Synthesis of
Concurrent Garbage Collectors
and their Proofs

Cordell Green
Christoph Kreitz
Douglas R Smith

Eric W Smith

Stephen Westfold

Kestrel Institute
Palo Alto, California

www.kestrel edu



Synthesis of Concurrent Garbage Collectors

Garbage Collection
Specification
+ Derivation Script

 Safety
« Security
* Transparency

Garbage Collector
. Specware )
Generator —~  Correcthess
Proofs
Inference Transformation Library

« Context Assumptions

\

Algorithm theories,
Invariant enforcement,
Datatype refinements,

Concurrency transforms




Simplified Derivation Structure

The initial specification is
refined to code by applying a
sequence of high-level
transformations. Each
transformation adds detail.

How do we compose a proof
that the code is consistent with
the initial specification?

Most of the transformations
work by calculation: a sequence
of equations from the domain
theory are applied.

The calculation is the proof!

Garbage Collection
Specification

l Algorithm design
Tracing Alg

l Optimization
Simplified Alg

l, Observer Maintenance

Maintain WorkSet

y

Refine Observers

|

Synthesize Heap cotype

v
Synthesize Transformers

v
Code Generation

Observer Refinement

Cotype Synthesis

Transformer Synthesis

Globalization



Model of Memory as a Rooted Graph

preroots

registers :\

heap

/

static

stack E—

/

globals, ] _\/

i




Regions of Memory and Basic Operations

roots

active

add arc _

|

delete

| allocate

supply

lect




State Machine Models: Mutators + Collector

Mutator Collector
allcﬁate In. nedead — collect(n)
delete arc add arc
(= @
Mutator is an application that Collector identifies dead nodes
allocates heap nodes, and and recycles them.

manipulates arcs (pointers).
A node is dead if there are no
paths to it from the roots

n € dead < paths(roots, n) = {}

Requirements
Safety: No active nodes are ever collected
Transparency: Throughput, pause times, footprint, promptness




Deriving Common Garbage Collection Algorithms

Collector
maintain count Spec calculate current set of
of predecessors dead nodes
Reference Count Tracing Collectors
Collectors o
partitioned monolithic

memory model memory model

Copying Collectors ~ Marking Collectors

Generational Mark & Mark &

Collectors Compact Sweep
+ generations + generations



What's Challenging about Concurrent GC?



Intuition

Pictorial Intuition: Graph Traversal as Lifting

Intuition

S °\4\

8 / 40



Intuition

Pictorial Intuition (1)

Intuition

Lift node A to the upper plane (equivalent “twin nodes”)
Node A is active (“hot zone”)

Invariant: Downward (green) arrows originate in hot zone

9 /40



Intuition

Pictorial Intuition (2)

Intuition

Lift node B to the upper plane
Node B is active (“hot zone”)

Invariant: Downward (green) arrows originate in hot zone

10 / 40



Intuition

Pictorial Intuition (3)

Intuition

Adjust downward arc A — B to upper plane
Node A remains active

Invariant: Downward (green) arrows originate in hot zone

11 / 40



Intuition

Intuition

Lift node C to the upper plane
Node C' is active (“hot zone”)

Invariant: Downward (green) arrows originate in hot zone

12 / 40



Intuition

Intuition

Adjust downward arc A — C to upper plane
Node A becomes inactive

Invariant: Downward (green) arrows originate in hot zone

13 / 40



Intuition

DP,PP,DS

Intuition

Invariant is violated:
Now there is a downward arrow, which does not originate in

the hot zone!
~» FE will be considered unreachable (garbage)

19 / 40



State Machine Models: Mutators + Collector

Mutator Collector
allcﬁate In. nedead — collect(n)
delete arc add arc
(= @
Mutator is an application that Collector identifies dead nodes
allocates heap nodes, and and recycles them.

manipulates arcs (pointers).
A node is dead if there are no
paths to it from the roots

n € dead < paths(roots, n) = {}

Requirements
Safety: No active nodes are ever collected
Transparency: Throughput, pause times, footprint, promptness




Tracing Collectors

nedead < n ¢ live where live = active U supply
< n ¢ least S. roots U sucs(S)E S
< n ¢ Ifp(F) where F(S) = roots U sucs(S)

in. nedead — Collect(n)

S

4

an. nglfp(F) — Collect(n)




Tracing Collectors: Kleene

To compute Ifp(F), where F is a monotone function
In a powerset lattice:

S« {}

while S # F(S) do
S « F(S);

return S

instantiating F:

S« {}

while S # roots U sucs(S) do
S « roots U sucs(S) ;

return S

generalized proof over complete partial orders (cpo’s)
based on Tarski, Kleene theorems



Tracing Collectors: Kleene

S« {}

while S # roots U sucs(S) do
S <« roots U sucs(S) ;

return S

Problem: roots and sucs depend on the state of the heap;
does the algorithm work concurrently?

The Kleene iteration computes where F(S) = roots U sucs(S)
{}, F({}), F(F({})), ... F"({}), until convergence

However the memory graph evolves as
Gy, Gy, Gy, ... G, ...

so the iteration produces

{1 Fo({}), F1(Fo({})), FaF4(Fo({})), --.

what does this sequence converge to?



Tracing Collectors: Kleene

S« {}

while S # roots U sucs(S) do
S <« roots U sucs(S) ;

return S

Problem: roots and sucs depend on the state of the heap;
does the algorithm work concurrently?

In a MPC10 paper we proved weak conditions under which

h Fol{h), Fa(Fo(ih), Fa(F4(Foh)), ...

converges to a (non-least) fixpoint of the initial graph G,.

Effect. When executed concurrently, we can generate a proof
that the algorithm returns a subset of dead nodes.



Tracing Collectors

S« {};

while S # roots U sucs(S) do
S « roots U sucs(S) ;

return S

Problem: How to make the iteration efficient?

— introduce a workset
WS =F(S)\S
= (roots U sucs(S)) \' S

S« {}

while Jze (roots U sucs(S))\S do
S« Su iz}

return S

proof based on Cai/Paige theorems



Derivatio

Partial Order

n Structure

Rooted Directed Graph

monotone fns,
fixpoints Heap
Problem Fixpoint
Theory Problem g Collelc’ror'

|

Fixpoint Iteration
Algorithm Scheme
+ correctness proof

abstract proof expressed
as a locale in IsaBelle

by

3

N

v
Collector with
Iteration-based Tracing

concrete proof in
Collector theory

>



Simplified Derivation Structure

The initial specification is
refined to code by applying a
sequence of high-level
transformations. Each
transformation adds detail.

How do we compose a proof
that the code is consistent with
the initial specification?

Most of the transformations
work by calculation: a sequence
of equations from the domain
theory are applied.

The calculation is the proof!

Garbage Collection
Specification

l Algorithm design
Tracing Alg

l Optimization
Simplified Alg

l, Observer Maintenance

Maintain WorkSet

y

Refine Observers

|

Synthesize Heap cotype

v
Synthesize Transformers

v
Code Generation

Observer Refinement

Cotype Synthesis

Transformer Synthesis

Globalization



Specifying Algebraic Types

An algebraic type is defined by constructors
 well-founded
* new functions defined inductively over constructors

type Lista = nil | cons a (List a) List is defined
using constructors
op length: List a — Nat nil and cons
length nil =0

length (cons a Ist) = 1 + length Ist

length is defined inductively
In terms of its value
over the constructors



Specifying Coalgebraic Types (aka cotypes)

A coalgebraic type is characterized by observers
* not well-founded: may be circular or infinite
« transformers specified coinductively by effect on observers

type Graph Graph is specified
op nodes: Graph — Set Node using observers
op sucs :Graph — Node —> Set Node Nodes and sucs

op addArc(G:Graph) (x:Node, y:Node) :
{G’:Graph | nodes G’ =nodes G
&sucs G'x =(sucsGx) +y}

addArc is specified coinductively
in terms of its effect on the observers



Coalgebraic Specifications

Algebraic types used for ordinary data (boolean, Nat, List)
Coalgebraic type used for heaps

Observers obs: Heap — A
- basic/undefined
- defined but maintained
- defined but computed

Transformers t: Heap — Heap
- preconditions
- postconditions: coinductive constraints on observations



Tracing Collectors:
Instantiated Small-Step Fixpoint Iteration

S« {}

while Jze(roots(G) U sucs(G)(S)) \ S do
S« Su{z}

return S

to optimize the algorithm, we introduce a new observer:

WS G = (roots G U sucs(G)(S))\' S




Maintaining Observers

Observer Maintenance Transform (aka Finite Differencing)
« given a defined observer
WS (G:Graph):.Set A= e G

« for each transformer t, add definition to postcondition:

t(G:6raph | WSG=eG)
{G:Graph | .. && WS G =eG'}
* simplify



Maintaining Observers

type Graph

op nhodes: Graph — Set Node

op outArcs : Graph — Node — Set Node

op roots: Graph — Set Node

op S : Graph — Set Node

op WS(G:Graph):Set Node = (roots 6 U outArcs 6 (S 6)) \ (S 6)

op addArc(G:6raph) (x:Node, y:Node) :
{6 .Graph | nodesG' = nodes G
A outArcs G' x = (outArcs G x) + (x—y)
AWSG =WSGuU{y|xeSGAyeSG}}

design-time calculation:

WS G' = (roots G' U outArcs G' (S G)) \ (S 6)

= (roots G U outArcs (GU{x—y}) (S 6)) \ (S 6)

= (roots G U outArcs G S)\ (SG) U{y | xe (SG)} \ (S 6)
— =WSGuU{y|xe(S6)ry ¢ (S6)




Tracing Collectors

after all design-time calculations to enforce the invariant:

invariant WS =(roots U outArcs(S)) \ S
atomic { S < {} || WS <« roots)
while 3zeWS do
atomic ( S« Su{z} || WS « WS U outArcs(z)\S - z)

return S

atomic ( addArc(xy) || WS < WS U{y | xeS AygS})

this is essence of the coarse-grain Dijkstra et al. "on-the-fly" collector



Observer Refinement

refine an existing observer WS (G:Graph):Set A
by a hew observer WL (6:Graph):List A

WS G = List_to_Set (WL 6)
where List_to_Set is a homomorphism
replace all occurrences of WS by List_to_SetoWL
simplify



Refining Observers

type Graph
axiom WS G = List2Set WL 6

op addArc(G:6raph) (x:Node, y:Node) :
{G.Graph | nodesG' = nodes G
A outArcs G' x = (outArcs G x) + (Xx—vy)
AWLG =WLG++[y|xeS&y ¢S] }

design-time calculation:

WSG =WSGuU{y|xeSAygS}
L2SWLG =L2SWLGU{y | xe SAy g S}
L2SWLG =L2SWLGUL2S[y | xe SAy ¢ S]
L2SWLG =L2S(WLG ++ [y | xe SAy ¢ S])

WL G = WLG ++[y | xe SAy ¢S]

(LR U




Generating Proof Scripts

For example, a refinement based on this calculation
from the derivation of a Mark & Sweep garbage collector:

Sequence of Rewrites Justification for Each Step

initialState x0

= FHeap x0 {} unfolding initialState

= roots x0 U allOutNodes x0 {} unfolding FHeap

= roots x0 U {} rule allOutNodes_of_emptyset
= roots x0 rule right_unit_of_union

automatically generates this Isabelle/Isar proof script :

theorem initialState_refine_def:
"(initialState x0) = (roots x0)"

proof -
have " (initialState x0)
= FHeap xO {}" by (unfold initialState_def, rule HOL.refl)
also have  "... = (roots xO U allOutNodes x0 {})" by (unfold FHeap_def, rule HOL.refl)
also have  "... = (roots xO u {})" by (rule_tac f="Ay . (?term U y)" in arg_cong,
rule allOutNodes_of_empty_set)
also have "... = (roots x0)" by (rule union_right_unit)
finally show ?thesis .
ged
2 The proof script discharges the proof obligation of the refinement



Simplified Derivation Structure

The initial specification is
refined to code by applying a
sequence of high-level
transformations. Each
transformation adds detail.

How do we compose a proof
that the code is consistent with
the initial specification?

Most of the transformations
work by calculation: a sequence
of equations from the domain
theory are applied.

The calculation is the proof!

Garbage Collection
Specification

l Algorithm design
Tracing Alg

l Optimization
Simplified Alg

l, Finite Differencing

Maintain WorkSet

¥ Type Refinement

Refine Observers

|

Synthesize Heap cotype

v
Synthesize Transformers

v
Code Generation

Cotype Synthesis

Transformer Synthesis

Globalization



Cotype Synthesis - Extract a Final Model

Given these undefined or maintained observers

nodesL : Memory -> List Node
rootsL : Memory -> List Node
supplyL : Memory -> List Node
WL : Memory -> List Node

blackCM : Memory -> Map(Node, Boolean)
sucsIM : Memory -> Map(Node,Map(Index, Arc))

srcM  : Memory -> Map(Arc,Node)
tgtM  : Memory -> Map(Arc,Node)



Cotype Synthesis - Extract a Final Model

reify all undefined or maintained observers into a product

type Memory= { nodesL : List Node,
rootsL : List Node,
supplyL : List Node,
WL : List Node,
blackCM : Map(Node, Boolean),
sucsIM : Map(Node, Map(Index, Arc)),
srcM : Map(Arc, Node),
tgtM : Map(Arc, Node)
}

type Node

Type Arc



Transformer Synthesis

* replace the constraints in transformer postconditions
by concurrent updates of the cotype

* simplify

type Memory { nodesL : List Node,
WL : List Node,
arcMap : Map(Arc, Node * Node)

-}

op swingArc(G:Memory) (x:Node, i:Index, y:Node| ok?(x,y)) : Memory =
G <« {arcMap = update (6.arcMap).(x,i) (x.y)
WL =G.WL++[y| xe6.5&y ¢ 6.5]}

—f
Vg



Globalization

« add global variable of the cotype
var M: Memory

« eliminate the cotype (Memory) in all functions
- parameter (at most one)
- return type

* replace local refs to state by global refs

type Memory= {nodesL : List Node,
sucsM : map(Node, List Node),

WL : List Node }
var M:Memory

op addArc(x:Node, y:Node) : Unit =
( M.sucsM x := (M.sucsM x) +y
|| MWL := MWL ++ [n | meS &n g S] )




Summary

coalgebraic specification and refinement techniques
Basic specification and refinement support in Specware
Platform-independent derivations of concurrent M&S

New transformations:
- dynamic fixpoint iteration
- observer maintenance
- observer refinement
- cotype definition
- globalization

Next steps:
 Output checkable proofs

 Copying Collectors
« Code generation to multithreaded € and CommonLisp

—f
Vg



References

Dusko Pavlovic, Peter Pepper, and Douglas R. Smith,
Colimits for Concurrent Collectors,

in Verification. Theory and Practice (Z. Manna Festschrift),
Springer LNCS 2772, 2003, 568-597.

Dusko Pavlovic, Peter Pepper, and Douglas R. Smith,
Formal Derivation of Concurrent Garbage Collectors,

in Mathematics of Program Construction 20710 (MPC10),
Springer LNCS 6120, July 2010, 353-370.

—
Vg



Extras



Derivation Structure

Fixpoint GC, safety, security, transparency reqts
Problem
Algorithm Design:
Workset-based Fixpoint Iteration
: : . po
Fixpoint Iteration
Algorithm Scheme GC1

Maintain invariants; Optimize the code;
Introduce synchronization

GC,

Datatype Refinement
Graph ~ Monolithic Memory
Node +~ Block = AddrxHeaderxBody
Arc BlockxOffsetxBlock

Mark&Sweep
Collector

Code Generation

code



Simplified Derivation Structure

Mutator
Heap < > System
Collector

l Algorithm design

Tracing Alg

y

Simplified Alg

y

Maintain WorkSet

y

Refine Observers

|

Synthesize Heap cotype

|

Synthesize Transformers

|

Code Generation



Model of Memory as a Rooted Graph

roots

registers :\\

heap

globals, ] n |
e \ / ><}

stack ]
\

allocate

&




Model of Memory as a Rooted Graph

roots

registers :\

¢

globals, ]
static

/

/]

stack —
\
N addArc
\ ™~




Model of Memory as a Rooted Graph

roots

registers :\

/

static

/

globals, ] n

stack ]

//

/
}/




Model of Memory as a Rooted Graph

roots

registers :\

¢

globals, ]
static

/

/]

stack —
|
\ delArc
_x /
- Va
\




Model of Memory as a Rooted Graph

roots

heap

registers —
\\ dead nodes

globals, ] n |
e \ / ><}

stack ]
|

1
.




Generating Proof Scripts: Status

« We have worked out the general proof script pattern, using examples
from the synthesis of Garbage Collectors (DARPA CRASH program).

« We are currently implementing a mechanism to translate
transformation steps into proof script steps: For each kind of
transformation step, we have developed a general "meta-rule” for how
to generate its corresponding proof script step.

* Prototype development in process - to be presented at HCSS.

« The proof scripts closely reflect the transformation steps by a one-to-
one relationship; search by Isabelle is avoided.

* The proof scripts are meant for machine checkability, but are
surprisingly readablel

« Anticipate that 90+% of proofs in the garbage collector derivations can
be automatically co-generated with the refinements.

* Ina calculational derivation, the calculation is the proof!
»

>
o



Deriving Common Garbage Collection Algorithms

Collector
maintain count Spec recalculate current set of
of predecessors dead nodes
Reference Count Tracing Collectors
Collectors o
partitioned monolithic

memory model memory model

paths(roots,n) = {}
<=
size(preds(n))=0 Copying Collectors ~ Marking Collectors

Generational Mark & Mark &

Collectors Compact Sweep
+ generations + generations



Cotype Synthesis - Extract a Final Model

Given these undefined or maintained observers

nodesL : Memory -> List Node
rootsL : Memory -> List Node
supplyL : Memory -> List Node
WL : Memory -> List Node

blackCM  : Memory -> Map(Node,Boolean)
outArcsIM: Memory -> Map(Node ,Map(Index, Arc))

srcM  : Memory -> Map(Arc,Node)
tgtM  : Memory -> Map(Arc,Node)



Cotype Synthesis - Extract a Final Model

reify all undefined or maintained observers into a product

type Memory= { nodesL : List Node,
rootsL :List Node,
supplyL : List Node,
WL : List Node,
blackCM  : Map(Node, Boolean),
outArcsIM : Map(Node, Map(Index, Arc)),
srcM : Map(Arc, Node),
tgtM  : Map(Arc, Node)

type Node
Type Arc



Tracing Collectors: Workset

S« {}

while Jze (roots U sucs(S))\S do
S« Su{z}
return S

— enforce the invariant WS =(roots U sucs(S)) \ S

addArc(m, n)

G:Graph G’:Graph
WS =WSu{n|meSAangS}
design-time calculation:
WS’

(roots U G’.sucs(S))\ S
(roots U (Gu{m—n}).sucs(S)) \ S

(roots U G.sucs(S))\Su{n|me S}\S
WSu{n|meSangS}

essentially the Dijkstra et al. on-the-fly concurrent collector



Tracing Collectors

after all calculations to enforce the invariant:

invariant WS =(roots U sucs(S)) \' S
atomic[ S < {} || WS <« roots |
while 3zeWS do
atomic[ S < S U {z} || WS <« WS U sucs(z)\S - z ]

return S

atomic[ addArc(m,n) || WS <« WSU{n | meS A ngS} ]




	GC-planes.pdf
	Methodology
	Dynamic
	Intuition
	Graphs
	Collector
	Derivation
	Dynamic
	Workset Algorithm
	Conclusion




