
Kestrel
Institute

Specware™

John Anton
Kestrel Institute

March 29, 2001

Kestrel
Institute

29 Mar. 2001

Suppose

♦ … you could compute solutions to one of the world’s
largest and most complex computational problems

by filling in some blanks in a table
♦ … your code ran up to 100 times faster (and more)

than typical schedulers for the same problems
♦ … you could prove the solutions are correct
♦ … you could change your system in a fraction of the

time required for today’s practices

Kestrel
Institute

29 Mar. 2001

Computer Aided Mission Planner (CAMPS)

Well, the Air Force could.

The Air Force Mobility Command will field
CAMPS with a capability like that by the end of
2001.

CAMPS is built with an generator based on Kestrel
Institute’s software synthesis technology.

Kestrel
Institute

29 Mar. 2001

Kestrel’s mission is wide spectrum

♦ Conduct basic computer science research
♦ Build prototype applications
♦ Transfer technology
♦ Incubate technology
♦ Spin-out technology companies

…and our focus on program synthesis is obsessive

Kestrel
Institute

29 Mar. 2001

30 year technology path

move robot onto stage

insertion sort

quick sort

image match

family of
transportation schedulers

10

25

50

120

3K

7K

Lines of
code

1970 1980 1990 2000

20K
multi-resource
scheduler

Java bytecode
verifier

software vulnerability
analysis

Kestrel
Institute

29 Mar. 2001

Presentation Outline

♦ What is Specware?
♦ What can you do with it?
♦ How do you use it?
♦ How does it supply leverage?
♦ Who has used it?
♦ How do you work with us?

Kestrel
Institute

29 Mar. 2001

Specware provides an environment…

…for high assurance computing
…by means of clear expression of design theories
…and for those theories

♦ …a computing framework to evaluate them
♦ …tools for refining them
♦ …inference systems to reason about them
♦ …semantic rigor to trust them

Kestrel
Institute

29 Mar. 2001

What can you do with Specware?
♦ Build specifications

♦ Write, parse, compile, save
♦ Combine, reuse, revise, import, refine
♦ Parametrize on other specifications

♦ Refine specifications to code
♦ Specware 2000, Boeing equipment layout, etc.
♦ Lisp, C (under re-construction), Java (under development)

♦ Prove correctness of the specifications
♦ Choice of several provers: Snark, Gandalf, other

♦ Analyze specifications and code
♦ Motorola AIM
♦ Java BCV, SVA (NSA), MoBIES (DARPA)

Kestrel
Institute

29 Mar. 2001

How do you build specifications?

♦ Use the basic Specware language to:
♦ Introduce sorts, constants, definitions, operations
♦ Express axioms to restrict the behavior of components
♦ Build a domain specification language

♦ Get system help for:
♦ Defining, importing, and revising specifications
♦ Composing and refining specifications
♦ Proving theorems about specifications

♦ Use built-in automation to:
♦ Assist construction of composite specifications from

their component modules

Kestrel
Institute

29 Mar. 2001

Example specification from bootstrapping Specware

spec Category =
import translateSpec ReflexiveGraph

[“Node”  “Obj”,
“Edge”  “Arr”]

sort Composable = { (f, g) : Arr × Arr | dom(f) = cod(g) }
op compose : Composable → Arr
axiom dom-compose is ∀ (f, g) (dom  compose)(g,f) = dom(f)
axiom cod-compose is ∀ (f, g) (cod  compose)(g,f) = cod(g)
axiom assoc is ∀ (f, g, h) compose(h, compose(g,f)) =

compose(compose(h, g), f)
axiom r-unit is ∀ (f) compose(f, (ident  dom) f) = f
axiom l-unit is ∀ (f) compose((ident  cod) f, f) = f

end-spec

Kestrel
Institute

29 Mar. 2001

Main spec activity: composition and refinement

Sets Passwords

Sets of Passwords

Refinement??

Kestrel
Institute

29 Mar. 2001

Specware diagrams have design arrows

flow of control calling tree structure

design arrows

Composition & refinement with semantics = Design  You reach executability via design.

Kestrel
Institute

29 Mar. 2001

Benefits

♦ Keep concepts isolated
♦ Smaller, clearer, more tractable

♦ Efficient composition
♦ Common elements unified

♦ Separation
♦ “what” from “how”
♦ “how” can be implemented in stages (stepwise

refinement)
♦ Assurance

♦ Proof obligations identified

Kestrel
Institute

29 Mar. 2001

Refinement example: Sets

Program (Lists)

Refinement

Refinement

Refined
Specification (Sequences)

Specification (Sets)

Kestrel
Institute

29 Mar. 2001

Refinement example: Passwords

Program (Integers)

Refinement

Refinement

Refined
Specification (Naturals)

Specification (Passwords)

Kestrel
Institute

29 Mar. 2001

Refinement of a composition

Sets
of
Passwords

Sequences
of
Naturals

Lists
of
Integers

Kestrel
Institute

29 Mar. 2001

Code Synthesis

Boolean
Integer
Function
If-then-else
Fun-app

Base Specs

Target Code

public class Verifier {

…

…

}

Formal
specifications

Kestrel
Institute

29 Mar. 2001

Source of Specware’s leverage

Libraries of
optimizations,
tactics, design
strategies

Composition &
refinement engine

Categories

Morphisms

Colimits

Divide & conquer

Partial evaluation

Finite differencing

Context dependent simplification

Global search

…and more

Diagrams of diagrams

Grothendieck construction

Natural transformations

Software Design Knowledge

Sound Mathematical Foundation
Logics

p-specs

…and more

Kestrel
Institute

29 Mar. 2001

Using Specware’s leverage

Plus … family of
related applications

Payoff:
–Assurance

–Maintainability

–Reuse

–Performance

Application
Domain

Knowledge

•Theory #1
•Theory #2
.
.
•Theory #T

Kestrel
Institute

29 Mar. 2001

From research to operations

Policy
Requirements

Research
Prototype

Domain
Models

Operation
Requirements

Software
Expert
(Ph.D.) Application

Expert
(Ph.D.) Policy

Analysts
(M.S., C.S.) Operations

Manager

e.g. “divide-and-
conquer design

knowledge”
add

e.g. ship model
e.g. crew

scheduling

location-specific
schedule
generator
FAA, DOD

caption

level of knowledge required

operation
schedule

Kestrel
Institute

29 Mar. 2001

A structured spec for scheduling

Reservation
= Resource×Task×Time

Resource

Time, Quantity

po

Task

Schedule
= Set(Reservation)

1-Sort

Set

Scheduler

Kestrel
Institute

29 Mar. 2001

Transportation domain modeling

Synchronously Reusable

examples: ship, aircraft, truck
constraints: synchronized blocks of reservations

min separation between blocks

Exact Capacity
example: wafer oven
constraint: lb = ub on capacity

Nonsharable
examples: berth, runway, crew
constraint: capacity = 1

Resource

Consumable
examples: fuel, crew time
constraint: cum. use ≤ cum. avail

cumulative
availability

cumulative
usage

time time

time

time

Reusable

time

examples: parking lots, ramp space,
parallel processors, power

constraints: upper bound on capacity
finite usage intervals

Kestrel
Institute

29 Mar. 2001

Set(A×B×C)

Map(A, Set(A×B×C))

A, B, C

Map

A, B, C

Time, Quantity

Task

Resource

Reservation
= Resource×Task×Time

Schedule
= set(Reservation)

Time, Quantity

Task

Resource

Reservation
= Resource×Task×Time

Schedule
= Map(Resource, Set(Reservation))

Map

Diagram Refinement

Kestrel
Institute

29 Mar. 2001

Planware Generator

Resource Parameter Lower
Bound Exact Value Upper Bound

Start Time Task.release Task.pick-up

Resource-type Multi-choice menu Sum of task
req’d resources

Instantaneous
Demand Sum of task demands

Kestrel
Institute

29 Mar. 2001

Planware Generator–2

Resource

Reusable
resource

Parameter Lower
Bound Exact Value Upper Bound

Start Time Task.release Finish - Dur Task.pick-up

Resource-type Multi-choice menu Sum of task
req’d resources

Instantaneous
Demand min-cap Sum of task demands max-cap

Duration 0 Finish – Start

Finish Time Task.ead Start + Dur Task.due-date

Max-capacity r.r-type.max-cap

Also: Precedes, Min-capacity

Kestrel
Institute

29 Mar. 2001

Planware Generator–3

Synchronous
resource

Resource

Reusable
resource

Parameter Lower
Bound Exact Value Upper Bound

Start Time Task.release Finish - Dur Task.pick-up

Resource-type Multi-choice menu Sum of task
req’d resources

Instantaneous
Demand min-cap Sum of task demands max-cap

Duration 0 Finish – Start

Finish Time Task.ead Start + Dur Task.due-date

Max-capacity r.r-type.max-cap

Separation 0 r.r-type.separation

Also: Precedes, Min-capacity

Kestrel
Institute

29 Mar. 2001

Performance

time

KI Airlift
Scheduler

JFAST Airlift
Simulator

FLOGEN Airlift
Scheduler

3-8 minutes

2.5 hours

36 hours

~25x
slower

~350x
slower

Notes:

• 10000 item movements

• data from 1997

Kestrel
Institute

29 Mar. 2001

Important users

♦ Motorola
♦ NSA
♦ Boeing
♦ Kestrel Institute (KI)
♦ Kestrel Technology LLC (KT)
♦ Other (Georgia Tech, Lockheed Martin, …)

Kestrel
Institute

29 Mar. 2001

Motorola work

♦ Peter White, Conan Dailey, et al.
♦ Used Specware 1.x to create a specification

for an OS separation kernel
♦ Successful application

♦ Security proven to NSA
♦ Embedded in commercially available AIM

processor

Kestrel
Institute

29 Mar. 2001

NSA experiment
Bake-Off : Two teams given
• same requirements document
• same time
• same funds

Each team implemented the
system independently, and a
third party tested code and
awarded reliability scores.

Methodologies Used
Specware
Specware specification & code synthesis
CMM
Software Engineering Institute Capability
Maturity Model Level 4 with UML
specification & initial design

Distribution of Code Errors

Module
1

Module
2

Module
3

Module
4

. . .

Module
1

Module
2

Module
3

Module
4

. . .

error
rate

error
rate

CMM

Specware
0

Reliability Scores for Critical Functionality

56%

77%

98% predicted reliability with
specification validation

CMM Specware

R
el

ia
bi

lit
y

Kestrel
Institute

29 Mar. 2001

Boeing work

♦ FAA-compliant
electronic equipment
rack layout

♦ Maintain separations
♦ Maintain redundancy
♦ Maintain ease of access
♦ Minimize costs

• Cable length, etc.
♦ Etc., etc.

Physics

physical-object, g,
weight, mass, volume, density,
weight(p) = mass(p) * g,
mass(p) = volume(p) * density(p)

Real Numbers

Geometry

geometry, volume,
box, height, length, width, box-volume,
cylinder, radius, depth, cylinder-volume,
box-volume(b) = height(b) * length(b) * width(b),
cylinder-volume(c) = depth(c) * pi * radius(c)^2

Parts

part, g, weight, mass, volume, ...,
material, aluminum-7075,
geometry, box, box-volume, …,
weight(p) = mass(p) * g, ... ,
if material(p)=aluminum-7075 …,
box-volume(b) = ..., …

Materials

material, aluminum-7075,
if material(p)=aluminum-7075
 then density(p)=20

import

import

import

Kestrel
Institute

29 Mar. 2001

Boeing (cont’d)

Manufactured Parts
part, manufacturing-cost,
cost-of-raw-stock, cost-of-drilling-hole,
If material(p)=aluminum-7075 then
 cost-of-drilling-hole(p,h)= 2*cylinder-volume(h)
 cost-of-raw-stock(p) = 5*raw-stock-volume(p)

Parts
part, weight, mass, ..., volume, height, ...
weight(p) = mass(p) * g, ... ,
box-volume(b) = ..., ...

Panels
panel, boundary, hole, number-of-holes,
vertical separation, horizontal separation,
volume(p) =box-volume(boundary(p)) -
 (number-of-holes(p)*cylinder-volume(hole(p)))
material(p) = aluminum-7075

Manufactured Panels
panel, cost,
raw-stock-volume(p) = box-volume(boundary(p))
manufacturing-cost(p) = cost-of-raw-stock(p) +
 number-of-holes(p)*cost-of-drilling-hole(p,hole(p))
cost(p) = (5*manufacturing-cost(p)) + (2*weight(p))

Colimit of Diagram

import

import

import

Kestrel
Institute

29 Mar. 2001

Boeing (cont’d)

Optimization Problems

Manufactured Panels
Requirement Spec

Branch and Bound
Optimization Problems

Panel Layout Problem Optimization Problems

Manufactured Panels
Implementation

Branch and Bound
Algorithm Schema

Panel Layout Solution

Kestrel
Institute

29 Mar. 2001

Kestrel’s recent work using Specware

♦ High assurance Java virtual machine
♦ Network vulnerability analysis
♦ Bootstrapping Specware in its own language

Kestrel
Institute

29 Mar. 2001

Java bytecode verifier

♦ First complete formal executable specification and
validation of bytecode verification

♦ Uncovered several flaws in the informal
specification

♦ Designed & tested specification modifications to
eliminate those flaws and enhance the
performance

♦ By-product: reusable components, e.g, a data flow
analysis engine

Described later in this workshop

Kestrel
Institute

29 Mar. 2001

Network vulnerability analysis

♦ Detects vulnerabilities in COTS software
applications

♦ Works on byte code  usable even when
sources aren’t available

♦ Early stages of work

Described later in this workshop

Kestrel
Institute

29 Mar. 2001

What’s new in Specware?

♦ Language features
♦ 1st order polymorphism
♦ automatic relax/restrict
♦ imperative constructs

♦ Much more compact
& readable syntax

♦ record notation
♦ named co-products
♦ infix operations

♦ Bootstrapped system
♦ Larger test suite

(including Specware)
♦ Meta-language for

programmable tactics &
replay

♦ Prover Integration
{Snark, Gandalf, …}

♦ Hosting on Wintel &
Linux

♦ Refine-free (simpler
licensing)

Kestrel
Institute

29 Mar. 2001

Roles of KI and KT

tools

generator

application
KI: basic
research

tools

generator

application
KT: tech
transition

tools

generator
NewCo:
COTS

application
 Kestrel Institute (KI)

 Non-profit R&D

 Emphasis on basic and exploratory research

 Contained growth

 Core technology feeding diversity of
applications

 Academic spirit

♦ Kestrel Technology LLC (KT)
♦ For-profit R&D
♦ Emphasis on service for using and

extending KI technology
♦ Growth-oriented
♦ Narrow application focus
♦ Commercial spirit
♦ Spin-out companies

Kestrel
Institute

29 Mar. 2001

BACKUP SLIDES AFTER HERE

Kestrel
Institute

29 Mar. 2001

Development plans

♦ Ongoing work
♦ Hereditary diagrams
♦ Optimizations
♦ C code synthesis

♦ Language extensions
♦ Dependent types
♦ Relax constraint on morphisms

and sort-structure
♦ Non-deterministic operators

♦ Inference
♦ Extend Gandalf
♦ Extend inference tactics

♦ Spec categories
♦ Support for theory slicing
♦ Support for targeting

imperative and OO languages
♦ High performance output code

♦ C, Java
♦ Designware

♦ Application support libraries
♦ Move Slang-based libraries

into MetaSlang
♦ Java-based GUI

♦ Interface to diagrams
♦ Interface to Designware

Kestrel
Institute

29 Mar. 2001

Example of a colimit

spec TRANSITIVE -RELATION is
sort E
op _tr_ : E, E → Boolean
axiom transitivity is

a tr b ∧ b tr c ⇒ a tr c
end-spec

spec REFLEXIVE-RELATION is
sort E
op _rr_ : E, E → Boolean
axiom reflexivity is a rr a

end-spec

spec PREORDER-RELATION is
sort E
op ≤ : E, E → Boolean
axiom reflexivity is

a ≤ a
axiom transitivity is

a ≤ b ∧ b ≤ c ⇒ a ≤ c
end-spec

spec BINARY-RELATION is
sort E
op _br_ : E, E → Boolean

end-spec

Kestrel
Institute

29 Mar. 2001

World class research

♦ Director
♦ Fellow of the ACM
♦ Winner of the Grace Hopper

Award
♦ Consultant to the Defense

Science Board
♦ Adjunct professor at Stanford

♦ CTO
♦ Fellow of the AAAI
♦ Former chair of IFIPS 2.1
♦ Adjunct professor at Stanford

♦ Staff includes:
♦ Current chair of IFIP 2.1
♦ Several DARPA PIs
♦ Experts in

• Category theory
• Program synthesis
• Functional programming
• Java security
• Optimization
• Algorithm design and synthesis
• Resource allocation
• Network optimization
• Signal processing
• …and more

Kestrel
Institute

29 Mar. 2001

FAQs

1. Do you have an independent proof of correctness of
generated code?

2. Do you think I would write in MetaSlang?
3. Do you expect me to maintain MetaSlang?
4. Why not just use C++, Java, Haskell, B, PVS, …?
5. What about my existing body of code?
6. Can your output code outperform my hand-crafted

code?

Kestrel
Institute

29 Mar. 2001

Taxonomy of algorithm theories

Problem Theory
(D|I → R|O)

generate-and-test

Constraint Satisfaction
(R = set of maps) Global Structure

(R = set + recursive partition)
global search
binary Search

backtrack
branch-and-bound

Local Structure
(R = set + relation)

local search
hill climbing

simulated annealing
tabu search

Local Structure
(R = set + relation)
genetic algorithms

Local Poset Structure
(R = set + partial order)

Local Semilattice Structure
(R = semilattice)

GS-CSP
(R = recursively partitioned

set of maps)

GS-Horn-CSP
(Horn-like Constraints)
constraint propagation

Monotone
Deflationary Function
fixed point iteration

Integer
Linear

Programming
0-1 methods

Linear
Programming

simplex method
interior point
primal dual

Network Flow
specialized simplex

Ford-Fulkerson

Transportation
NW algorithm

Assignment Problem
Hungarian method

Divide-and-Conquer
divide-and-conquer

Problem Reduction
Generators

dynamic programming
branch-and-bound
game tree search

Complement
Reduction

sieves

Problem Reduction
Structure

Kestrel
Institute

29 Mar. 2001

Basic operations specs
spec BIN-OP is
sort U
op f : U * U -> U
end-spec

spec COMMUTATIVE-BIN-OP is
import BIN-OP
axiom commutativity is fa(x,y) f(x,y) =

f(y,x)
end-spec

spec IDEMPOTENT-BIN-OP is
import BIN-OP
axiom idempotence is fa(x) f(x,x) = x
end-spec

spec ASSOCIATIVE-BIN-OP is
import BIN-OP
axiom associativity is fa(x,y,z) f(x,f(y,z)) =

f(f(x,y),z)
end-spec

spec BIN-OP-w-ID is
import BIN-OP
op id : U
axiom left-identity is fa(x) f(id,x) = x
axiom right-identity is fa(x) f(x,id) = x
end-spec

spec BIN-OP-w-ABS is
import BIN-OP
op abs : U
axiom left-absorption is fa(x) f(abs,x) = abs
axiom right-absorption is fa(x) f(x,abs) = abs
end-spec

Kestrel
Institute

29 Mar. 2001

Semilattice
def SEMILATTICE-import : Spec =
diagramColimit("SEMILATTICE-

import",
[BIN-OP,
COMMUTATIVE-BIN-OP,
IDEMPOTENT-BIN-OP,
ASSOCIATIVE-BIN-OP],
[BIN-OP !-->

COMMUTATIVE-BIN-OP,
BIN-OP !-->

IDEMPOTENT-BIN-OP,
BIN-OP !-->

ASSOCIATIVE-BIN-OP])

spec SEMILATTICE is

import SEMILATTICE-import

op pord1 : U * U -> Boolean
def pord1(x,y) = (f(x,y) = x)

op pord2 : U * U -> Boolean
def pord2(x,y) = (f(x,y) = y)

end-spec

Kestrel
Institute

29 Mar. 2001

Semilattice
def SEMILATTICE-w-ID : Spec =
diagramColimit("SEMILATTICE-w-ID",

[BIN-OP,
SEMILATTICE,
BIN-OP-w-ID],
[BIN-OP !--> SEMILATTICE,
BIN-OP !--> BIN-OP-w-ID])

def SEMILATTICE-w-ABS : Spec =
diagramColimit("SEMILATTICE-w-ABS",

[BIN-OP,
SEMILATTICE,
BIN-OP-w-ABS],
[BIN-OP !--> SEMILATTICE,
BIN-OP !--> BIN-OP-w-ABS])

def SEMILATTICE-w-ID-n-ABS : Spec =
diagramColimit("SEMILATTICE-w-ID-n-ABS",

[SEMILATTICE,
SEMILATTICE-w-ID,
SEMILATTICE-w-ABS],
[SEMILATTICE !--> SEMILATTICE-w-ID,
SEMILATTICE !--> SEMILATTICE-w-ABS])

def BV-DATA-FLOW : Spec =
diagramColimit("BV-DATA-FLOW",

[DATA-FLOW-param,
DATA-FLOW,
TRANSFER-FUNCTIONS,
MAPS],

[DATA-FLOW-param !-->
DATA-FLOW,

DATA-FLOW-param --->
TRANSFER-FUNCTIONS

where ["U" |-> "BVSL",
"f" |-> "join",
"id" |-> "btm",
"abs" |-> "top",
"pord1" |-> "gtq",
"pord2" |-> "ltq"],

MAPS !--> DATA-FLOW,
MAPS !--> TRANSFER-

FUNCTIONS])

	Specware™
	Suppose
	Computer Aided Mission Planner (CAMPS)
	Kestrel’s mission is wide spectrum
	30 year technology path
	Presentation Outline
	Specware provides an environment…
	What can you do with Specware?
	How do you build specifications?
	Example specification from bootstrapping Specware
	Main spec activity: composition and refinement
	Specware diagrams have design arrows
	Benefits
	Refinement example: Sets
	Refinement example: Passwords
	Refinement of a composition
	Code Synthesis
	Source of Specware’s leverage
	Using Specware’s leverage
	From research to operations
	A structured spec for scheduling
	Transportation domain modeling
	Diagram Refinement
	Planware Generator
	Planware Generator–2
	Planware Generator–3
	Performance
	Important users
	Motorola work
	NSA experiment
	Boeing work
	Boeing (cont’d)
	Boeing (cont’d)
	Kestrel’s recent work using Specware
	Java bytecode verifier
	Network vulnerability analysis
	What’s new in Specware?
	Roles of KI and KT
	BACKUP SLIDES AFTER HERE
	 Development plans
	Example of a colimit
	World class research
	FAQs
	Taxonomy of algorithm theories
	Basic operations specs
	Semilattice
	Semilattice

