Static-Dynamic Analysis of Security Metrics

for Cyber-Physical Systems

Sayan Mitra (PI), Geir Dullerud (co-PI), Swarat Chaudhuri (co-PI) University of Illinois at Urbana Champaign NSA SoS Quarterly meeting, University of Maryland October 29th 2014

Project team

Sayan Mitra UIUC, ECE Hybrid & Distributed systems **Geir Dullerud** UIUC, MechE Control theory, hybrid systems Swarat Chaudhuri Rice University, CS Programming Languages, Formal methods **Zhenqi Huang** PhD student, ECE **Yu Wang** PhD student, MechE

Project goal

Hard problem addressed: (1) Predictive security metrics and (2) scalability and composability

Title: Static-Dynamic Analysis of Security Metrics for Cyber-Physical Systems

Goals:

(a) Identify security metrics & adversary models

(b) develop theory, algorithms & tools for analyzing the metrics in the context of adversary models

CPS & Security

Models, code, adversaries, & metrics

Hierarchy of modeling formalisms

Discrete Communicating **Dynamical** transition processes systems **Systems** IO automata, (countable $\dot{x} = f(x, t, u)$ process states) FSM, $\dot{x} = f_1(x, t)$ algebras PDA, TMs Inv_1 Guard(x)Reset(x, x')Switched Systems Nondeterministic $\dot{x} = f_{\sigma(t)}(x, t, u)$ transition systems $\dot{x} = f_2(x, t)$ Inv_2 Networked Hybrid Automata*

Metrics : Physical systems to CPS

Safety factor, Margin of safety, reserve capacity

✓
 Availability, Stability envelope,
 safety margin, vulnerability level

Brooklyn bridge (1883)

Adversary models access: actuator intrusion
 sensor jamming
 malicious programs
 energy: opportunistic
 curious
 focused
 committed

Outline

- Two problems
 - Reachability for nonlinear hybrid systems
 - Cost of security in distributed control
- Two applications
 - Alerting protocol for parallel landing
 - Pacemaker with networked cardiac tissue
- Ongoing work
 - Synthesis with and for adversary

Part 1

STATIC-DYNAMIC ANALYSIS

Basic analysis problem: verification

 $\exists x_0 \in Init, u \in U, a \in A, t \in [0, T],$ such that trajectory $\xi(x_0, a, u, t)$ violates requirements ?

Yes (bug / security violation trace) / No (certificate)

Hybrid System Safety Verification

Early 90's: Exactly compute unbounded time reach set Decidable for timed automata [Alur Dill 92] Undecidable even for rectangular dynamics [Henzinger 95]

Late 90'-00': Approximate bounded time reach set Hamilton-Jacobi-Bellman approach [Tomlin et al. 02] Polytopes [Henzinger 97], ellipsoids [Kurzhanski] zonotopes [Girard 05], support functions [Frehse 08] Predicate abstraction [Alur 03], CEGAR [Clarke 03] [Mitra 13]

Today: Scalability

Simulation-based methods [Julius 02] [Mitra 10-13][Donze 07]

A simple strategy

T

- Given start <s> and target
- Compute finite cover of initial set
- Simulate from the center x_0 of each cover
- Bloat simulation so that bloated tube contains all trajectories from the cover
- Union = over-approximation of reach set
- Check intersection/containment with *T*
- Refine
- How much to bloat?
- How to handle mode switches?

Discrepancy (Annotations in the spirit of loop invariants)

Definition. $\beta : \mathbb{R}^{2n} \times \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ defines a discrepancy of the system if for any two states x_1 and $x_2 \in X$, For any t, 1. $|\xi(x_1,t) - \xi(x_2,t)| \leq \beta(x_1,x_2,t)$ and 2. $\beta \to 0$ as $x_1 \to x_2$

 $x \coloneqq 0$ invariant $x \le 10$ until $x \ge 10$ do $x \coloneqq x + 1$ od

Lipschitz Constant

If L is a Lipschitz constant for f(x,t) then $|\xi(x_1,t) - \xi(x_2,t)| \le e^{Lt}|x_1 - x_2|$

Theorem [Lohmiller & Slotine '98]. A positive definite matrix M is a **contraction metric** if there is a constant $b_M > 0$ such that the Jacobian J of f satisfies:

 $J^T M + \overline{M} J + b_M M \leq \overline{0}.$

If M is a contraction metric then $\exists k, \delta > 0$ such that $|\xi(x, t) - \xi(x, t)| = 0$

Hybrid Systems: Invariants

Track & propagate *may* and *must* fragments of reachtube

 $tagRegion(R, P) = \begin{cases} must & R \subseteq P \\ may & R \cap P \neq \emptyset \\ not & R \cap P = \emptyset \end{cases}$

$invariantPrefix(\psi, S) =$

 $\langle R_0, tag_0, \dots, R_m, tag_m \rangle$, such that either $tag_i = must$ if all the $R'_i s$ before it are must $tag_i = may$ if all the $R'_i s$ before it are at least may and at least one of them is not must

P

Sound & Relatively Complete

Theorem. (Soundness). If Algorithm returns safe or a counter-example, then *A* is indeed safe or has a counter-example.

Definition Given HA $A = \langle V, Loc, A, D, T \rangle$, an ϵ -perturbation of A is a new HA A' that is identical except, $\Theta' = B_{\epsilon}(\Theta), \forall \ell \in Loc, Inv' = B_{\epsilon}(Inv)$ (b) a $\in A, Guard_a = B_{\epsilon}(Guard_a)$.

A is **robustly meets U** iff $\exists \epsilon > 0$, such that A' meets U_{ϵ} upto time bound T, and transition bound N. Robustly violates iff $\exists \epsilon < 0$ such that A' is violates U_{ϵ} .

Theorem. (Relative Completeness) Algorithm always terminates whenever the A is either robustly meets or violates the requirement. Part II

COST OF PRIVACY IN CONTROL

Huang • Wang • Mitra • Dullerud [CCS WPES 2012] [HiCons 2014] [CDC 2014] [ICDCN 2015]

Buck Lodge Middle School

Controlling Agents in a Shared Environment

Controlling Agents in a Shared Environment

Hillandale Local Park

Control while Protecting Sensitive Data

Obs: observation stream of the system bounded by time T, the broadcast positions.

Sensitive data: $g = \{g_1, ..., g_n\}$

The Hindu Temple of Metropolitan Washington

g and g' be two sequences of controllers that are identical except g_i and g_i' . The system is differentially private iff $\frac{P[g \ leads \ to \ Obs]}{P[g' \ leads \ to \ Obs]} \leq e^{|g_i - g_i'|}$

Cost of privacy: $\sup_{g,i} E[Cost(g, M^*) - Cost(g', M')]$ What is the cost of Privacy in distributed control?

Buck Lodge Middle School Hillandale Local Park

Z

Army Research

Server

 $\tilde{z} = \frac{1}{m} \sum x_i$

+ Sayan

 \tilde{Z}

NIPP'

DP Control

 $\widetilde{x_1} = x_1 + Lap(\frac{\Delta T}{\epsilon})$

 $\widetilde{x_2} = x_2 + Lap(\frac{\Delta T}{\epsilon})$

Traffic

 $z = \frac{1}{n} \sum x_i$

 x_1

 x_n

Vehicle_j $\dot{x}_j = f_j(x_j, z, u)$

> Controller $u_j = g_j(x_j, \tilde{z})$

Buck Lodge Middle School Hillandale Local Park

Control while Protecting Sensitive Data

Obs: observation stream of the system bounded by time T, the broadcast positions.

Privacy: g and g' be two sequences of controllers that are identical except g_i and g_i' . The system preserves differentially private iff $\frac{P[g \ leads \ to \ Obs]}{P[g' leads \ to \ Obs]} \leq e^{|g_i - g_i'|}$

Cost of privacy: sup E[Cost(g, M) - Cost(g', M)]

Theorem. COP = $O(\frac{T^3}{N^2\epsilon^2})$ for stable linear systems [HiCons 2014] Cost reasonable for short-lived agents and large number of agents

Adversary estimates the initial system state from observations. $\tilde{X}(t) = E[X(0) | Z(0), Z(1), ..., Z(t)]$. Accuracy at time $t \in N$ is measured by $H(\tilde{X}(t))$. Lower-bound on H for any ϵ -DP one shot query [CDC 2014].

TWO APPLICATIONS OF STATIC-DYNAMIC ANALYSIS

Duggirala • Wang • Mitra • Munoz • Viswanathan (FM 2014) Huang • Fan • Meracre • Mitra • Kiwatkowska (CAV 2014)

SAPA-ALAS Parallel Landing Protocol

Ownship and *Intruder* approaching parallel runways with small separation

ALAS (at ownship) protocol is supposed to raise an alarm if within T time units the *Intruder* can violate safe separation based on 3 different projections

Verify Alert \leq_b Unsafe for different scenarios Scenario 1. With xsep [.11,.12] Nm ysep [.1,.21] Nm, $\phi = 30^o \phi_{max} = 45^o vy_o = 136$ Nmph, vy_i = 155 Nmph

Alert ≺_b *Unsafe* is satisfied by Reachtube ψ if $\forall I_2 \in Must(Unsafe) \cup May(Unsafe)$ there exists $I_1 \in Must(Alert)$ such that $I_1 < I_2 - b$

Real-time Alerting Protocol

Sound & robustly completeness

C2E2 verifies interesting scenarios in reasonable time; shows that false alarms are possible; found scenarios where alarm may be missed

	-	Alert \leq_4	Running time	Alert $\leq_{?}$
	Scenario	Unsafe	(mins:sec)	Unsafe
	6	False	3:27	2.16
	7	True	1:13	
	8	True	2:21	70
0	6.1	False	7:18	1.54
1	7.1	True	2:34	1
1	8.1	True	4:55	4-
	9	False	2:18	1.8
1	10	False	3:04	2.4
	9.1	False	4:30	1.8
	10.1	False	6:11	2.4
	ALL A			

Scalability through Compositionality

Definition. IS discrepancy is defined by β and γ such that for any initial states x, x' and any inputs u, u',

 $|\xi(x, u, t) - \xi(x', u', t)| \le \beta(x, x', t) + \int_0^t \gamma(|u(s) - u'(s)|) ds$ $\beta \to 0 \text{ as } x \to x', \text{ and } \gamma \to 0 \text{ as } u \to u'$

Reduced System $M(\delta_1, \delta_2, V_1, V_2)$

 $\dot{x} = f_M(x)$

 $x = \langle m_1, m_2, clk \rangle$

 $\begin{bmatrix} \dot{m_1} \\ m_2 \\ clk \end{bmatrix} = f_M(x) = \begin{bmatrix} \dot{\beta_1}(\delta_1, clk) + \gamma_1(m_2) \\ \dot{\beta_2}(\delta_2, clk) + \gamma_2(m_1) \end{bmatrix}$

The bloated tube contains all trajectories start from the δ -ball of x.

The over-approximation can be computed arbitrarily precise.

Reduced *M* gives effective Discrepancy of *A*

Theorem. For any $\delta = \langle \delta_1, \delta_2 \rangle$, $V = \langle V_1, V_2 \rangle$ and TReach_A($B_{\delta}(x), T$) $\subseteq \bigcup_{t \leq T} B^V_{\mu(t)}(\xi(x, t))$

Theorem. For any $\epsilon > 0$ there exists $\delta = \langle \delta_1, \delta_2 \rangle$ such that $\bigcup_{t \leq T} B^V_{\mu(t)}(\xi(x, t)) \subseteq B_{\epsilon}(Reach_A(B_{\delta}(x), T))$

Here $\mu(t)$ is the solution of $M(\delta_1, \delta_2, V_1, V_2)$.

Huang et al. HSCC 2014, CAV 2014

Pacemaker + Cardiac Network

Action potential remains in specific range No alternation of action potentials

PART IV ONGOING WORK

Adversarial synthesis problem

$$u_t$$

$$a_t$$

$$x_{t+1} = f_t(x_t, u_t, a_t)$$

Given system A, $\exists u \in Ctr, \forall x_0 \in Init, a \in Adv$: $\forall t \ \xi(x_0, u, a, t) \in Safe \\ \xi(x_0, u, a, T) \in Goal \}$ requirements are met ?

Adv: $\sum |a_i|^2 \le b$: intrusion budget constraints Ctr: $\sum c_i u_i \le k$: actuation constraints

Decomposition with Leverage $Reach(x_0, u, Adv, t) = Reach(x_0, u, 0, t) \oplus L(x_0, u, t)$ ---Leverage For each $t \leq H$, compute $Safe_t \oplus L(t) = Safe \& Goal_t \oplus L(t) = Goal$ Check $\exists u \in Ctrl : \forall t, x_0 \in Init, Reach(Init, u, 0, t) \subseteq Safe_t$? For linear dynamics and L2-budget $L(x_0, u, t)$ can be computed exactly We can find b_{crit} that makes control impossible

Classify initial states based on vulnerability

Summary

- Static-Dynamic Analysis = sound and relatively complete algorithm for analysis of nonlinear – nondeterministic models
 - Tool support (C2E2, try it: http://publish.illinois.edu/c2e2-tool/)
 - Compositional analysis
- Symbolic simulation of adversary-free system + overapproximation of leverage
 - Synthesize controllers and attack strategies
 - Measure vulnerability of states w.r.t. attacks

