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•  Safety 
•  Security 
•  Transparency 
•  Context Assumptions 



Garbage Collection  
Specification 

Tracing Alg 

Simplified Alg 

Maintain WorkSet 

Algorithm design 

Refine Observers 

Synthesize Heap cotype  

Synthesize Transformers 

Code Generation 

Simplified Derivation Structure 

The initial specification is 
refined to code by applying a 
sequence of high-level 
transformations.   Each 
transformation adds detail.   
 
How do we compose a proof 
that the code is consistent with 
the initial specification? 

Most of the transformations 
work by calculation:  a sequence 
of equations from the domain 
theory are applied. 
 
The calculation is the proof! 
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Model of Memory as a Rooted Graph 
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Regions of Memory and Basic Operations 
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State Machine Models: Mutators + Collector 

n. ndead  collect(n) 

Collector 

Collector identifies dead nodes 

and recycles them. 

 

A node is dead if there are no 

paths to it from the roots 

 

n  dead   paths(roots, n) = {} 

delete arc 

Mutator 

add arc 

allocate 

Mutator is an application that 

allocates heap nodes, and 

manipulates arcs (pointers).  

Requirements     

Safety:               No active nodes are ever collected 

Transparency:   Throughput, pause times, footprint, promptness 



Deriving Common Garbage Collection Algorithms 
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What’s Challenging about Concurrent GC? 
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State Machine Models: Mutators + Collector 

n. ndead  collect(n) 

Collector 

Collector identifies dead nodes 

and recycles them. 

 

A node is dead if there are no 

paths to it from the roots 

 

n  dead   paths(roots, n) = {} 

delete arc 

Mutator 

add arc 

allocate 

Mutator is an application that 

allocates heap nodes, and 

manipulates arcs (pointers).  

Requirements     

Safety:               No active nodes are ever collected 

Transparency:   Throughput, pause times, footprint, promptness 



Tracing Collectors 

n. ndead  Collect(n) 

n. nlfp(F)  Collect(n) 

 ndead  n  live                where live = active  supply 

                n  least S. roots  sucs(S)⊆ S 

                n  lfp(F)            where F(S) = roots  sucs(S)  

                



Tracing Collectors: Kleene 

instantiating F: 

 S  {}; 

 while  S  F(S) do 

      S  F(S); 

return S                

generalized proof over complete partial orders (cpo’s)  

based on Tarski, Kleene theorems 

 S  {}; 

 while  S  roots  sucs(S) do 

      S  roots  sucs(S) ; 

return S                

To compute lfp(F), where F is a monotone function 

in a powerset lattice: 



Tracing Collectors: Kleene 

Problem:  roots and sucs depend on the state of the heap; 

                does the algorithm work concurrently? 

 

The Kleene iteration computes        where F(S) = roots  sucs(S)  

            {}, F({}),  F(F({})), … Fn({}),   until convergence 

 

However the memory graph evolves as 

             G0, G1, G2, … Gn, … 

 

so the iteration produces 

             {}, F0({}), F1(F0({})),  F2(F1(F0({}))), …   

 

what does this sequence converge to?      

 S  {}; 

 while  S  roots  sucs(S) do 

      S  roots  sucs(S) ; 

return S                



Tracing Collectors: Kleene 

Problem:  roots and sucs depend on the state of the heap; 

                does the algorithm work concurrently? 

 

In a MPC10 paper we proved weak conditions under which 

             {}, F0({}), F1(F0({})),  F2(F1(F0({}))), …   

 

converges to a (non-least) fixpoint of the initial graph G0. 

 

Effect:  When executed concurrently, we can generate a proof 

that the algorithm returns a subset of dead nodes. 

 S  {}; 

 while  S  roots  sucs(S) do 

      S  roots  sucs(S) ; 

return S                



Tracing Collectors 

Problem:  How to make the iteration efficient? 

 

 introduce a workset  

                   WS = F(S) \ S 

                          = (roots  sucs(S)) \ S  

 S  {}; 

 while  z (roots  sucs(S))\S do 

      S  S  {z}; 

return S                

proof based on Cai/Paige theorems 

 S  {}; 

 while  S  roots  sucs(S) do 

      S  roots  sucs(S) ; 

return S                



Derivation Structure 
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The initial specification is 
refined to code by applying a 
sequence of high-level 
transformations.   Each 
transformation adds detail.   
 
How do we compose a proof 
that the code is consistent with 
the initial specification? 

Most of the transformations 
work by calculation:  a sequence 
of equations from the domain 
theory are applied. 
 
The calculation is the proof! 
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Specifying Algebraic Types 

An algebraic type is defined by constructors 

• well-founded 

• new functions defined inductively over constructors 

type List a  =  nil | cons a (List a) 

 

op  length: List a  Nat 

      length nil = 0 

      length (cons a lst) = 1 + length lst 

List is defined  

using constructors 

nil and cons 

length is defined inductively  

in terms of its value 

over the constructors 



Specifying Coalgebraic Types (aka cotypes) 

A coalgebraic type is characterized by observers 

• not well-founded: may be circular or infinite 

• transformers specified coinductively by effect on observers 

type Graph 

op    nodes: Graph  Set Node 

op    sucs  : Graph   Node  Set Node  

 

op  addArc(G:Graph) (x:Node, y:Node) :  

                 {G’:Graph |   nodes G’ = nodes G 

                                    & sucs G’ x  = (sucs G x) + y } 

Graph is specified 

using observers 

nodes and sucs 

addArc is specified coinductively 

in terms of its effect on the observers 



Coalgebraic Specifications 

•  Algebraic types used for ordinary data (boolean, Nat, List) 

•  Coalgebraic type used for heaps 

•  Observers              obs: Heap  A 
–  basic/undefined 
–  defined but maintained 
–  defined but computed 

•  Transformers             t: Heap  Heap 
–  preconditions 
–  postconditions:  coinductive constraints on observations 

 



Tracing Collectors:  
Instantiated Small-Step Fixpoint Iteration 

  S  {}  

 while  z(roots(G)  sucs(G)(S)) \ S do 

      S  S  {z}  

 return S   

WS G = (roots G  sucs(G)(S)) \ S 

to optimize the algorithm,  we introduce a new observer: 



Maintaining Observers 

Observer Maintenance Transform (aka Finite Differencing)  

• given a defined observer 

                WS (G:Graph):Set A =  e G 

• for each transformer t, add definition to postcondition: 

           t(G:Graph  |          WS G = e G ): 

             {G’:Graph | … && WS G’ = e G’ } 

• simplify 



Maintaining Observers 

type Graph 
op  nodes: Graph  Set Node 
op  outArcs  : Graph   Node  Set Node  
op  roots : Graph  Set Node 
op  S       : Graph  Set Node 
op  WS(G:Graph):Set Node = (roots G  outArcs G (S G)) \ (S G) 

 
op  addArc(G:Graph) (x:Node, y:Node) :  
                 {G’:Graph |      nodes G’ = nodes G 
                                    outArcs G’ x  = (outArcs G x) + (xy) 
                                    WS G’ = WS G  {y | xS G  yS G}} 

WS G’ = (roots G’  outArcs G’ (S G)) \ (S G) 
          = (roots G   outArcs (G{xy}) (S G)) \ (S G) 
          = (roots G   outArcs G S) \ (S G)  {y | x (S G)} \ (S G) 
          = WS G  {y | x (S G)  y  (S G)} 

design-time calculation: 



Tracing Collectors 

 invariant WS =(roots  outArcs(S)) \ S 

 atomic  S  {} || WS  roots  

 while  zWS do 

      atomic  S  S  {z} || WS  WS  outArcs(z)\S – z    

 return S   

 

 atomic  addArc(x,y) || WS  WS  {y | xS  yS}  

after all design-time calculations to enforce the invariant: 

this is essence of the coarse-grain Dijkstra et al. “on-the-fly” collector 



Observer Refinement 

• refine an existing observer WS (G:Graph):Set A 

    by a new observer               WL (G:Graph):List A 

              WS G = List_to_Set (WL G) 

     where List_to_Set is a homomorphism 

• replace all occurrences of WS by List_to_Set∘WL 

• simplify 



Refining Observers 

type Graph 
axiom    WS G = List2Set WL G 
 
op  addArc(G:Graph) (x:Node, y:Node) :  
                 {G’:Graph |      nodes G’ = nodes G 
                                    outArcs G’ x  = (outArcs G x) + (xy) 
                                    WL G’ = WL G ++ [y | xS & y  S]  } 

             WS G’ = WS G  {y | xS  y S} 
   L2S WL G’ = L2S WL G  {y | x S  y  S} 
   L2S WL G’ = L2S WL G  L2S [y | x S  y  S] 
   L2S WL G’ = L2S (WL G ++ [y | x S  y  S]) 
          WL G’ =         WL G ++ [y | x S  y  S] 

 

design-time calculation: 



Generating Proof Scripts 

For example, a refinement based on this calculation 
from the derivation of a Mark & Sweep garbage collector:  

Sequence of Rewrites                                 Justification for Each Step 
 
initialState x0  
       = FHeap x0 {}                                        unfolding initialState  
       = roots x0  allOutNodes x0 {}             unfolding FHeap 
       = roots x0  {}                                      rule allOutNodes_of_emptyset 
       = roots x0                                             rule right_unit_of_union 

automatically generates this Isabelle/Isar proof script : 
theorem initialState_refine_def:  
  "(initialState x0) = (roots x0)"  
proof - 
  have " (initialState x0)  
                           = FHeap x0 {}"                                  by (unfold initialState_def, rule HOL.refl) 
  also have      "... = (roots x0  allOutNodes x0 {})"    by (unfold FHeap_def, rule HOL.refl) 
  also have      "... = (roots x0  {})"                              by (rule_tac f=“y . (?term  y)" in arg_cong,  
                                                                                          rule allOutNodes_of_empty_set) 
  also have      "... = (roots x0)"                                     by (rule union_right_unit) 
  finally show ?thesis . 
qed 

The proof script discharges the proof obligation of the refinement  
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Cotype Synthesis – Extract a Final Model 

Given these undefined or maintained observers 
 
   nodesL   : Memory -> List Node 
   rootsL   : Memory -> List Node 
   supplyL  : Memory -> List Node 
   WL        : Memory -> List Node 
    
   blackCM  : Memory -> Map(Node,Boolean) 
   sucsIM    : Memory -> Map(Node,Map(Index, Arc)) 
    
   srcM     : Memory -> Map(Arc,Node) 
   tgtM     : Memory -> Map(Arc,Node) 



Cotype Synthesis – Extract a Final Model 

reify all undefined or maintained observers into a product 
 

type Memory= { nodesL    : List Node, 
          rootsL     : List Node, 
          supplyL    : List Node, 
          WL          : List Node, 
          blackCM  : Map(Node, Boolean), 
          sucsIM    : Map(Node, Map(Index, Arc)), 
          srcM       : Map(Arc, Node), 
          tgtM       : Map(Arc, Node) 

                        }  
type Node 
type Arc 

 



Transformer Synthesis 

• replace the constraints in transformer postconditions 
    by concurrent updates of the cotype 

• simplify 

type Memory { nodesL : List Node,  
                             WL : List Node,  
                       arcMap : Map(Arc, Node * Node) 
                       … } 
 

op  swingArc(G:Memory) (x:Node, i:Index, y:Node| ok?(x,y)) : Memory = 

      G <<  {arcMap = update (G.arcMap).(x,i)  (x,y) 

               WL       = G.WL ++ [y | xG.S & y  G.S] } 



Globalization 

•  add global variable of the cotype 
            var M: Memory 

• eliminate the cotype (Memory) in all functions 
– parameter (at most one) 
– return type 

•  replace local refs to state by global refs  

type Memory= {nodesL : List Node,   
                         sucsM :  map(Node, List Node), 
                             WL : List Node } 
var M:Memory 
 
op  addArc(x:Node, y:Node) : Unit = 
     (    M.sucsM x := (M.sucsM x) + y 
     ||          M.WL := M.WL ++ [n | mS & n  S]  ) 



Summary 

•  coalgebraic specification and refinement techniques 

•  Basic specification and refinement support in Specware 

•  Platform-independent derivations of concurrent M&S 

•  New transformations:   
–  dynamic fixpoint iteration 
–  observer maintenance 
–  observer refinement 
–  cotype definition 
–  globalization 

Next steps: 
•  Output checkable proofs  

•  Copying Collectors 

•  Code generation to multithreaded C and CommonLisp   
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Model of Memory as a Rooted Graph 

roots 

registers 

stack 

globals, 

static 

… 

heap 

allocate 
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Model of Memory as a Rooted Graph 

roots 

registers 

stack 

globals, 

static 

… 

heap 

addArc 



Model of Memory as a Rooted Graph 
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Model of Memory as a Rooted Graph 
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Generating Proof Scripts: Status 

• We have worked out the general proof script pattern, using examples 
from the synthesis of Garbage Collectors (DARPA CRASH program). 

• We are currently implementing a mechanism to translate 
transformation steps into proof script steps:  For each kind of 
transformation step, we have developed a general “meta-rule” for how 
to generate its corresponding proof script step. 

• Prototype development in process – to be presented at HCSS. 

• The proof scripts closely reflect the transformation steps by a one-to-
one relationship;  search by Isabelle is avoided. 

• The proof scripts are meant for machine checkability, but are 
surprisingly readable! 

• Anticipate that 90+% of proofs in the garbage collector derivations can 
be automatically co-generated with the refinements. 

• In a calculational derivation, the calculation is the proof!  



Deriving Common Garbage Collection Algorithms 

Tracing Collectors 

Copying Collectors Marking Collectors 

partitioned 
memory model 

monolithic  
memory model 

Generational 
Collectors 

Mark &  
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 generations 
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Collector  
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Reference Count 
Collectors 

maintain count 
of predecessors  

recalculate current set of  
dead nodes 

paths(roots,n) = {} 

 

size(preds(n))=0 



Cotype Synthesis – Extract a Final Model 

Given these undefined or maintained observers 
 
   nodesL   : Memory -> List Node 
   rootsL   : Memory -> List Node 
   supplyL  : Memory -> List Node 
   WL        : Memory -> List Node 
    
   blackCM    : Memory -> Map(Node,Boolean) 
   outArcsIM: Memory -> Map(Node,Map(Index, Arc)) 
    
   srcM     : Memory -> Map(Arc,Node) 
   tgtM     : Memory -> Map(Arc,Node) 



Cotype Synthesis – Extract a Final Model 

reify all undefined or maintained observers into a product 
 

type Memory= { nodesL    : List Node, 
          rootsL    : List Node, 
          supplyL   : List Node, 
          WL         : List Node, 
          blackCM     : Map(Node, Boolean), 
          outArcsIM : Map(Node, Map(Index, Arc)), 
          srcM      : Map(Arc, Node), 
          tgtM      : Map(Arc, Node) 

                        }  
type Node 
type Arc 

 



Tracing Collectors: Workset 

  enforce the invariant WS =(roots  sucs(S)) \ S 

 S  {}; 

 while  z (roots  sucs(S))\S do 

      S  S  {z}; 

return S                

G:Graph G’:Graph 
addArc(m, n) 

WS := WS  {n | m S  n  S} 

WS’ = (roots  G’.sucs(S)) \ S 

        = (roots  (G{mn}).sucs(S)) \ S 

        = (roots  G.sucs(S)) \ S  {n | m S} \ S 

        = WS  {n | m S  n  S} 

design-time calculation: 

 essentially the Dijkstra et al.  on-the-fly concurrent collector 



Tracing Collectors 

 invariant WS =(roots  sucs(S)) \ S 

 atomic[ S  {} || WS  roots ] 

 while  zWS do 

      atomic[ S  S  {z} || WS  WS  sucs(z)\S – z ]   

 return S   

 

 atomic[ addArc(m,n) || WS  WS{n | mS  nS} ] 

after all calculations to enforce the invariant: 
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