
Synthesis of
Concurrent Garbage Collectors

and their Proofs

Kestrel Institute
Palo Alto, California

www.kestrel.edu

Cordell Green
Christoph Kreitz
Douglas R Smith

Eric W Smith
Stephen Westfold

Synthesis of Concurrent Garbage Collectors

Specware
Generator

Garbage Collection
Specification

+ Derivation Script

 Transformation Library
Algorithm theories,

Invariant enforcement,
Datatype refinements,

Concurrency transforms

Inference

Garbage Collector
+

Correctness
Proofs

• Safety
• Security
• Transparency
• Context Assumptions

Garbage Collection
Specification

Tracing Alg

Simplified Alg

Maintain WorkSet

Algorithm design

Refine Observers

Synthesize Heap cotype

Synthesize Transformers

Code Generation

Simplified Derivation Structure

The initial specification is
refined to code by applying a
sequence of high-level
transformations. Each
transformation adds detail.

How do we compose a proof
that the code is consistent with
the initial specification?

Most of the transformations
work by calculation: a sequence
of equations from the domain
theory are applied.

The calculation is the proof!

Optimization

Observer Maintenance

Observer Refinement

Cotype Synthesis

Transformer Synthesis

Globalization

Model of Memory as a Rooted Graph

preroots

registers

stack

globals,

static

…

heap

Regions of Memory and Basic Operations

active dead

supply

ro
o
ts

collect

delete arc add arc

allocate

State Machine Models: Mutators + Collector

n. ndead  collect(n)

Collector

Collector identifies dead nodes

and recycles them.

A node is dead if there are no

paths to it from the roots

n  dead  paths(roots, n) = {}

delete arc

Mutator

add arc

allocate

Mutator is an application that

allocates heap nodes, and

manipulates arcs (pointers).

Requirements

Safety: No active nodes are ever collected

Transparency: Throughput, pause times, footprint, promptness

Deriving Common Garbage Collection Algorithms

Tracing Collectors

Copying Collectors Marking Collectors

partitioned
memory model

monolithic
memory model

Generational
Collectors

Mark &
Compact

 generations

Mark &
Sweep

 generations

Collector
Spec

Reference Count
Collectors

maintain count
of predecessors

calculate current set of
dead nodes

What’s Challenging about Concurrent GC?

GC

DP,PP,DS

Methodology

Dynamic

Intuition

Graphs

Collector

Derivation

Dynamic

Workset
Algorithm

Conclusion

b
e

rl
in

Intuition

Pictorial Intuition: Graph Traversal as Lifting

A B

C D

E

8 / 40

GC

DP,PP,DS

Methodology

Dynamic

Intuition

Graphs

Collector

Derivation

Dynamic

Workset
Algorithm

Conclusion

b
e

rl
in

Intuition

Pictorial Intuition (1)

A

B

C D

E

Lift node A to the upper plane (equivalent “twin nodes”)
Node A is active (“hot zone”)

Invariant: Downward (green) arrows originate in hot zone

9 / 40

GC

DP,PP,DS

Methodology

Dynamic

Intuition

Graphs

Collector

Derivation

Dynamic

Workset
Algorithm

Conclusion

b
e

rl
in

Intuition

Pictorial Intuition (2)

A B

C D

E

Lift node B to the upper plane
Node B is active (“hot zone”)

Invariant: Downward (green) arrows originate in hot zone

10 / 40

GC

DP,PP,DS

Methodology

Dynamic

Intuition

Graphs

Collector

Derivation

Dynamic

Workset
Algorithm

Conclusion

b
e

rl
in

Intuition

Pictorial Intuition (3)

A B

C D

E

Adjust downward arc A → B to upper plane
Node A remains active

Invariant: Downward (green) arrows originate in hot zone

11 / 40

GC

DP,PP,DS

Methodology

Dynamic

Intuition

Graphs

Collector

Derivation

Dynamic

Workset
Algorithm

Conclusion

b
e

rl
in

Intuition

Pictorial Intuition (4)

A B

C

D

E

Lift node C to the upper plane
Node C is active (“hot zone”)

Invariant: Downward (green) arrows originate in hot zone

12 / 40

GC

DP,PP,DS

Methodology

Dynamic

Intuition

Graphs

Collector

Derivation

Dynamic

Workset
Algorithm

Conclusion

b
e

rl
in

Intuition

Pictorial Intuition (5)

A B

C

D

E

Adjust downward arc A → C to upper plane
Node A becomes inactive

Invariant: Downward (green) arrows originate in hot zone

13 / 40

GC

DP,PP,DS

Methodology

Dynamic

Intuition

Graphs

Collector

Derivation

Dynamic

Workset
Algorithm

Conclusion

b
e

rl
in

Intuition

This leads to the following situation:

A B

C

D

E

Invariant is violated:

Now there is a downward arrow, which does not originate in
the hot zone!

 E will be considered unreachable (garbage)

19 / 40

State Machine Models: Mutators + Collector

n. ndead  collect(n)

Collector

Collector identifies dead nodes

and recycles them.

A node is dead if there are no

paths to it from the roots

n  dead  paths(roots, n) = {}

delete arc

Mutator

add arc

allocate

Mutator is an application that

allocates heap nodes, and

manipulates arcs (pointers).

Requirements

Safety: No active nodes are ever collected

Transparency: Throughput, pause times, footprint, promptness

Tracing Collectors

n. ndead  Collect(n)

n. nlfp(F)  Collect(n)

 ndead  n  live where live = active  supply

  n  least S. roots  sucs(S)⊆ S

  n  lfp(F) where F(S) = roots  sucs(S)

Tracing Collectors: Kleene

instantiating F:

 S  {};

 while S  F(S) do

 S  F(S);

return S

generalized proof over complete partial orders (cpo’s)

based on Tarski, Kleene theorems

 S  {};

 while S  roots  sucs(S) do

 S  roots  sucs(S) ;

return S

To compute lfp(F), where F is a monotone function

in a powerset lattice:

Tracing Collectors: Kleene

Problem: roots and sucs depend on the state of the heap;

 does the algorithm work concurrently?

The Kleene iteration computes where F(S) = roots  sucs(S)

 {}, F({}), F(F({})), … Fn({}), until convergence

However the memory graph evolves as

 G0, G1, G2, … Gn, …

so the iteration produces

 {}, F0({}), F1(F0({})), F2(F1(F0({}))), …

what does this sequence converge to?

 S  {};

 while S  roots  sucs(S) do

 S  roots  sucs(S) ;

return S

Tracing Collectors: Kleene

Problem: roots and sucs depend on the state of the heap;

 does the algorithm work concurrently?

In a MPC10 paper we proved weak conditions under which

 {}, F0({}), F1(F0({})), F2(F1(F0({}))), …

converges to a (non-least) fixpoint of the initial graph G0.

Effect: When executed concurrently, we can generate a proof

that the algorithm returns a subset of dead nodes.

 S  {};

 while S  roots  sucs(S) do

 S  roots  sucs(S) ;

return S

Tracing Collectors

Problem: How to make the iteration efficient?

 introduce a workset

 WS = F(S) \ S

 = (roots  sucs(S)) \ S

 S  {};

 while z (roots  sucs(S))\S do

 S  S  {z};

return S

proof based on Cai/Paige theorems

 S  {};

 while S  roots  sucs(S) do

 S  roots  sucs(S) ;

return S

Derivation Structure

Rooted Directed Graph

Fixpoint
Problem

Fixpoint Iteration
Algorithm Scheme

+ correctness proof

Heap

Partial Order

monotone fns,
fixpoints

Problem
Theory

Collector

abstract proof expressed
as a locale in IsaBelle

Collector with
Iteration-based Tracing

concrete proof in
Collector theory

Garbage Collection
Specification

Tracing Alg

Simplified Alg

Maintain WorkSet

Algorithm design

Refine Observers

Synthesize Heap cotype

Synthesize Transformers

Code Generation

Simplified Derivation Structure

The initial specification is
refined to code by applying a
sequence of high-level
transformations. Each
transformation adds detail.

How do we compose a proof
that the code is consistent with
the initial specification?

Most of the transformations
work by calculation: a sequence
of equations from the domain
theory are applied.

The calculation is the proof!

Optimization

Observer Maintenance

Observer Refinement

Cotype Synthesis

Transformer Synthesis

Globalization

Specifying Algebraic Types

An algebraic type is defined by constructors

• well-founded

• new functions defined inductively over constructors

type List a = nil | cons a (List a)

op length: List a  Nat

 length nil = 0

 length (cons a lst) = 1 + length lst

List is defined

using constructors

nil and cons

length is defined inductively

in terms of its value

over the constructors

Specifying Coalgebraic Types (aka cotypes)

A coalgebraic type is characterized by observers

• not well-founded: may be circular or infinite

• transformers specified coinductively by effect on observers

type Graph

op nodes: Graph  Set Node

op sucs : Graph  Node  Set Node

op addArc(G:Graph) (x:Node, y:Node) :

 {G’:Graph | nodes G’ = nodes G

 & sucs G’ x = (sucs G x) + y }

Graph is specified

using observers

nodes and sucs

addArc is specified coinductively

in terms of its effect on the observers

Coalgebraic Specifications

• Algebraic types used for ordinary data (boolean, Nat, List)

• Coalgebraic type used for heaps

• Observers obs: Heap  A
– basic/undefined
– defined but maintained
– defined but computed

• Transformers t: Heap  Heap
– preconditions
– postconditions: coinductive constraints on observations

Tracing Collectors:
Instantiated Small-Step Fixpoint Iteration

 S  {}

 while z(roots(G)  sucs(G)(S)) \ S do

 S  S  {z}

 return S

WS G = (roots G  sucs(G)(S)) \ S

to optimize the algorithm, we introduce a new observer:

Maintaining Observers

Observer Maintenance Transform (aka Finite Differencing)

• given a defined observer

 WS (G:Graph):Set A = e G

• for each transformer t, add definition to postcondition:

 t(G:Graph | WS G = e G):

 {G’:Graph | … && WS G’ = e G’ }

• simplify

Maintaining Observers

type Graph
op nodes: Graph  Set Node
op outArcs : Graph  Node  Set Node
op roots : Graph  Set Node
op S : Graph  Set Node
op WS(G:Graph):Set Node = (roots G  outArcs G (S G)) \ (S G)

op addArc(G:Graph) (x:Node, y:Node) :
 {G’:Graph | nodes G’ = nodes G
  outArcs G’ x = (outArcs G x) + (xy)
  WS G’ = WS G  {y | xS G  yS G}}

WS G’ = (roots G’  outArcs G’ (S G)) \ (S G)
 = (roots G  outArcs (G{xy}) (S G)) \ (S G)
 = (roots G  outArcs G S) \ (S G)  {y | x (S G)} \ (S G)
 = WS G  {y | x (S G)  y  (S G)}

design-time calculation:

Tracing Collectors

 invariant WS =(roots  outArcs(S)) \ S

 atomic  S  {} || WS  roots 

 while zWS do

 atomic  S  S  {z} || WS  WS  outArcs(z)\S – z 

 return S

 atomic  addArc(x,y) || WS  WS  {y | xS  yS} 

after all design-time calculations to enforce the invariant:

this is essence of the coarse-grain Dijkstra et al. “on-the-fly” collector

Observer Refinement

• refine an existing observer WS (G:Graph):Set A

 by a new observer WL (G:Graph):List A

 WS G = List_to_Set (WL G)

 where List_to_Set is a homomorphism

• replace all occurrences of WS by List_to_Set∘WL

• simplify

Refining Observers

type Graph
axiom WS G = List2Set WL G

op addArc(G:Graph) (x:Node, y:Node) :
 {G’:Graph | nodes G’ = nodes G
  outArcs G’ x = (outArcs G x) + (xy)
  WL G’ = WL G ++ [y | xS & y  S] }

 WS G’ = WS G  {y | xS  y S}
 L2S WL G’ = L2S WL G  {y | x S  y  S}
 L2S WL G’ = L2S WL G  L2S [y | x S  y  S]
 L2S WL G’ = L2S (WL G ++ [y | x S  y  S])
 WL G’ = WL G ++ [y | x S  y  S]

design-time calculation:

Generating Proof Scripts

For example, a refinement based on this calculation
from the derivation of a Mark & Sweep garbage collector:

Sequence of Rewrites Justification for Each Step

initialState x0
 = FHeap x0 {} unfolding initialState
 = roots x0  allOutNodes x0 {} unfolding FHeap
 = roots x0  {} rule allOutNodes_of_emptyset
 = roots x0 rule right_unit_of_union

automatically generates this Isabelle/Isar proof script :
theorem initialState_refine_def:
 "(initialState x0) = (roots x0)"
proof -
 have " (initialState x0)
 = FHeap x0 {}" by (unfold initialState_def, rule HOL.refl)
 also have "... = (roots x0  allOutNodes x0 {})" by (unfold FHeap_def, rule HOL.refl)
 also have "... = (roots x0  {})" by (rule_tac f=“y . (?term  y)" in arg_cong,
 rule allOutNodes_of_empty_set)
 also have "... = (roots x0)" by (rule union_right_unit)
 finally show ?thesis .
qed

The proof script discharges the proof obligation of the refinement

Garbage Collection
Specification

Tracing Alg

Simplified Alg

Maintain WorkSet

Algorithm design

Refine Observers

Synthesize Heap cotype

Synthesize Transformers

Code Generation

Simplified Derivation Structure

The initial specification is
refined to code by applying a
sequence of high-level
transformations. Each
transformation adds detail.

How do we compose a proof
that the code is consistent with
the initial specification?

Most of the transformations
work by calculation: a sequence
of equations from the domain
theory are applied.

The calculation is the proof!

Optimization

Finite Differencing

Type Refinement

Cotype Synthesis

Transformer Synthesis

Globalization

Cotype Synthesis – Extract a Final Model

Given these undefined or maintained observers

 nodesL : Memory -> List Node
 rootsL : Memory -> List Node
 supplyL : Memory -> List Node
 WL : Memory -> List Node

 blackCM : Memory -> Map(Node,Boolean)
 sucsIM : Memory -> Map(Node,Map(Index, Arc))

 srcM : Memory -> Map(Arc,Node)
 tgtM : Memory -> Map(Arc,Node)

Cotype Synthesis – Extract a Final Model

reify all undefined or maintained observers into a product

type Memory= { nodesL : List Node,
 rootsL : List Node,
 supplyL : List Node,
 WL : List Node,
 blackCM : Map(Node, Boolean),
 sucsIM : Map(Node, Map(Index, Arc)),
 srcM : Map(Arc, Node),
 tgtM : Map(Arc, Node)

 }
type Node
type Arc

Transformer Synthesis

• replace the constraints in transformer postconditions
 by concurrent updates of the cotype

• simplify

type Memory { nodesL : List Node,
 WL : List Node,
 arcMap : Map(Arc, Node * Node)
 … }

op swingArc(G:Memory) (x:Node, i:Index, y:Node| ok?(x,y)) : Memory =

 G << {arcMap = update (G.arcMap).(x,i) (x,y)

 WL = G.WL ++ [y | xG.S & y  G.S] }

Globalization

• add global variable of the cotype
 var M: Memory

• eliminate the cotype (Memory) in all functions
– parameter (at most one)
– return type

• replace local refs to state by global refs

type Memory= {nodesL : List Node,
 sucsM : map(Node, List Node),
 WL : List Node }
var M:Memory

op addArc(x:Node, y:Node) : Unit =
 (M.sucsM x := (M.sucsM x) + y
 || M.WL := M.WL ++ [n | mS & n  S])

Summary

• coalgebraic specification and refinement techniques

• Basic specification and refinement support in Specware

• Platform-independent derivations of concurrent M&S

• New transformations:
– dynamic fixpoint iteration
– observer maintenance
– observer refinement
– cotype definition
– globalization

Next steps:
• Output checkable proofs

• Copying Collectors

• Code generation to multithreaded C and CommonLisp

References

Dusko Pavlovic, Peter Pepper, and Douglas R. Smith,

Colimits for Concurrent Collectors,

in Verification: Theory and Practice (Z. Manna Festschrift),

Springer LNCS 2772, 2003, 568-597.

Dusko Pavlovic, Peter Pepper, and Douglas R. Smith,

Formal Derivation of Concurrent Garbage Collectors,

in Mathematics of Program Construction 2010 (MPC10),

Springer LNCS 6120, July 2010, 353-376.

Extras

Derivation Structure

GC0
Fixpoint

Problem

Fixpoint Iteration
Algorithm Scheme

Datatype Refinement

 Graph ↦ Monolithic Memory

 Node ↦ Block = AddrHeaderBody

 Arc ↦ BlockOffsetBlock

GC2

Maintain invariants; Optimize the code;

Introduce synchronization

code

Code Generation

GC1

Algorithm Design:

Workset-based Fixpoint Iteration
po

Mark&Sweep

Collector

safety, security, transparency reqts

System Heap

Collector

Tracing Alg

Simplified Alg

Maintain WorkSet

Algorithm design

Refine Observers

Synthesize Heap cotype

Synthesize Transformers

Code Generation

Mutator

Simplified Derivation Structure

Model of Memory as a Rooted Graph

roots

registers

stack

globals,

static

…

heap

allocate

Model of Memory as a Rooted Graph

roots

registers

stack

globals,

static

…

heap

addArc

Model of Memory as a Rooted Graph

roots

registers

stack

globals,

static

…

heap

addArc

Model of Memory as a Rooted Graph

roots

registers

stack

globals,

static

…

heap

delArc

Model of Memory as a Rooted Graph

roots

registers

stack

globals,

static

…

heap

dead nodes

dead node

Generating Proof Scripts: Status

• We have worked out the general proof script pattern, using examples
from the synthesis of Garbage Collectors (DARPA CRASH program).

• We are currently implementing a mechanism to translate
transformation steps into proof script steps: For each kind of
transformation step, we have developed a general “meta-rule” for how
to generate its corresponding proof script step.

• Prototype development in process – to be presented at HCSS.

• The proof scripts closely reflect the transformation steps by a one-to-
one relationship; search by Isabelle is avoided.

• The proof scripts are meant for machine checkability, but are
surprisingly readable!

• Anticipate that 90+% of proofs in the garbage collector derivations can
be automatically co-generated with the refinements.

• In a calculational derivation, the calculation is the proof!

Deriving Common Garbage Collection Algorithms

Tracing Collectors

Copying Collectors Marking Collectors

partitioned
memory model

monolithic
memory model

Generational
Collectors

Mark &
Compact

 generations

Mark &
Sweep

 generations

Collector
Spec

Reference Count
Collectors

maintain count
of predecessors

recalculate current set of
dead nodes

paths(roots,n) = {}



size(preds(n))=0

Cotype Synthesis – Extract a Final Model

Given these undefined or maintained observers

 nodesL : Memory -> List Node
 rootsL : Memory -> List Node
 supplyL : Memory -> List Node
 WL : Memory -> List Node

 blackCM : Memory -> Map(Node,Boolean)
 outArcsIM: Memory -> Map(Node,Map(Index, Arc))

 srcM : Memory -> Map(Arc,Node)
 tgtM : Memory -> Map(Arc,Node)

Cotype Synthesis – Extract a Final Model

reify all undefined or maintained observers into a product

type Memory= { nodesL : List Node,
 rootsL : List Node,
 supplyL : List Node,
 WL : List Node,
 blackCM : Map(Node, Boolean),
 outArcsIM : Map(Node, Map(Index, Arc)),
 srcM : Map(Arc, Node),
 tgtM : Map(Arc, Node)

 }
type Node
type Arc

Tracing Collectors: Workset

  enforce the invariant WS =(roots  sucs(S)) \ S

 S  {};

 while z (roots  sucs(S))\S do

 S  S  {z};

return S

G:Graph G’:Graph
addArc(m, n)

WS := WS  {n | m S  n  S}

WS’ = (roots  G’.sucs(S)) \ S

 = (roots  (G{mn}).sucs(S)) \ S

 = (roots  G.sucs(S)) \ S  {n | m S} \ S

 = WS  {n | m S  n  S}

design-time calculation:

 essentially the Dijkstra et al. on-the-fly concurrent collector

Tracing Collectors

 invariant WS =(roots  sucs(S)) \ S

 atomic[S  {} || WS  roots]

 while zWS do

 atomic[S  S  {z} || WS  WS  sucs(z)\S – z]

 return S

 atomic[addArc(m,n) || WS  WS{n | mS  nS}]

after all calculations to enforce the invariant:

	GC-planes.pdf
	Methodology
	Dynamic
	Intuition
	Graphs
	Collector
	Derivation
	Dynamic
	Workset Algorithm
	Conclusion

