The Mechanically Verified
Stack Challenge

J Strother Moore
Inman Chair and Chairman

Department of Computer Sciences
University of Texas at Austin

The Premise

The formal methods community is in
danger of settling into comfortable niches
far smaller than our potential suggests.

To maximize the impact of our science, we
must demonstrate that mechanized formal
methods can dramatically decrease
time-to-market while producing correct
systems.

This requires

pervasive use of formal methods
throughout the abstraction hierarchy.

The Challenge

Each major group in the formal methods
community should design and mechanically
verify a practical embedded system, from
transistors to software.

A Personal Perspective

Instead of debugging a program, one
should prove that it meets its
specifications, and this proof should be
checked by a computer program.

— John McCarthy, “A Basis for a
Mathematical Theory of Computation,”
1961

Boyer-Moore Project

McCarthy’s “Theory of Computation™
Edinburgh Pure Lisp Theorem Prover

A Computational Logic
NQTHM
ACL2
!
T T B B N B R B
1960 1970 1980 1990 200C

Boyer -]
Moore -]

Kaufmann | |

simple list processing

academic math and cs

commercial
applications

| | | | | |
1960 1970 1980 1990 200C

1970s

(defun append (x y)
(if (endp x)

y
(cons (car x)

(append (cdr x) y))))

(theorem
(equal (append (append a b) c)
(append a (append b c))))

1980s Academic Math

e invertibility of RSA encryption
e undecidability of the halting problem

e Godel's First Incompleteness Theorem
(Shankar)

e Gauss' law of quadratic reciprocity
(Russinoff)

1980s Academic CS

® microprocessor: gates to machine code
(Hunt)

e assembler-linker-loader (Moore and
Kaufmann)

e compiler (Young)

10

The CLI Stack

Procedure Mult(var
var K: int:= 0;

loop

ifKle O

formal modelsrelated
by mechanically

checked proofs
FM 9001

machine code

0111010100011
00100100000011
0111010001001111
0011101001001010
0101110111110011

Formal NDL
netlist

fabricated
FM 9001 device

NS

INPUTS A,B,C;
OUTPUTS SUM, CARR
LEVEL FUNCTION;
DEFINE
TO(SUM1,CARRY1)=H

dieplot produced by LSl Logic, Inc, from
verified NDL via conventional CAD tools

11

Additional Stack Components
e operating system (Bevier)
e Lisp compiler (Flatau)

e applications (Wilding)

12

e Applications were mechanically verified
with respect to the high-level languages.

e Correct binary images were produced by
mechanically verified tools.

— compile
— assemble
— 1link

— load

13

1985

O/S

FM8501

1988

===

FM8502

1990

APPL

S —

FM9001

I

14

What's Missing?

e The FM9001 was modeled at the gate
level.

e The FM9001 had an unrealistically simple
architecture: memory-mapped I0, no
pipeline, no speculation, no floating
point, crude interrupts, no cache.

15

e None of the programming languages had
lo or floating point.

e [he high-level languages were too simple
to be of practical use.

— The micro-Gypsy language had very few
primitives and no dynamically allocated
data types (e.g., records).

— The Pure Lisp had automatic storage

16

allocation (e.g., cons) but no verified
garbage collector.

e [he compilers, assembler, linker, and
loader were “cross-platform”
transformers.

e No useful application programs were
verified.

17

e [he operating system was not hosted on
the FM9001.

18

What Was Learned?

System verification does not require
super-human skills.

It requires better tools than we had In
1985.

19

simple list processing

academic math and cs

commercial
applications

1 ‘ 1 1 1 1 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘

1960

1970

1980 1990 200C
]

stack project

ACL2 development

20

1990s

e Motorola 68020 and Berkeley C String
Library

e Motorola CAP DSP
e AMD K5 FDIV

e AMD Athlon fp

21

e Rockwell Collins JEM1

e IBM Cryptographic coprocessor

e Union Switch & Signal and Argonne
Nat'| Labs checkers

e FM9801

e JVM

22

e Java classes
e IBM Array Verification Tool
e Rockwell Collins CAPS

23

An Imaginary Stack

applications

Java

JVM

ISA
microarchitectur e

gates

transistors

24

applications

Java

JVM

ISA
microarchitectur e

gates

transistors

25

class Container {
public int counter; }

class Job extends Thread {
Container objref;
public Job incr () {
synchronized(objref) {
objref.counter = objref.counter + 1; }
return this; }
public void setref(Container o) {
objref = o; }
public void run() {
for (;;) {incr(O); } } }

26

class Apprentice {
public static void main(Stringl[] args){
Container container = new Container();
for (;;) {Job job = new Job();
job.setref (container) ;
job.start(); } } }

27

applications

Java

JVM

ISA
microarchitectur e

gates

transistors

28

Java (Golden, Krug, Liu, Moore, Porter)

Tim Lindholm * Frank Yellin . JVM in ACL2 -

The Java" Virtual ; J Moore and George Porter
Machlne S pEC!f.i(ﬂtlﬂn (defun make-—state (tt hp ct)
Second Edition)

‘ (defun step (th s)

(defun run (sched s)
(if (endp sched)
s
(run
__ (cdr sched)
= (step (car sched) s))))

&sun

schedule ——-
step

State o
[] - -

(defun run (schedule state)
(if (endp schedule)
state

(run (cdr schedule)
(step (car schedule) state))))

30

Our State: < tt, hp,ct >

thread

local bindings

operand stack

pcC

program

sync flag

thread || heap class

table table
thread id
call stack
scheduled?
heap ref

31

(defun step (th s)
(if (equal (call-stack-status th s)
’ SCHEDULED)
(do-inst (next-inst th s) th s)
s))

32

(defun do-inst (inst th s)

(case (op-code inst)

(AALOAD (execute—-AALOAD inst th s))
(AASTORE (execute—-AASTORE inst th s))
(ALOAD (execute-ALOAD inst th s))
(ALOAD_O (execute-ALOAD_X inst th s 0))
(ALOAD_1 (execute-ALOAD_X inst th s 1))
(ALOAD_2 (execute-ALOAD_X inst th s 2))
(ALOAD_3 (execute-ALOAD_X inst th s 3))

ce))

33

(defun execute-AALOAD (inst th s)
(let* ((frame (top-frame th s))
(index (top (stack frame)))
(aref (top (pop (stack frame))))
(array (deref aref (heap s))))
(modify th s
:pc (+ (inst-length inst) (pc frame))
:stack
(push (element-at index array)

(pop (pop (stack frame)))))))

34

Some Java/JVM/ACL2 Code

public static int fact(int n){
if (n<=0) return 1;
else return nxfact(n-1);}

javac jvm2acl2
Method int fact(int) ("fact" (INT) nil
0 iload_1 (ILOAD_1)
1 ifgt 5 (IFGT 5)

4 jiconst_1 (ICONST_1)

35

Java

javac

<4mm

.class

jvm2acl2

<mm

lisp)

Theorems

“fact(5)=120"

.) fact(n)=n !”

36

applications

Java

JVM

ISA
microarchitectur e

gates

transistors

37

Rockwell-Collins / alile Systems JEM1

The world’s first silicon Java Virtual
Machine was first modeled in ACL2.

38

The formal model 1s executable.

It was used in place of a C simulator for
requirements and certification testing.

It runs at 90% the speed of the C
simulator.

39

applications

Java

JVM

ISA
microarchitectur e

gates

transistors

40

Motorola CAP DSP (Brock

low_data

high_data

addr3to0

pwr_on_reset
ce_bar
r_wbar
ts_bar
ta_bar
hr_bar

PROGRAM
SEQUENCER/
DEDCODER

i) o]

[] \ xdlyd

xslys

|
|
|11 1T s 1

aol/sol

—— 1BIT
1 2x20BITS

|| eaBrs

serial_clk

serial_data

41

ROM containing
50 microcoded
DSP algorithm s

Pipelined Sequential
microarchitecture microcode ISA

(If no hazards)

42

Rockwell Collins Avionics

microcode
ROM

Microprocessor A Microprocessor B

43

AMD K5 Algorithm FDIV(p, d, mode

29.
30.
31.
32.

S AE W=

Sdo
dy
deo
Sdl
del
Sdg
43
492
4491

= lookup(d)

=d

= sdg X d,

= sdy x comp(sddy, 32)
Sdl X dr

= sdy x comp(sddy, 32)

= sdy X phg
= @2 1+ g3
= qq2 + q1

fdiv = qq1 + qo

lexact 17
laway 17
laway 17
[trunc 17
laway 17

[trunc 17

[trunc 17
sticky 17
[sticky 17
mode

32]
32]
32]
32]
32]

24
64
64

44

Using the Reciprocal

36.
+ -17
+ 0034
+ -.000066
35833334
12 /430000000
432,
2
204
04
0408
0008
-.000792

-.000008

Reciprocal Calculation:
1/12 = 0.0833 ~ 0.083 = sd>

Quotient Digit Calculation:
0.083 x 430.0000 = 35.6900000 = 36.000000 = qq

0.083 x -2.0000 = -.1660000 ~ -.17/0000 = q;
0.083 X .0400 = .0033200 = .003400 = g2
0.083 x -.0008 = -.0000664 ~ -.000067 = g3

Summation of Quotient Digits:
qo + q1 + g2 + g3 = 35.833333

45

Computing the Reciprocal

[[«d = sd(@2-sd d)ﬂ

46

top 8 bits approx top 8 bits approx top 8 bits approx top 8 bits approx
of d inverse of d inverse of d inverse of d inverse
1.00000009 0.111111119 | 1.01000005 0.110011009 | 1.10000009 0.101010109 | 1.11000005 0.100100109
1.00000015 0.111111019 | 1.01000015 0.110010119 | 1.10000015 0.101010015 | 1.11000019 0.10010001,
1.00000109 0.111110119 | 1.0100010o 0.110010109 | 1.10000109 0.101010009 | 1.11000109 0.100100019
1.00000115 0.111110019 | 1.01000115 0.110010005 | 1.10000115 0.101010009 | 1.11000119 0.100100009
1.00001009 0.1111011195 | 1.01001005 0.110001119 | 1.10001009 0.101001115 | 1.1100100o 0.10001111,
1.00001015 0.111101015 | 1.01001015 0.110001109 | 1.10001015 0.101001109 | 1.11001019 0.10001111,
1.00001109 0.111101009 | 1.0100110o 0.110001015 | 1.10001109 0.101001019 | 1.11001109 0.100011109
1.00001115 0.111100109 | 1.01001115 0.110001005 | 1.10001115 0.101001009 | 1.11001119 0.100011109
1.00010009 0.111100009 | 1.01010005 0.110000109 | 1.10010009 0.101000115 | 1.1101000o 0.100011014
1.00010015 0.111011109 | 1.01010019 0.110000015 | 1.10010019 0.101000119 | 1.11010019 0.100011009
1.00010109 0.111011019 | 1.0101010o 0.110000005 | 1.10010109 0.101000109 | 1.11010109 0.100011009
1.00101109 0.110110109 | 1.0110110o 0.101101009 | 1.10101109 0.100110015 | 1.1110110o 0.10000101,
1.00101119 0.110110009 | 1.01101119 0.101100119 | 1.10101119 0.100110009 | 1.11101119 0.100001009
1.00110009 0.110101119 | 1.0111000o 0.101100109 | 1.10110009 0.100101119 | 1.1111000o 0.100001009
1.00110015 0.1101010195 | 1.01110015 0.101100019 | 1.10110015 0.100101115 | 1.11110019 0.10000011,
1.00110109 0.110101009 | 1.0111010o 0.101100009 | 1.10110109 0.100101109 | 1.1111010o 0.10000011,
1.00110115 0.110100119 | 1.01110119 0.101011119 | 1.10110119 0.100101015 | 1.11110119 0.100000109
1.00111009 0.110100015 | 1.0111100o 0.101011109 | 1.10111009 0.100101015 | 1.11111009 0.100000109
1.00111015 0.110100009 | 1.0111101 0.101011019 | 1.10111019 0.100101009 | 1.11111019 0.10000001,
1.00111109 0.110011119 | 1.01111109 0.101011009 | 1.10111109 0.100100115 | 1.1111110o 0.10000001,
1.00111119 0.110011015 | 1.01111119 0.101010115 | 1.10111119 0.100100115 | 1.11111119 0.100000009

47

The Formal Model of the Code

(defun FDIV (p d mode)
(let*
((sd0 (eround (lookup d)
(dr (eround d
(sdd0 (eround (* sdO dr)
(sdl (eround (* sdO (comp sdd0 32))
(sddl (eround (* sdl dr)
(sd2 (eround (* sdl (comp sddl 32))

(qq2 (eround (+ g2 g3)
(qql1 (eround (+ qg2 qil)
(fdiv (round (+ qql q0)

(or (first-error sd0 dr sddO0 sdl sddl ...

fdiv)))

> (exact 17
’(away 17
’(away 17
> (trunc 17
’(away 17
>(trunc 17

>(sticky 17
’(sticky 17
mode)))
fdiv)

8)))
32)))
32)))
32)))
32)))
32)))

64)))
64)))

48

The K5 FDIV Theorem

(defthm FDIV-divides
(implies (and (floating-point-numberp p 15 64)
(floating-point—numberp d 15 64)
(not (equal d 0))
(rounding-modep mode))

(equal (FDIV p d mode)
(round (/ p d) mode))))

(by Moore, Lynch and Kaufmann, in 1995,
before the K5 was fabricated)

49

applications

Java

JVM

ISA
microarchitectur e

gates

transistors

50

AMD ATHLON™
rockersTo 1 GHZ

51

All elementary tloating-point operations on
the AMD Athlon were

e specified in ACL2 to be IEEE compliant,
e proved to meet their specifications, and

e the proofs were checked mechanically —
before fab.

(Russinoff and Flatau)

52

AMD Athlon FMUL

module FMUL; // sanitized from AMD Athlon(TM)

// by David Russinoff and Art Flatau
[/% Kk ok ok sk sk sk ok ok ok sk ok K ok ok ok sk K 3 ok ok ok K 3 ok ok ok K ok ok ok K ok ok ok 3k ok ok ok kK ok ok ok

// Declarations
/ /% sk ok sk ok sk ok sk ok sk ok ok ok ok s ok sk ok ok sk ok s ok sk ok ok sk ok s ok sk ok ok sk ok s ok sk ok ok ook sk ok ok ok k

//Precision and rounding control:

‘define SNG 1°bO0 // single precision
‘define DBL 1’b1l // double precision
‘define NRE 2’b00 // round to nearest
‘define NEG 2’b01 // round to minus infinity

‘define POS 2’b10 // round to plus infinity

53

//Parameters:

input x[79:0]; //first operand

input y[79:0]; //second operand
input rc[1:0]; //rounding control
input pc; //precision control
output z[79:0]; //rounded product

//**

// First Cycle
[/%% 3k ok ke ok ok sk sk o ok sk sk o ok sk K o ok sk K ok ok ok K o ok sk K ok ok ok 3 ok ok 3k 3 ok ok 3k K ok ok ok ok

//0perand fields:
sgnx = x[79]; sgny = y[79];
expx[14:0] = x[78:64]; expyl14:0] = y[78:64];

54

RTL ‘ I ‘- ‘proofs‘

\ RTL sim l

\
PN

fabrication

55

applications

Java

JVM

ISA
microarchitectur e

gates

transistors

56

Summary of Our Current State

We have mechanically verified

e RTL for industrial designs,
e commercial microcode, and

e simple programs in a widely used
programming language.

57

In each industrial site where ACL2 is being
used, proprietary formal information has
been created:

e models of artifacts,
e definition of “in-house” concepts,
e specifications, and

e lemmas and proof strategies.

58

Our lowest level formal models are usually

e "bit accurate,”
e "cycle accurate,” and

o efficiently executable (comparable to C).

59

Our formal models often replace
conventional simulation models:

e they are as accurate and
e they run about as fast, but

e they can be formally analyzed.

Formal models add value.

60

The evidence supports

e the value-added proposition,

e the claim that formal methods requires
less manpower than testing, and

e the claim that formal methods reduces
time-to-market.

61

We have certified books (lemma libraries)
for

e arithmetic and bit-vectors,
e stuttering bi-simulation,

e a BDD package (60% CUDD speed), and

e a2 sound and complete mu-calculus model
checker.

62

The Challenge

Each major group in the formal methods
community should design and mechanically
verify a practical embedded system, from
transistors to software.

63

Why Build a Stack?

e [here iIs still much to be learned.

e Practice makes perfect (more accurately,
practice encourages mechanization).

e A stack forces you to deliver what you
assume.

64

The Rules of the Game

e T he project should produce an artifact,
e.g., a chip.

e [he artifact’s behavior should be of
interest to people not in formal methods.

e [he artifact should come with a
“warranty’ expressed as a theorem.

65

e [he warranty should be certified
mechanically; user input and interaction
are allowed but a machine must be
responsible for the soundness of the
claim.

e [he machine used to certity the warranty
should be available for others, at least, to
use and test, If not inspect.

66

Why It is Hard

There are unsolved technical problems.
But mainly:

None of our systems allow us to move up
and down the abstraction hierarchy with
the ease required to build a practical
system.

67

The Challenge Will Encourage

e more automation,
e integration of formal approaches,

e development of collaborative
environments,

68

e identification of assumptions,

e specification of crucial system interfaces,
and

e clegant designs of practical systems.

69

