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Project goal

Hard problem addressed: (1) Predictive security metrics and (2)
scalability and composability

Title: Static-Dynamic Analysis of Security Metrics for Cyber-
Physical Systems

Goals:

(a) Identify security &

(b) develop & for analyzing the metrics
in the context of adversary models
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Models, code, adversaries, & metrics

Plant
r{\amesuar_e first dy n a m iCS

int var = 5;
namespace second; // namespaces cannot be nested.
{

int var;
int foolint a)
{

int var = a;
return varkvar;

namespace second

double var = 3.1416;

e st Controller

return a + var;

noStim2 % a no@na
@ FYOT‘7

Goto18

» Hardware A

int main () {

ar << " " << " " << firsti:foo(8) << endl;

cout << s(;.cund..var‘ << ' " << second::foo(8) << endl; SOftWa re




Hierarchy of modeling formalisms

Nondeterministic
transition systems
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transition processes ynamica
systems
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Switched Systems
X = fory(x t,u)
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Networked Hybrid
Automata™

Guard (x)

Reset (x,x")



Metrics : Physical systems to CPS

Safety factor, Margin of safety,
reserve capacity

\2

Availability, Stability envelope,
 safety margin, vulnerability level -

)m Eﬁll’. ‘
Brooklyn bridge (1883)

Adversary models
access: actuator intrusion o sensor jamming o malicious programs
energy: opportunistic o curious o focused o committed



Outline

 Two problems
— Reachability for nonlinear hybrid systems
— Cost of security in distributed control

 Two applications

— Alerting protocol for parallel landing

— Pacemaker with networked cardiac tissue
* Ongoing work

— Synthesis with and for adversary



STATIC-DYNAMIC ANALYSIS



Basic analysis problem: verification

/ Model,

adversary,

rEQUIrEMENtS iy Algo rlth m

@ Certificate

1 X CElnipsesttae A1 c [0,:T},
such that trajectory £(xg, a, u, t) violates requirements ?

Bug trace

Yes (bug / security violation trace) / No (certificate)




Hybrid System Safety Verification)

Early 90’s: Exactly compute unbounded time reach set
Decidable for timed automata
Undecidable even for rectangular dynamics

Late 90°-00’: Approximate bounded time reach set
Hamilton-Jacobi-Bellman approach

Polytopes , ellipsoids zonotopes
support functions

Predicate abstraction CEGAR

Today: Scalability
Simulation-based methods



A simple strategy

Given start €8 andtarget T

Compute finite cover of initial set
Simulate from the center x of each cover

simulation so that bloated tube
contains all trajectories from the cover

Union = over-approximation of reach set
Check intersection/containment with T
Refine

How much to bloat?
How to handle mode switches?
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Discrepancy (Annotationsin the spirit of loop invariants) )

G:R?" x R0 - R=? defines a of the
system if for any two states x; and x, € X, For any t,
Ik |€(x11 t) e f(xZJt)l = IB(xl;xZJt) and
2. B— Dasxi— X

x:=0
invariantx < 10
untilx = 10

do

x=x+1
od




Lipschitz Constant )

If L is a Lipschitz constant for f(x,t) then
1€ Cxy1, t) — E(x,, C) | REains=ts |

A positive definite matrix M is
a contraction metric if there is a constant b,,> 0 such that the
Jacobian J of f satisfies:

J"M+M]J+byM<D0.
If M is a contraction metric then 3k,6 > 0 such that |E(x, t) —



Hybrid Systems: Invariants

Track & propagate may and must fragments of reachtube

must RAE- P
tagRegion(R,P) = <may RNP=%Q
RALEEREAP =0

invariantPre fix(y,S) = \_/i o )

(Ry, tagg, ..., Ry, tag.,) , such that either
tag; = must if all the R]fs before it are must

tag; = may if all the R]fs before it are at least may
and at least one of them is not must



Sound & Relatively Complete)

(Soundness). If Algorithm returns safe or a counter-example, then
A is indeed safe or has a counter-example.

GivenHAA = (V,Loc,A,D,T ), an of A is a new

HA A’ that is identical except, @ = B.(®), V¢ € Loc,Inv' = B.(Inv) (b) a €

A, Guard, = B.(Guard,).

Ais iff 3¢ > 0, such that A" meets U, upto time bound T,
and transition bound N. iff 3 € < 0 such that A’ is violates
B2

(Relative Completeness) Algorithm always terminates whenever
the A is either robustly meets or violates the requirement.
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COST OF PRIVACY IN CONTROL

Huang o Wang o Mitra o Dullerud
[CCS WPES 2012] [HiCons 2014] [CDC 2014] [ICDCN 2015]



Controlling Agents in a Shared

Environment
X1
. Traffic Z
1  —
Xn Z = szl
~ Vehicle, b Vehicle,
xX; = fi(x;,z,u) Xj = fj(xj,z,u)
Controller Controller
— <
u; = 9;(pi,xi) u = g;(x;)




X1
’ Traffic
1
Xn Z = szl
Vehicle,
Xi = fi(xi,z,u)
Controller
u; = g;(x;,2")

X1
5 Server
&l
Xn : Z =£2xi
Vehicle;
—> J

XJ = fj(Xj,Z,U)

Controller
uj = g;j(z")

Controlling Agents in a Shared
Environment



Control while Protecting Sensitive Data

Obs: observation stream of the system bounded by time T, the
broadcast positions.

Sensitive data: g = {g4, ..., 9n}

g and g’ be two sequences of controllers that are identical except
g; and g;'. The system is iFf
P[g leads to Obs]

< |gi_g£|
Plg'leads to Obs] — i

Cost of privacy: sup E[Cost(g, M*) — Cost(g’', M")]
gt

What is the cost of Privacy in distributed control?



X1
’ Traffic
1
Xn Z = szl
Vehicle,
Xi = fi(xi,z,u)
Controller
up = gi(xirZ)

—~

xlle

~

x2=X2

DP Control

AT
+ Lap(?)
/ Server
a0l
AT
+ Lap(—)
€
Vehicle.
—> J

XJ = fj(Xj,Z,U)

lm

Controller
u = 9gj(x,%)

]



Control while Protecting Sensitive Data

Obs: observation stream of the system bounded by time T, the
broadcast positions.

Privacy: g and g’ be two sequences of controllers that are identical

except g; and g;’. The system preserves differentially private iff
Plg leads to Obs]

P|g’'leads to Obs]

Cost of privacy: sup E[Cost(g, M) — Cost(g', M)]
g

I/
< elgi-ail

E
NZ2¢e2

Cost reasonable for short-lived agents and large number of agents

Theorem. COP = O(

) for stable linear systems [HiCons 2014]

Adversary estimates the initial system state from observations. X(t) =
E[X(0)|Z(0),Z(1),...,Z(t)]. Accuracy at time t € N is measured by
H(X(t)). Lower-bound on H for any e-DP one shot query [CDC 2014].



TWO APPLICATIONS OF STATIC-DYNAMIC ANALYSIS

Duggirala e Wang o Mitra e Munoz o Viswanathan (FM 2014)
Huang o Fan o Meracre o Mitra o Kiwatkowska (CAV 2014)

24



SAPA-ALAS Parallel Landing Protocol

Ownship and Intruder approaching parallel runways
with small separation

ALAS (at ownship) protocol is supposed to raise an SH
alarm if within T time units the Intruder can violate AT T
safe separation based on 3 different projections 3 &
73 ' X
Verify Alert<;, Unsafe for different scenarios s 4
;;\ j— \/

Scenario 1. With xsep [.11,.12] Nm ysep [.1,.21] Nm,
¢ = 30° 0 = 45° vy,= 136 Nmph, vy, = 155 Nmph

Alert <, Unsafe is satisfied by Reachtube i

if V I, € Must(Unsafe) U May(Unsafe) there
exists I; € Must(Alert) suchthatl; < I, — b

25
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Scalability through Compositionality

_
- ; | B I
- [ Module 4 ] [ Module 5 ]
R Tk
Xy = fp (%2, %1, %3)
[.4 .1 .H. ' .] X3 = fc(x3,%1,%3)

2



Input-to-State (IS) Discrepancy

|
5 163 t u(t)
o SGLuL B N ti
: Eme »lme

t

Definition. IS discrepancy is defined by 5 and y such that for
any initial states x, x" and any inputs u, u’,

t
E ()P e e j Fule) e
O .

f—>0asx—>x",andy > 0asu > u’

28



Reduced System M (04, 0,, V4, Vz))

x = fu(x)

X. = Mg ns, Glie

= fu(x) =

,31 (61, clk) + y1(m;) _
B2 (6, clk) + y,(my)

1



Bloating with Reduced Model

m3 o 133 (67 t)
+y3(my,m;)

[[ Xy = f2(x2,Uy) ]

m(t)  §(t) 5

X
W <: m(t)
‘ time
Eme 2

The bloated tube contains all trajectories start from the §-ball of x.

The over-approximation can be computed arbitrarily precise.

30



Reduced M gives effective Discrepancy of A)

For any 6 = (01,0,),V = (V;,V,)and T
Reach,(Bs(x),T) € Uter By (§(x, 1))

For any € > 0 there exists 6 = (04, 0,) such that
Urer Bl (€(x, 1)) € Be(Reach,(Bs(x), T)

Here u(t) is the solution of M(64,6,, V4, V5).



Action potential remains in specific range
No alternation of action potentials

‘/S(ﬂteW

noStim1

. From15

Fromt Gmomﬁ;ncozr]w 3y 3 v 2846 +D*(u1+u2-2*u)/(h*h)+stim
cur_l
From7 Goto5 O u2 4_:—@[2
From11
@L e init Ge20)

Goto2  \_ J sur x[0] = u

cell2 Fromé G =

[ eur_x[2] = w;
noStim2 us] 4_1_@ cur_x[3] =s;
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ONGOING WORK



Adversarial synthesis problem

Givensystem A, 3 u € Ctr,V x4 € Init,a € Adv :

Vii Xy, Ui Safe

requirements are met ?
E(xg,u,a,T) € Goal } G

Adv: Y|a;|* < b: intrusion budget constraints
Ctr:),c;u; < k: actuation constraints
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Decomposition with Leverage

Reach(xy,u,Adv,t) = Reach(xy,u,0,t) @ L(xy, u,t) -—-Leverage

For each t < H, compute Safe; @ L(t) = Safe & Goal, @ L(t) = Goal
Check 3u € Ctrl : Vt, xy € Init, Reach(Init,u,0,t) € Safe.?

For linear dynamics and L2-budget L(x,, u, t) can be computed exactly
We can find b,,.;+ that makes control impossible

Classify initial states based on vulnerability

55



Summary

e Static-Dynamic Analysis = sound and relatively
complete algorithm for analysis of nonlinear —
nondeterministic models

— Tool support (C2E2, try it:
http://publish.illinois.edu/c2e2-tool/)

— Compositional analysis

 Symbolic simulation of adversary-free system + over-
approximation of leverage

— Synthesize controllers and attack strategies
— Measure vulnerability of states w.r.t. attacks




