
rack layout

♦ Maintain separations
♦ Maintain redundancy
♦ Maintain ease of access
♦ Minimize costs

• Cable length, etc.
♦ Etc., etc.

Physics

physical-object, g,
weight, mass, volume, density,
weight(p) = mass(p) * g,
mass(p) = volume(p) * density(p)

Real Numbers

Geometry

geometry, volume,
box, height, length, width, box-volume,
cylinder, radius, depth, cylinder-volume,
box-volume(b) = height(b) * length(b) * width(b),
cylinder-volume(c) = depth(c) * pi * radius(c)^2

Parts

part, g, weight, mass, volume, ...,
material, aluminum-7075,
geometry, box, box-volume, …,
weight(p) = mass(p) * g, ... , 
if material(p)=aluminum-7075 …,
box-volume(b) = ..., …

Materials

material, aluminum-7075,
if material(p)=aluminum-7075
 then density(p)=20

import

import

import
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Boeing (cont’d)

Manufactured Parts
part, manufacturing-cost,
cost-of-raw-stock, cost-of-drilling-hole,
If material(p)=aluminum-7075 then
 cost-of-drilling-hole(p,h)= 2*cylinder-volume(h)
 cost-of-raw-stock(p) = 5*raw-stock-volume(p)

Parts
part, weight, mass, ..., volume, height, ...
weight(p) = mass(p) * g, ... , 
box-volume(b) = ..., ... 

Panels
panel, boundary, hole, number-of-holes,
vertical separation, horizontal separation,
volume(p) =box-volume(boundary(p)) -
  (number-of-holes(p)*cylinder-volume(hole(p)))
material(p) = aluminum-7075

Manufactured Panels
panel, cost,
raw-stock-volume(p) = box-volume(boundary(p))
manufacturing-cost(p) = cost-of-raw-stock(p) +
   number-of-holes(p)*cost-of-drilling-hole(p,hole(p))
cost(p) = (5*manufacturing-cost(p)) + (2*weight(p))

Colimit of Diagram

import

import

import
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Boeing (cont’d)

Optimization Problems

Manufactured Panels
Requirement Spec

Branch and Bound
Optimization Problems

Panel Layout Problem Optimization Problems

Manufactured Panels
Implementation

Branch and Bound
Algorithm Schema

Panel Layout Solution
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Kestrel’s recent work using Specware

♦ High assurance Java virtual machine
♦ Network vulnerability analysis
♦ Bootstrapping Specware in its own language
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Java bytecode verifier

♦ First complete formal executable specification and 
validation of bytecode verification

♦ Uncovered several flaws in the informal 
specification 

♦ Designed & tested specification modifications to 
eliminate those flaws and enhance the 
performance

♦ By-product: reusable components, e.g, a data flow 
analysis engine

Described later in this workshop
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Network vulnerability analysis

♦ Detects vulnerabilities in COTS software 
applications

♦ Works on byte code  usable even when 
sources aren’t available

♦ Early stages of work

Described later in this workshop
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What’s new in Specware?

♦ Language features
♦ 1st order polymorphism
♦ automatic relax/restrict
♦ imperative constructs

♦ Much more compact 
& readable syntax

♦ record notation
♦ named co-products
♦ infix operations

♦ Bootstrapped system
♦ Larger test suite 

(including Specware)
♦ Meta-language for 

programmable tactics & 
replay

♦ Prover Integration
{Snark, Gandalf, …}

♦ Hosting on Wintel & 
Linux

♦ Refine-free (simpler 
licensing)
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Roles of KI and KT

tools

generator

application
KI: basic 
research

tools

generator

application
KT: tech 
transition

tools

generator
NewCo: 
COTS

application
 Kestrel Institute (KI)

 Non-profit R&D

 Emphasis on basic and exploratory research

 Contained growth

 Core technology feeding diversity of 
applications

 Academic spirit

♦ Kestrel Technology LLC (KT)
♦ For-profit R&D
♦ Emphasis on service for using and 

extending KI technology
♦ Growth-oriented
♦ Narrow application focus
♦ Commercial spirit
♦ Spin-out companies
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BACKUP SLIDES AFTER HERE
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Development plans

♦ Ongoing work
♦ Hereditary diagrams
♦ Optimizations
♦ C code synthesis

♦ Language extensions
♦ Dependent types
♦ Relax constraint on morphisms 

and sort-structure
♦ Non-deterministic operators

♦ Inference
♦ Extend Gandalf
♦ Extend inference tactics

♦ Spec categories
♦ Support for theory slicing
♦ Support for targeting 

imperative and OO languages 
♦ High performance output code

♦ C, Java
♦ Designware

♦ Application support libraries
♦ Move Slang-based libraries 

into MetaSlang
♦ Java-based GUI

♦ Interface to diagrams
♦ Interface to Designware
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Example of a colimit

spec TRANSITIVE -RELATION is
sort E
op _tr_ : E, E → Boolean
axiom transitivity is 

a tr b ∧ b tr c ⇒ a tr c
end-spec

spec REFLEXIVE-RELATION is
sort E
op _rr_ : E, E → Boolean
axiom reflexivity is  a rr a

end-spec

spec PREORDER-RELATION is
sort E
op ≤ : E, E → Boolean
axiom reflexivity is 

a ≤ a
axiom transitivity is 

a ≤ b ∧ b ≤ c ⇒ a ≤ c
end-spec

spec BINARY-RELATION is
sort E
op _br_ : E, E → Boolean

end-spec
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World class research

♦ Director
♦ Fellow of the ACM
♦ Winner of the Grace Hopper 

Award
♦ Consultant to the Defense 

Science Board
♦ Adjunct professor at Stanford

♦ CTO
♦ Fellow of the AAAI 
♦ Former chair of IFIPS 2.1
♦ Adjunct professor at Stanford

♦ Staff includes:
♦ Current chair of IFIP 2.1
♦ Several DARPA PIs
♦ Experts in 

• Category theory
• Program synthesis
• Functional programming
• Java security
• Optimization
• Algorithm design and synthesis
• Resource allocation
• Network optimization
• Signal processing
• …and more
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FAQs

1. Do you have an independent proof of correctness of 
generated code? 

2. Do you think I would write in MetaSlang?
3. Do you expect me to maintain MetaSlang?
4. Why not just use C++, Java, Haskell, B, PVS, …?
5. What about my existing body of code?
6. Can your output code outperform my hand-crafted 

code?
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Taxonomy of algorithm theories

Problem Theory
(D|I → R|O)

generate-and-test

Constraint  Satisfaction
(R = set of maps) Global Structure

(R = set + recursive partition)
global search
binary Search

backtrack
branch-and-bound

Local Structure
(R = set + relation)

local search
hill climbing

simulated annealing
tabu search

Local Structure
(R = set + relation)
genetic algorithms

Local Poset Structure
(R = set + partial order)

Local Semilattice Structure
(R = semilattice)

GS-CSP
(R = recursively partitioned

set of maps)

GS-Horn-CSP
(Horn-like Constraints)
constraint propagation

Monotone
Deflationary Function
fixed point iteration

Integer
Linear

Programming
0-1 methods

Linear
Programming

simplex method
interior point
primal dual

Network Flow
specialized simplex

Ford-Fulkerson

Transportation
NW algorithm

Assignment Problem
Hungarian method

Divide-and-Conquer
divide-and-conquer

Problem Reduction
Generators

dynamic programming
branch-and-bound
game tree search

Complement
Reduction

sieves

Problem Reduction
Structure
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Basic operations specs
spec BIN-OP is
sort U
op f : U * U -> U
end-spec

spec COMMUTATIVE-BIN-OP is
import BIN-OP
axiom commutativity is  fa(x,y) f(x,y) = 

f(y,x)
end-spec

spec IDEMPOTENT-BIN-OP is
import BIN-OP
axiom idempotence is  fa(x) f(x,x) = x
end-spec

spec ASSOCIATIVE-BIN-OP is
import BIN-OP
axiom associativity is  fa(x,y,z) f(x,f(y,z)) = 

f(f(x,y),z)
end-spec

spec BIN-OP-w-ID is
import BIN-OP
op id : U
axiom left-identity is   fa(x) f(id,x) = x
axiom right-identity is  fa(x) f(x,id) = x
end-spec

spec BIN-OP-w-ABS is
import BIN-OP
op abs : U
axiom left-absorption is   fa(x) f(abs,x) = abs
axiom right-absorption is  fa(x) f(x,abs) = abs
end-spec
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Semilattice
def SEMILATTICE-import : Spec =
diagramColimit("SEMILATTICE-

import",
[BIN-OP,
COMMUTATIVE-BIN-OP,
IDEMPOTENT-BIN-OP,
ASSOCIATIVE-BIN-OP],
[BIN-OP !--> 

COMMUTATIVE-BIN-OP,
BIN-OP !--> 

IDEMPOTENT-BIN-OP,
BIN-OP !--> 

ASSOCIATIVE-BIN-OP])

spec SEMILATTICE is

import SEMILATTICE-import

op pord1 : U * U -> Boolean
def pord1(x,y) = (f(x,y) = x)

op pord2 : U * U -> Boolean
def pord2(x,y) = (f(x,y) = y)

end-spec
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Semilattice
def SEMILATTICE-w-ID : Spec =
diagramColimit("SEMILATTICE-w-ID",

[BIN-OP,
SEMILATTICE,
BIN-OP-w-ID],
[BIN-OP !--> SEMILATTICE,
BIN-OP !--> BIN-OP-w-ID])

def SEMILATTICE-w-ABS : Spec =
diagramColimit("SEMILATTICE-w-ABS",

[BIN-OP,
SEMILATTICE,
BIN-OP-w-ABS],
[BIN-OP !--> SEMILATTICE,
BIN-OP !--> BIN-OP-w-ABS])

def SEMILATTICE-w-ID-n-ABS : Spec =
diagramColimit("SEMILATTICE-w-ID-n-ABS",

[SEMILATTICE,
SEMILATTICE-w-ID,
SEMILATTICE-w-ABS],
[SEMILATTICE !--> SEMILATTICE-w-ID,
SEMILATTICE !--> SEMILATTICE-w-ABS])

def BV-DATA-FLOW : Spec =
diagramColimit("BV-DATA-FLOW",

[DATA-FLOW-param,
DATA-FLOW,
TRANSFER-FUNCTIONS,
MAPS],

[DATA-FLOW-param !--> 
DATA-FLOW,

DATA-FLOW-param ---> 
TRANSFER-FUNCTIONS

where ["U"     |-> "BVSL",
"f"     |-> "join",
"id"    |-> "btm",
"abs"   |-> "top",
"pord1" |-> "gtq",
"pord2" |-> "ltq"],

MAPS !--> DATA-FLOW,
MAPS !--> TRANSFER-

FUNCTIONS])
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