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1 Objective and Introduction 
1.1 Introduction to version 1.0 
The purpose of this report is to present the work to build the separation specification on 
the Programatica project. In fact, this report will also present the beginnings of the Krenz 
specification on the Programatica project. The reason for combining these two is that the 
Krenz specification depends upon the Separation specification. The specifications have 
been designed as a hierarchy of Haskell classes and instances. The Krenz specifications 
are instances of classes that are sufficiently general to handle the separation specifications 
and several versions of the Krenz specifications. 
The statement of work for the Programatica project calls for a Krenz model at several 
levels, including the enterprise, network, and platform levels. The Haskell classes 
presented in this report have been parameterized to cover the required Krenz levels, as 
well as other instances of Krenz not anticipated in the statement of work. This 
parameterization of the Haskell classes to encompass many instances of Separation and 
Krenz is a significant accomplishment of this work. 
The enterprise Krenz model calls for a concept of topology to be introduced. The 
framework of Haskell classes presented in this report will lay the foundation for the 
concept of topology to be introduced in the enterprise Krenz report. The objective of the 
topological concept is to be able to answer questions such as the following: 

• Conformance to Security Policy: Given an enterprise constructed from many 
network, platforms, processes, threads, etc., does the enterprise conform to the 
Krenz model of information flow specified for the enterprise? 

• Security of alteration: Given a proposed change to an enterprise (e.g. an 
additional network, an additional platform, etc.) is the resulting network still in 
conformance to the Krenz model of information flow for the enterprise? If not, 
what filters must be added to bring the proposed change into conformance? 

The second question (security of alteration) reveals another objective of the hierarchy of 
Haskell classes. The architecture should be dynamic, so that new elements and 
connections can be added. For example, new networks, network connections, platforms, 
etc. can be added to an enterprise. This is a significant advance over the Mathematically 
Analyzed Separation Kernel (MASK). MASK supported only a static set of processes, 
threads, and communication paths between them. 
The objectives of the hierarchy of Haskell classes are summarized in Table 1. This report 
presents the hierarchy of classes in a form sufficient to support the objectives listed in 
Table 1 for the separation property. To support the Krenz properties will require some 
extensions. In particular, the hierarchy of classes at this time does support the addition of 
elements in the architecture, but not the addition of connections between the elements of 
the architecture. 
A final objective of the hierarchy of classes (not accomplished at the time of this report) 
is to extend the parameterization of the classes. The classes are polymorphic in the type 
of elements and connections that comprise the architecture. In Haskell, this means that 
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the elements and connections can be of any type, but they must be consistent throughout 
the architecture, i.e. all the elements are of the same (polymorphic) type, and all the 
connections are of the same (polymorphic) type. It would be nice to have an architecture 
that is built from elements of one type in one part of the architecture, and of a different 
type in another part of the architecture. For example, it would be nice to use Linux 
platforms in one place and NT platforms in another place. Haskell has mechanisms to 
permit this kind of extended polymorphism. In future versions of this hierarchy of 
classes, we will investigate the use of these Haskell mechanisms to extend the 
polymorphism. 

Table 1: Objectives of the hierarchy of Haskell classes 

Objective Description  Further information 
Parameterized model The ability to instantiate the hierarchy of 

classes to capture many versions of 
Separation and Krenz. 

Section 5.3. 

Hierarchy of levels The ability to specify a hierarchy of 
elements, each having its own separation 
or Krenz property 

Section 5.4. 

Topology The introduction of a topological concept, 
permitting what if questions about 
modifications to the architecture. 

Version 2.0 of this 
report (see section 1.2) 

Dynamic architecture The ability to add elements to the 
architecture (adding connections not yet 
done) 

Section 0. 

Extended 
polymorphism 

The ability to compose an architecture of 
elements with many different types. 

Future report 

1.2 Introduction to version 2.0 
This version of the specifications adds a concept of topology to the Separation and Krenz 
specifications. The notion of topology used is that of a Grothendieck Topology, as 
described in the PhD thesis of Srinivas [8] and in other texts [1]. Underlying the concept 
of Grothendieck Topology are the concepts of Category [3, 4, 5, 6], Sieve [1, 8], and 
Sheaf. [1, 8]. 
For the separation specification, the basic idea underlying the addition of Grothendieck 
topology is that each instance of the separation specification is an object in a category 
(called Sep), and a separation homomorphism is an arrow in the category. In the 
category (Krenz), objects are instances of the Krenz specification, and arrows are 
homomorphisms that preserve the Krenz structure. The Krenz Assurance Graph lives in a 
special instance of the Krenz category, called KAG. 
The reason for adding a topology to the Separation and Krenz specifications is to provide 
the structure in which pattern matching takes place. The development of a pattern-
matching algorithm, based on the Knuth-Morris-Pratt (KMP) algorithm, is the subject of 
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the thesis of Srinivas (8). Based upon this pattern-matching algorithm, questions can be 
asked such as: 
 Is a complex system an instance of a Separation specification? 
 Is a complex system an instance of a Krenz specification? 
 Is a complex system an instance of a Krenz Assurance specification? 
 If a modification is to be made to a system, will it still satisfy a (Separation / 

Krenz / Krenz Assurance) specification? 
The Krenz specifications are also intended to be the basis for formal security models for 
computer platforms and networks. The Krenz specification has a protection profile 
associated with it, which is the starting point of seeking security assurances under the 
common criteria (CC). 
A significant success of the version 2.0 effort is that the Haskell specifications from 
version 1.0 were reused without modification. Two new files (CategoryC.hs in section 0 
and GraphCategory.hs in section 7.12) were added to the version 1.0 specifications. This 
speaks highly of the reusability of Haskell definitions and code. 

1.3 Introduction to version 3.0 
The most important changes in this version of the specification are: 
 Theorem proving: The theorem proving aspect of the specification has been 

considered. Several theorem provers were investigated (Hol, PVS, Maude, and 
Isabelle), and Hol was chosen as the theorem prover to use on the Krenz 
specifications. The simpler definition of recursive graph was carried through to all 
of the other definitions (such as the Krenz System) built on top of the recursive 
graph concept. The theorem proving considerations have had three major effects: 

♦ Inductive definition of recursive graphs: The definition of the recursive 
graph data structure was modified to use an inductive definition, based on 
the work of Martin Erwig ([1]). The previous definition of recursive graph 
had no clear structure, and it was unclear how to map it into Hol for 
theorem proving. 

♦ Simplification of other parts of the specification: Based on the simpler 
method of defining recursive graphs, the other specifications built on the 
recursive graph were also simplified. 

♦ Dynamic version of recursive graphs: As a natural byproduct of the 
inductive definition of recursive graphs, the recursive graph structure is 
now dynamic, i.e. nodes and edges can be added to or deleted from a 
recursive graph. 

 Testing: The deepen and flatten methods of the recursive graph were tested on 
several graphs. Testing the functions is a necessary first step before the theorem 
proving effort begins. 



The separation and Krenz specification  Programatica Project 
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM 

 Page 9 of 57 

 Network Krenz: The work of the previous two specifications has already 
introduced the structures necessary for the network version of the Krenz 
specification, so no additional work was needed here. 

The informal portion of this document (section 2 through section 6) remain unchanged in 
version 3 of the report. The Haskell source (section 7) has been updated with the new 
Haskell source. The Hol source (partial at this point) is now included in section 8. 

2 Informal Description of Separation 
This section describes the separation property. The separation property first arose in the 
context of an operating system. The separation property is first described at the operating 
system level in section 2.1. This property is abstracted to suit any instance of the 
separation property in section 2.2. 

2.1 Separation concept at the operating system level 
Separation at the operating system level is depicted in Figure 1. Many operating systems 
(such as NT and Unix) are good at separating processes in terms of providing separate 
address spaces, such that reads and writes to one address space are independent of reads 
and writes to another address space. However, these operating systems are poor at 
separating processes in terms of the operating system itself. What this means is shown in 
Figure 1. By means of operating system interfaces, one process can influence the internal 
state of the operating system. This influence can later be detected by another process 
running under control of the same operating system. 

Process1 Process2

Segment1 Segment2

Kernel

Access Access

Internal
State

Kernel CallKernel Call
Unwanted
interference

Processes interfere with each 
other in subtle ways via the 
OS/Kernel, so it is not possible to 
evaluate the properties of one 
process in isolation

 
Figure 1: Separation at the operating system level 

Allocation and de-allocation of resources is a common example of such paths of 
influence. One process allocates resources, and the other process can detect that resources 
have been allocated, often by using operating system status tools that return the level of 
resource allocation. The “disk free (df)” utility of Unix is a good example of this. Widely 
used operating systems have hundreds (even thousands) of interfaces, and abundant 



The separation and Krenz specification  Programatica Project 
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM 

 Page 10 of 
 

opportunities to communicate information by means of operating system interfaces that 
were not intended as communication mechanisms. 
A separation kernel is designed to eliminate information flows by means of the kernel, 
and permit only explicitly allowed communication by the communication mechanisms 
provided by the kernel. The separation property captures the resulting separation between 
the processes. Informally, the separation property is: 

Informal Separation Property: Processes A and B are separated if the actions 
of process A cannot influence the actions of process B, and the actions of 
process B cannot influence the actions of process A. 

Figure 2: Informal separation property 

Note the word “cannot”, rather than “does not”. Two processes might be designed so that 
they “do not” influence each other, even though there are mechanisms that might enable 
them to influence each other. “Cannot” means there is no mechanism for the two 
processes to influence each other, except for the explicitly allowed communications 
mechanisms of the operating system. 

2.2 Abstraction of the separation concept 
The separation property can be abstracted from the context of operating systems, to apply 
to any instance where separation is of interest. Other examples of separation are 
separation between the bands of different radio stations, separation between 
compartments in a battleship (provided by bulkheads), and separation between 
communications channels in a network. The abstract separation property to capture all 
these instances of separation is depicted in Figure 3. 

CA

Step

Start

CB

Step

Start

CC

Step

Start

System

Start

Step

Some components are permitted to affect 
each other, some are not  

Figure 3: Abstract version of separation 

In Figure 3, separation is described as the separation of the components of a larger 
system. The system has two operations, start, and step. The start operation places the 
system in an initial state, and the step operation advances the state of the system, 
resulting in updates to some or all of the system state. 
The system is built from components. Each component has its own start and stop 
operation, which initialize and advance the state of the component. The system start and 
stop operations are defined in terms of the component start and stop operations. For 
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example, the system start operation could invoke the start operation of each of the 
components of the system. This version of separation requires a select operation that 
returns a component of the system, given the ID of the component. Thus (select s a) 
denotes component a of system s. 
In this abstract context, an informal statement of the separation property is: 

Abstract separation property: System component A is separated from system 
component B if the results of the Start and Step operations of component A are 
not influenced by the Start and Step operations of component B. In other words, 
the operation of component A is the same, no matter how operations by 
component B are interleaved with the operations of component A. 

Figure 4 Abstract separation property 

This statement maps down to the operating system version of separation (section 2.1). 
The processes are the components of the system, and the system consists of all the 
processes, together with the operating system itself. The process operations (such as 
executing machine language instructions, or making calls to the operating system) 
become versions of the abstract Step operation. The select operation corresponds to the 
operating system scheduler, which determines the next process to run. 
 

3 Informal Description of The Krenz 
Like the separation concept, the Krenz concept originated as a property of interest for an 
operating system. The Krenz concept at the operating system level is described in section 
3.1. The Krenz concept is then extended to arbitrary information flow policies in section 
3.2. 

3.1 Krenz concept at the operating system level 
The Krenz concept at the operating system level is depicted in Figure 5. The platform 
controlled by the operating system is divided into different information processing 
modes. Examples of modes are classified and unclassified, proprietary and public, 
protected and unprotected. The Krenz information flow policy requires specifies that 
when information flows between two modes, it must flow through a filter. For example, 
information flowing from an unclassified mode to a classified mode must be sent through 
a filter that includes encryption, and possibly a dirty word scan. 
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Mode A

Mode B

Filter A  B
Filter B  A

 
Figure 5: Informal description of the Krenz 

At the platform level, different realizations of the Krenz are possible: 
• The Krenz could be an enhancement to the boot up. The desired mode of 

processing is determined, and the user is permitted to boot up in the desired mode. 
Only resources appropriate to that mode are made visible to the user. 

• The Krenz could be implemented as an envelope to the underlying platform and 
operating system. All I/O by the platform, operating system, and applications 
would be intercepted by the Krenz, which would establish the abstraction of 
different information processing modes and the filters between them. This 
realization would permit hot switches between modes. 

• The Krenz could be a higher-level software layer, such as VMWare. VMWare is 
used to control access by the user mode software to the underlying hardware, and 
therefore to any I/O as well.  This realization of the Krenz also permits hot 
switches between modes. 

The Krenz concept depends upon the separation concept. If the only information flow 
from mode A to mode B is via a specified filter, then the underlying operating system 
must ensure that there are no flows between mode A and mode B other than via the 
explicitly allowed communication mechanisms. 

3.2 Abstraction of the Krenz concept 
Like the operating system concept, the Krenz concept can be abstracted away from the 
operating system context. This abstraction is shown in Figure 6.  

Mode1 Mode2

Mode3

Filter1

Filter2

Filter3

Filter4

 
Figure 6: Extension of the Krenz Concept 
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The Krenz concept is formulated as a directed graph. 
• Nodes: The nodes in the directed graph are either 

o Modes: The information processing modes, such as classified or 
unclassified. 

o Filters: The filters between the information processing modes. 
• Edges: The edges in the directed graph are uni-directional information flows 

The filter nodes are trusted to perform their filter functions correctly, whereas the mode 
nodes are untrusted. As shown in Figure 6, filters can be composed. For example, filter 2 
and filter 4 have been composed. 
This model represents an abstraction of the Krenz concept from the operating system 
level, since nodes and edges have no fixed semantics. Nodes could be networks, domains, 
threads, etc, and the edges the corresponding communication links between the nodes. 
In this model, we have chosen to model the filters as nodes. Another choice would be to 
model the information modes as nodes, and the filters as edges. It is not clear which is a 
better choice at this time, and both models will be explored in the course of the 
Programatica project. 

3.3 The Krenz assurance graph concept 
The Krenz concept can be further extended as depicted in Figure 7. The extension is that 
properties have been assigned to the edges in the Krenz graph. In the Krenz graph, the 
information processing modes were untrusted, and had no useful assurance properties. In 
the Krenz assurance graph, an information-processing mode could be trusted to satisfy 
the specified property on the specified output arc. This permits discussing a limited trust 
(limited to the specified property) for the information-processing mode. Untrusted modes 
would have “True” as their output property, meaning that there is no property (other than 
tautologies) that can be asserted about the output of the information mode. 

Mode1 Mode2

Mode3

Filter1

Filter2

Filter3

Filter4

P1

P2

P3P4

P5

P7

P6

 
Figure 7: The Krenz Assurance Graph 
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4 Hierarchical system concept 
The separation and Krenz concepts both started at the operating system level, and were 
later abstracted to arbitrary information flow situations. With this abstraction, it is 
tempting to apply the separation and Krenz concepts to other systems requiring security 
assurance. In particular, we have the goal of applying the Krenz concept to complex 
systems that span a number of levels of complexity. An example of a complex system 
spanning many levels is shown in Figure 8. 

Coalition

Enterprise

Network

Platform

Processor

Processes

Process

Thread  
Figure 8: Hierarchical levels within a complex system 

Each level in the hierarchy has its own separation and krenz concerns. For example, 
networks can be separated, and connected by filter components such as network 
encryptors and firewalls. The coalition may be formed from enterprises, and there may be 
rules (filters) governing the flow of information between the enterprises. The Krenz 
model should enable the formulation of the following types of questions: 

• Conformance to information flow policy: Does an architecture, spanning levels 
from coalition down to thread, conform to a specified Krenz information flow 
policy? 

• Security of changes to the architecture: Does a proposed change to the 
architecture, such as a new process, a new network, a new connection (etc.), still 
conform to the specified Krenz information flow policy? If not, what filters 
should be inserted to maintain conformance to the information flow policy? 

If the model enables formulation of these questions, then it should also enable automated 
tools to answer these questions. 

4.1 Hierarchical System concept at the operating system level 
There is already a notion of a hierarchy of systems in the operating system level 
separation concept, as shown in Figure 9. The system level has start and step operations, 
and its components also have start and step operations. This suggests that a minor 
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modification to the separation concept is to make each of the components into a 
separation system, with its own subcomponents. 

CA

Step

Start

CB

Step

Start

CC

Step

Start

System

Start

Step

Some components are permitted to affect 
each other, some are not  

Figure 9: Recursion in the operating system separation concept (Repeats Figure 1) 

The separation concept is displayed as Haskell classes and signatures in Figure 10. The 
system level has its own select, start, and stop operations, shown in the upper left of the 
square. The system has four components, each of which is a system in its own right, 
having select, start and stop operations. 

System cs c cid               
start :: cs                 
step :: cid->cs->cs                  
stop :: cs -> cs                

Component

Component

Component

Component
System cs c cid               
start :: cs                 
step :: cid->cs->cs                  
stop :: cs -> cs                

System cs c cid               
start :: cs                 
step :: cid->cs->cs                  
stop :: cs -> cs                

System cs c cid               
start :: cs                 
step :: cid->cs->cs                  
stop :: cs -> cs                

System cs c cid               
start :: cs                 
step :: cid->cs->cs                  
stop :: cs -> cs                

SYSTEM

 
Figure 10: Separation as Haskell signatures 

4.2 Abstraction of the hierarchical system concept 
The extension of the separation concept to more levels is depicted in Figure 11. The 
hierarchy now has three levels, a super system, comprised of fours systems, each of 
which is comprised of four subsystems. It is clear that this nesting of systems can be 
extended to any number of levels in the hierarchy. 
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System cs c cid               
start :: cs                 
step :: cid -> cs -> cs                  
stop :: cs -> cs                

System cs c cid               
start :: cs                 
step :: cid->cs->cs                  
stop :: cs -> cs                

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

SU
PE

R
SY

ST
E

M

System cs c cid               
start :: cs                 
step :: cid->cs->cs                  
stop :: cs -> cs                

System cs c cid               
start :: cs                 
step :: cid->cs->cs                  
stop :: cs -> cs                

System cs c cid               
start :: cs                 
step :: cid->cs->cs                  
stop :: cs -> cs                

System cs c cid               
start :: cs                 
step :: cid->cs->cs                  
stop :: cs -> cs                

SYSTEM

System cs c cid               
start :: cs                 
step :: cid->cs->cs                  
stop :: cs -> cs                

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM
System cs c cid               
start :: cs                 
step :: cid->cs->cs                  
stop :: cs -> cs                

System cs c cid               
start :: cs                 
step :: cid->cs->cs                  
stop :: cs -> cs                

System cs c cid               
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Figure 11: Extending the separation concept to a hierarchy 

Figure 11 shows extending the separation concept to an arbitrary number of levels. Now 
we want to extend the Krenz concept to an arbitrary number of levels. The separation 
concept is presented nicely as nested systems. The Krenz concept has been modeled (in 
section 3) as a graph, so extending the Krenz concept to an arbitrary number of levels 
requires a multi level graph. This development is described in the following sections (see 
sections 5.1 and 5.4). 

5 Description of Separation / Krenz Hierarchy 
This section informally describes the hierarchy of Haskell classes and instances used to 
achieve the objectives stated in section 1. The description begins with the hierarchical 
graph class in section 5.1. Then the dynamical system specification is described in 
section 5.2. The use of parameters to make Separation, Krenz, and Krenz assurance 
specifications is described in section 5.3. The hierarchy of classes and instances is then 
described in section 5.4. 

5.1 Recursive Graphs 
The recursive graph data structure is used to capture the hierarchical separation and 
Krenz concepts discussed in section 4. The recursive graph data structure is illustrated in 
Figure 12. 
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Figure 12: Hierarchical Graph 

The example recursive graph shown in Figure 12 has three levels. The highest level (level 
1) has three simple nodes, labeled 1, 2, 4, and 6, and two complex nodes, labeled 3 and 5. 
Edges are shown between some of the simple nodes in the level 1 graph. The complex 
nodes are recursive graphs themselves. The level 1 node labeled 3 is a recursive graph at 
level 2, having simple nodes 1, 2, and 3, and a complex node labeled 4. The rest of the 
recursive graph is described similarly. 
All of the edges shown in Figure 12 are edges between simple nodes of the same level. In 
addition, it is possible to have edges between the nodes at different levels in the recursive 
graph, or across levels in the recursive graph, as shown in Figure 13. 
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Figure 13: Inter-level edges in the recursive graph 

The graph of Figure 13 has the following inter-graph edges: 



The separation and Krenz specification  Programatica Project 
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM 

 Page 18 of 
 

 Down: An edge down, from node 1 at level 1 to node 2 in subgraph 4. 
 Up: An edge up, from node 2 in the right subgraph at level 3, to node 3 in the 

right subgraph at level 2. 
 Across: An edge across from node 3 in the left subgraph at level 2 to the right 

subgraph at level 2. Note that the edge is specified as the list [Up, 5, 1]. This 
specification means to go up one level, then to node 5 at that level (which turns 
out to be a complex node), and then to node 1 inside the complex node. 

The Haskell class declaration for the recursive graph class contains a flatten and a deepen 
function. The flattened version of the recursive graph of Figure 13 is shown in Figure 14. 
The recursive graph has been flattened to have only one level. The complex nodes are 
expanded into the level above them. 

 
Figure 14: Flattened Hierarchical Graph 

Note that the structure of the recursive graph of Figure 13can be recovered from the 
flattened graph of Figure 14, because the information about the structure of the graph was 
stored in the names of the nodes. For example, the node named 3,4,1 indicates simple 
node 1 of complex node 4, of complex node 3 at the top level. 
The recursive graph is the framework for defining the separation, Krenz, and Krenz 
assurance graph concepts that span levels of complexity. The use of this framework will 
be described in section 5.4. 

5.2 Dynamic Systems 
As stated in section 1, an objective of these specifications is to enable a dynamic 
separation kernel, a dynamic Krenz system, and a dynamic Krenz assurance system. This 
means that nodes and edges can be added to or deleted from an instance of separation, 
Krenz, or Krenz assurance graph. At present, the dynamic addition and deletion of nodes 
is defined only in the simplest version of the Separation specification. Extending this 
capability to the hierarchical separation and Krenz specification requires only the 
addition of functions to the recursive graph specification that will permit the addition and 
deletion of nodes and edges. 
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5.3 Parameterizing Separation vs. Krenz 
The recursive graph specification (section 5.1) will be used to capture the separation, 
Krenz, and Krenz assurance graph concepts. This is done by parameterizing the recursive 
graph data structure. The parameters are called freight, and the freight is carried by each 
node and edge in the graph structure. The freight has the following characteristics: 

• Node Freight: The simple nodes carry the freight, not the complex nodes (see 
Figure 13).  However, the simple nodes that comprise a complex node can carry 
freight. If needed, freight can be added to the complex nodes if this extension to 
the specification is needed. 

• Edge Freight: The edges can also carry freight. 
• Polymorphic Freight: The freight is specified as a polymorphic parameter, so 

that the nodes and edges can carry freight of any type. The node freight parameter 
is different from the edge freight parameter, so the nodes and edges can carry 
freight of different type. 

As noted in section 1, the polymorphic parameter implies that all the nodes at all the 
levels of the graph have freight of the same polymorphic type. An objective of future 
versions of this specification is to lift this restriction, so that different subgraphs of a 
recursive graph can have node freight of different types. 

5.4 Hierarchical Separation and Krenz 
The separation, krenz, and krenz assurance graph specifications can be realized as data 
types that are instances of the appropriate classes. 
 Separation: Each of the separation, krenz, and krenz assurance graph 

specifications are instances of the separation class. From this class the inherit the 
concept of a system that can be initialized (the start operation), advanced (the step 
operation), and they inherit the separation property. The separation class is 
described in section 5.4.1. 

• Recursive graph: From the recursive graph class, the separation, krenz, and 
krenz assurance graph specifications inherit the hierarchy of nodes and subgraphs. 
The recursive graph concept was described in section 5.1, and the specifications 
will be described in section 5.4.2. 

By combining inheritance from the separation class and the recursive graph class, the 
specifications gain the separation concept, applied at each level of the hierarchy given in 
the recursive graph. It is this combination which permits us to achieve the objectives of 
the specifications laid out in section 1. 

5.4.1 System and Separation classes 

The system and specification classes are built up from lower level classes as shown in 
Figure 15. 
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Eq cid 

Containers cs c cid Component c 

System cs c cid 

Separation cs c cid 

 
Figure 15: Separation Specification Hierarchy Classes 

A brief description of each of the classes of Figure 15 follows: 
 Eq: The equality class comes from the standard Haskell prelude. It contains 

equality and inequality operators. 
 Component: The component class defines a basic component of a system, with its 

own start, step, and stop operations. These operations are sufficient to describe an 
object with an internal state that can be initialized (start), advance (step), and 
terminate (stop). 

 Containers: The container class defines the basic operations of any dynamic 
container. The elements in the container each have an identifier. The basic 
operations are: 
 select: Given an id, find the element (if any) of the container that has that 

identifier. 
 addElem: Add an element (with its id) to the container. 
 deleteElem: Delete and element (with its id) from the container. 

 System: The system class defines the concept of a system that contains 
components. Thus the system class inherits from both the containers class and the 
component class. The system class adds the idea that both the system level and 
the component level have start, stop and step operations. 

• Separation: In terms of standard Haskell, the separation class is exactly equal to 
the system class. In terms of Programatica, the separation class adds properties to 
the system class. The separation property is shown in Figure 16. 
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property FirstSeparation = All ps. All x. All y. 

         select (stepSystem ps x) y =/= select ps y ==> 

  ((interactionMatrix ps x y) ps x y === True) 

property SecondSeparation = 

  All ps. All x. All y. 

    select (stepSystem ps x) y =/= select ps y ==> 

      (Exists f. 

        select (stepSystem ps x) y === f (select ps x) (select ps y)) 
Figure 16: The Haskell separation properties 

5.4.2 The Recursive Graph class 

The recursive graph class, like the separation class, is constructed from more primitive 
classes. The hierarchy of classes leading to the recursive graph class is shown in Figure 
17. The recursive graph class inherits from the node and edge classes, which define the 
minimum characteristics of nodes and edges, respectively. Both nodes and edges are 
defined in terms of paths, inherited from the path class. The nodes require paths, because 
the ID of a node can be a path. This capability is used when a recursive graph is flattened, 
as described in section 5.1. The id of a node in the flattened graph is a path that contains 
enough information to reconstruct the recursive graph from the flattened graph. 

CPath  p 

Cnode n  p CEdge e p

CRecursiveGraph rg n   p 

 
Figure 17: Recursive Graph Hierarchy of Classes 

A brief description of each of the classes of Figure 17 follows: 
 CPath: The archetype of the path class is the list. 

 isup        :: p -> Bool: Determine if the path is an “Up” path, 
from a lower level in the graph to a higher level. 

 concatpath  :: p -> p -> p: Concatenate two paths 
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 restpath    :: p -> p: Determine the remainder of the path, after 
the first element is removed. 

 pathlength  :: p -> Int: Determine the length of the path. 
 matchfirst  :: p -> p -> Bool: Determine if the first elements of 

two paths match. 
 addup       :: p -> p: Add an “Up” element to the front of the 

path. 
 emptypath   :: p: Construct an empty path. 

 CNode: The node type of the graph. It must have at least the following functions 
defined: 

 pathofnode     :: n -> p: Determine the path of the node. 
 constructnode  :: n -> p -> n: Construct a node from an input node 

and a path. 
 newnode        :: p -> n: Create a new node from a path. 

 CEdge: The edge type of the graph. There are several utility functions defined on 
the graph class. The two most important functions are: 
 flatten: Flatten as recursive graph, as described in section 5.1. 
 deepen: Deepen a flattened recursive graph, as described in section 5.1. 

Because flatten and deepen are defined on the graph class, anything than can inherit from 
the graph class gets flatten and deepen for free. This is used to provide flatten and deepen 
for the separation, krenz, and krenz assurance graph specifications in later sections. 

5.4.3 Graph with properties instances 

The first construction performed uses the recursive graph class, described in section 
5.4.2. It adds freight to the nodes and edges of the recursive graph, and this freight is then 
used to enable the nodes and edges of the recursive graph to have associated properties. 
The instantiation of the recursive graph class to establish the graph with freight (and 
hence the graph with properties) is shown in Figure 18. 

CPath  p 

Cnode n  p 
CEdge e p

CRecursiveGraph rg n   p 

CPath  p 

CNodeFreight p
(GraphComponent p nf ef) p CEdge (EdgeFreight p ef) p

CRecursiveGraph (RecursiveDirectedGraph p nf ef
(NodeFreight p (GraphComponent p nf ef)
(EdgeFreight p ef) p

 
Figure 18: Recursive Directed Graph as an instance of the Recursive Graph 

The recursive directed graph is the instance of the recursive graph that carries freight on 
its nodes and edges. Because it is an instance of the recursive graph class, and because 



The separation and Krenz specification  Programatica Project 
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM 

 Page 23 of 
 

the recursive graph class inherits (via the Haskell class constraint mechanism) from 
Cnode and Cedge, the implies some requirements on the recursive directed graph 
instance. In particular the node type of the recursive directed graph instance (NodeFreight 
p (GraphComponent p nf ef)) must be an instance of Cnode. Furthermore, the edge type 
of the recursive directed graph (EdgeFreight p ef) must be an instance of the edge class. 
Figure 18 shows these requirements upon the recursive directed class instance. 
The recursive directed graph is specialized to the Graph Property data structure, in which 
the node freight and edge freight have been specialized to node properties and edge 
properties, respectively. The node and edge properties both incorporate the type Prop, 
which is the Programatica tool 0 type for program properties. The graph with properties 
data structure is then made an instance of the separation class, as shown in Figure 19.  

Eq cid 

Containers cs c cid Component c 

System cs c cid 

Separation cs c cid 

Eq p

System(GraphProperty p n np ep)
(NodeProperty n np) p

Separation(GraphProperty p n np ep)
(NodeProperty n np) p

Component n (NodeProperty n np)

Containers (GraphProperty p n np ep)
(NodeProperty n np) p

 
Figure 19: A graph with properties, as an instance of the Separation class 

Because the graph with properties data structure is defined using the recursive graph class 
(via the recursive directed graph instance), and using the separation class, it inherits from 
both. This data structure has the hierarchical structure of the recursive graph, properties 
carried by each node and edge in the recursive graph, and the separation property applied 
to each node in the recursive graph. This data structure is rich enough to support 
separation, krenz, and krenz assurance instances. 

5.4.4 Krenz System instances 

The krenz system is defined using the graph property data structure. The node property is 
defined as a flag that determines if the node is a filter or not. If the node is a filter, then a 
filter property is associated with the node. This achieves the abstraction described 
informally in section 3.2. Because the Krenz is a version of the graph property data 
structure, the Krenz, like the graph property data structure, becomes an instance of the 
separation class. The fact that the Krenz system is an instance of the separation class 
implies some other class / instance relationships, which are shown in Figure 20. 
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Eq cid 

Containers cs c cid Component c 

System cs c cid 

Separation cs c cid 

Eq p

System (KrenzSystem pn) n p

Separation (KrenzSystem p n) n p

Component n

Containers (KrenzSystem p n) n p

 
Figure 20: Krenz system as an instance of the separation class 

5.4.5 Krenz Assurance Graph instances 

The Krenz Assurance Graph is a slight modification to the Krenz System (section 5.4.4). 
The Krenz system makes no use of the edge properties of the underlying recursive 
directed graph. The Krenz Assurance Graph uses the edge freight to carry edge properties 
in order to realize the abstraction described in section 3.3. The instantiation requirements 
of the Krenz assurance graph are similar to those of the Krenz System. The requirements 
for the Krenz assurance graph are shown in Figure 21. 

Eq cid 

Containers cs c cid Component c 

System cs c cid 

Separation cs c cid 

Eq p

Separation 
(KrenzAssuranceSystem p n) n p

Component n
Containers 
(KrenzAssuranceSystem p n) n p

System (KrenzAssuranceSystem pn) 
n p

 
Figure 21: Krenz Assurance System Instances 
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6 Topology (and the Enterprise Krenz) 
This section describes (informally) the concept of topology that is layered on top of the 
Separation and Krenz specifications. Section 6.1 describes the Grothendieck topology 
concept in the context of the Separation specification, section 6.2 describes the 
Grothendieck topology concept in the context of the Krenz specification, and section 6.4 
describes the Grothendieck topology concept in the context of the Krenz assurance graph 
specification. 
The new Haskell source for the specification containing categories, sieves, and 
Grothendieck topologies, is in section 0. The Haskell specification that makes the 
recursive graph (and recursive graph homomorphims) an instance of the category class is 
given in section 7.12. 

6.1 Topology and pattern matching for the Separation specification 
The first concept of topology for instances of the separation specification is shown in 
Figure 22. There is an instance of separation (called the pattern), which consists of two 
nodes (Node1 and Node2), and a single arrow between them. There is another instance of 
separation (the target), which has three nodes, with several arrows between them. 

Node1 Node2

Node3

Pattern

Node1 Node2

Target

Match!

Would cause no match

• Node n can match 
collection of nodes 
[m], together with the 
edges between nodes 
in [m]

• When n matches N, 
and m matches M, 
then the edge (n,m) 
can match all the 
edges from N to M

This matching tests the connectedness of 
the pattern vs. the connectedness of the 
target  

 Figure 22: Separation / Subgraph Matching 

Suppose the pattern of Figure 22 is a separation specification, and the target is the 
configuration of several processes running on a separation kernel. Then the pattern 
indicates that there are two domains, and communication is permitted to flow in one 
direction from the domain represented by Node1 to the domain represented by Node2. 
The target indicates that there are three processes, with the separation kernel permitting 
interprocess communications as shown in the figure. With this interpretation, Figure 22 
shows one way of grouping the processes such that they form an instance of the pattern 
specification. If Node1 and Node2 of the target are grouped together to match Node1 of 
the pattern, and Node3 of the target is used to match Node2 of the target, then the only 
flows from the processes matching Node1 of the pattern are flowing to the process(es) 
matching Node2 of the pattern. Thus there is a match based upon these choices. If the 
dashed arrow is added to the target process configuration, then the choices made to not 
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constitute a match to the pattern. However, with the dashed line added, other choices can 
be made, as shown in Figure 23. With these choices, mapping Node2 and Node3 of the 
target to Node1 of the pattern, and Node1 of the target to Node2 of the pattern, then there 
is once again a pattern match. 

Node1

Node2

Node3

Pattern

Node1

Node2

Target

Match!

 
Figure 23: Retry on Separation pattern matching 

These examples demonstrate that the pattern matching requires choices, and some of the 
choices may result in a match, while other choices do not result in a match. 
The basic notion of pattern matching here is that of an embedding of one instance of 
separation into another instance of separation. A more general example is shown in 
Figure 24, Here there are three instances of the separation specification, and embeddings 
are shown from one instance (the pattern instance), to the second instance (the 
intermediate instance), to the third instance (the target instance). 

Node1

Node2

Node3

Pattern

Node1

Node2

Intermediate

Subcover

Node1

Node2

Node3

Node4

Cover

Target  
 

Figure 24: Separation / Subgraph Site 

The two embeddings of Figure 24 can be composed into another embedding, which is 
shown in Figure 25. This demonstrates that the embeddings are mappings that can be 
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composed. The preserve structure in that the structure of the pattern still exists in the 
target, via grouping of nodes and arrows in the target. 

Pattern

Node1

Node2

Node1

Node2

Node3

Node4

Cover

Target
 

Figure 25: Composed embedding 

6.2 The categorical framework for pattern matching (Separation) 
There are two levels at which the concept of category might be applied: 
 Intra-instance: Within an instance of separation, each node can be viewed as an 

object in a category, while the connections between nodes can be viewed as 
arrows in a category. 

 Inter-instance: Each instance of separation is considered an object in the category, 
and each homomorphism between instances is considered an arrow in the 
category. 

The first case (intra-instance) is not useful here. The arrow in the category represents the 
relation “directly communicates”. The composition of two arrows may no longer 
represent a “directly communicates” path supported by the underlying separation kernel. 
The second case is what is described in section 6.1, and this is the basis for defining the 
category Sep as follows: 
 Objects: The objects are instances of the separation specification. 
 Arrows: The arrows are homomorphisms between instances of separation. 

With this definition of the category Sep, the machinery of a Grothendieck topology, 
including sieves, sheaves, and hom sets, can be defined. This machinery is built up in the 
Haskell file Category.hs (see section 0). 
 

6.3 Topology and pattern matching for the Krenz specification 

The concept of a Grothendieck topology can be defined for instances of the Krenz system 
specification in the same way as it was defined for the separation specification (section 
6.1). An example of pattern matching, in the same spirit as discussed in section 6.1 is 
illustrated in Figure 26. In the pattern match attempt shown, Node1 of the target is 
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matched to Node1 of the pattern, Filter1, Filter2 and Filter4 of the target are matched to 
Filter1 of the pattern, and Node2 and Node3 of the target are matched to Node2 of the 
pattern. In this case, the match has failed, because Filter3 of the target is left unaccounted 
for. In the pattern match attempt shown, there is no way to match the target to the pattern. 
If Filter3 is deleted from the target, then the pattern match shown succeeds. 

Node1

Node2

Node3

Filter1

Filter2

Filter3

Filter4

 Node n can match collection of 
nodes [m], together with the edges 
between nodes in [m]

 When n matches N, and m 
matches M, then the edge (n,m) 
can match all the edges from N to 
M

 Node cannot match filter
 Filter f from n to m can match 

sequence of filters F from N to M if 
the I/O property of the sequence F 
is stronger than (implies) the I/O 
property of the filter f

 Filter f from n to m can match 
several filters from N to M (same 
restriction as above)

Pattern

Node1
Node2

Target

Filter1

No match!

 
Figure 26: Krenz System Matching 

The embeddings of instances of Krenz system specification can be composed, as with 
embeddings of instances of the separation specification. The second cover fails, but with 
Filter3 of the target deleted, the second cover succeeds. Note that “cover” is a special 
type of Krenz system homomorphism. 

Node1

Node2Pattern

Node1

Node2

Target

Subcover
Cover

Filter1
Node1

Node2

Node3

Filter1

Filter2

Filter3

Filter4

Filter1 Filter2

Filter3

Cover fails

 
Figure 27: Krenz System Site 

The composition of the two covers in Figure 27 is shown in Figure 28. 
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Pattern

Node1

Node2

Cover

Filter1

Node1

Node2

Node3

Filter1Filter2

Filter4

Target

 
Figure 28: Composed cover for a Krenz system 

The Krenz specification is the basis for a category Krenz as follows: 
 Objects: The objects are instances of the Krenz system specification. 
 Arrows: The arrows are homomorphisms between instances of the Krenz system 

specification. 

6.4 Topology / pattern matching for Krenz assurance specification 
The concept of pattern matching in a Krenz Assurance Graph (KAG) is defined in the 
same spirit as the pattern matching in section 6.1 and section 6.2. The concepts of 
embedding and composition of embeddings carries through as with the previous cases. 

• Same rules as Krenz 
with additions for the 
assurance properties 
(Pj)

Node1

Node2

Node3

Filter1

Filter2

Filter3

Filter4

Pattern

Node1
Node2

Target

Filter1

No match!

p6 p7

p6

p6

f1
^ p6

p2

p3

f2

f3

p8

 
Figure 29: Krenz Assurance Site 

Based on the pattern matching concept shown in Figure 30, the category KAG can be 
defined as follows: 
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 Objects: Instances of the Krenz assurance graph specification. 
 Arrows: Homomorphisms (and the special cases of embeddings) between instance 

of the Krenz assurance graph specification. 
Structurally, the pattern match for Krenz assurance graphs shown in Figure 29 is the 
same as the pattern match shown in Figure 26. The pattern match in the Krenz Assurance 
Graph system carries with it additional requirements. These additional requirements are 
discussed in 6.4.1. 

6.4.1 Matching the assurance properties in the Krenz Assurance Graph 

As shown in the previous examples, a node in the pattern may match several nodes in the 
target, and an arrow in the pattern may match several arrows in the target. In the category 
KAG, the arrows carry assurance properties, and there are requirements on the assurances 
for a match between an arrow in the pattern and a group of arrows in the target. These 
requirements are illustrated in Figure 30. 

• If n  N and m M then 
p  P only if P is stronger 
the p, I.e. P => p

• If n  N and m M then 
we must have P1 or … or Pn
=> p (the disjunction of the 
refinements implies 
assurance proposition

n m
p

N M
P

n m
p

N M

P1

P2
 

Figure 30: Refining an Assurance 

The requirement is that the disjunction of the assurance requirements of the arrows in the 
target must be at least as strong as the assurance requirement of the arrow in the pattern. 
This requirement is stated more formally in Figure 31. 

Krenz assurance matching property: P1 ∨ … ∨ Pn => p 
Figure 31: Krenz assurance matching property 

This means that when a Krenz assurance graph is refined, the properties assigned to the 
arrows in the refined (more detailed) graph must be strong enough to imply the properties 
in the unrefined (less detailed) graph. 
A similar requirement applies to the filter properties in the Krenz assurance graph. This 
additional requirment is depicted in Figure 32. 
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• Refinement 
requirement: P and F 
and Q => p and f and q

• Refinement 
requirement: (P1 and F1
and Q1) or … or (Pn and 
Fn and Qn) => (p and 
f and q)

n m
p

N MP

f q

F Q

n m
p

N M
P1

f q

F1 Q1

FnPn Qn

 
Figure 32: Refining an Assurance and a Filter 

This requirement takes into account not only the property associated with the filter, but 
also the assurance properties associated with the arrows to and from the filter. The filter 
is viewed as an intermediary between two nodes, and the total property seen between the 
two nodes is the conjunction of the two arrow assurance properties with the filter 
property. With this understanding of the “property of a filter”, the requirement on the 
filters in the refinement is that the disjunction of the properties of the filters in the target 
that refine a filter in the pattern must be at least as strong as the property of the filter in 
the pattern. This requirement is stated more formally in Figure 33. 

Krenz filter matching property: P1 ∨ … ∨ Pn => p 
Figure 33: Krenz filter matching property 

6.5 Axioms of a Grothendieck Topology 
This section illustrates the definition of a Grothendieck topology. This section is based on 
the PhD thesis of Srinivas (8). A Grothendieck topology (C, J) has the following two 
components: 
 Category C: 
 Cover J: The function J assigns to each object a of C a set J(a) of sieves on a. 

The elements R ∈ J(a) are called covers of a. 
 The Grothendieck Topology satisfies the following three axioms: 

 Identity cover: For every object a of C, the maximal sieve { f | cod(f) = a }∈ J 
(a). 

 Stability under change of base: If R ∈ J(a) and f : b → a is an arrow of C, then 
the sieve f*( R ) = { g : c → b | f ° g ∈ R } is in J(b). This axiom is illustrated by 
Figure 34. 
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 Stability under refinement: If R ∈ J(a) and S is a sieve on a such that for each 
arrow f : b → a in R, we have f*(S) ∈ J(b), then S ∈ J(a). This axiom is 
illustrated by Figure 35. 

 
Figure 34: Stability under a Change of Basis (from Srinivas Thesis [8]) 

 

 
Figure 35: Stability under Refinement (from Srinivas thesis [8]) 

7 Haskell Source 
This section contains the Haskell source code for the current version of the specifications. 
Each subsection of this section contains one Haskell source file. The files were compiled 
using Programatica tool 0, which is a variant of Haskell 98. 

7.1 Container.hs 
module Container 
  ( 
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  Containers (select, isAssigned, addElem, deleteElem), 
  AssignedNew, 
  AssignedDelete 
  ) 
  where 
 
import List 
 
class (Eq cid) => Containers cs c cid | cs -> c, cs -> cid where 
    select :: cs -> cid -> Maybe c 
    isAssigned :: cs -> cid -> Bool 
    -- Defined it using "case" to avoid requiring (Eq c) 
    isAssigned cs cid = 
      case select cs cid of 
        Nothing -> False 
 Just ida -> True 
    addElem :: cs -> cid -> c -> cs 
    deleteElem :: cs -> cid -> cs 
    emptyCont :: cs 
    elements :: cs -> [c] 
    idelements :: cs -> [(cid,c)] 
     
-- An assigned pid cannot be created again 
property IsAssigned cs cid = (isAssigned cs cid) === True -- HACK HACK HACK 
property AssignedNew = 
   All cs cid c. IsAssigned cs cid ==> (addElem cs cid c === cs) 
 
-- An unassigned pid cannot be deleted 
property NotIsAssigned cs cid = not (isAssigned cs cid) === True -- HACK 
property AssignedDelete = 
  All cs cid. NotIsAssigned cs cid ==> deleteElem cs cid === cs 

7.2 RecursiveContainer.hs 
module RecursiveContainer  
  ( 
  IdList, 
  RecursiveContainer, 
  Containers, 
  ) 
  where 
 
import Container 
import List 
 
class (Containers cs c cid) => RecursiveContainer cs c cid where 
    mkComplex :: cid -> [c] -> Maybe cs 
    mkSimple  :: [(cid,c)] -> cs 
    isComplex :: cs -> Bool 

7.3 System.hs 
module System 
  ( 
  Containers (..), 
  Component (..), 
  System (..) 
  ) 
  where 
 
import Container 
 
class Component c where 
    stepComponent :: c -> c 
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    stopComponent :: c -> c 
    startComponent :: () -> c 
             
class (Component c, Containers cs c cid) => System cs c cid where 
    startSystem :: cs 
    -- Cannot inherit Process for ps CUZ step for ps requires the extra 
    -- parameter. Is there a way we could do this with a property? 
    stepSystem :: cid -> cs -> cs 
    stepSystemN :: cs -> cid -> Int -> cs 
    stepSystemN cs cid 0 = cs 
    stepSystemN cs cid 1 = stepSystem cid cs 
    stepSystemN cs cid (n+1) = stepSystem cid (stepSystemN cs cid n) 
    stopSystem :: cs -> cs 
 
-- Stepping a stopped system causes no change 
property StopProp = All x. All y. stepSystem x (stopSystem y) === x 
 
-- The fibration of the system 
property Fiber = All cs. All cid. All c. 
  select cs cid === Just c ==> 
    select (stepSystem cid cs) cid === Just (stepComponent c) 

7.4 Separation.hs 
module Separation where 
 
import System 
 
class System cs c cid => Separation cs c cid where 
    -- This generalizes the interaction matrix, so that each pair of 
    -- processes can have their own predicate determining what is valid 
    -- communication between them. 
    interactionMatrix :: cs -> cid -> cid -> (cs -> cid -> cid -> Bool) 
     
property FirstSeparation = All ps. All x. All y. 
         select (stepSystem ps x) y =/= select ps y ==> 
  ((interactionMatrix ps x y) ps x y === True) 
property SecondSeparation = 
  All ps. All x. All y. 
    select (stepSystem ps x) y =/= select ps y ==> 
      (Exists f. 
        select (stepSystem ps x) y === f (select ps x) (select ps y)) 
-- NOTE: Second separation axiom can be stated without higher order. 
--  property forall ps1 ps2.select (steps ps1 x) y /= 
--                          select (steps ps2 x) y ==> 
--                             (select ps1 x /= select ps2 x || 
--                              select ps1 y /= select ps2 y) 
     
 

7.5 Maybe2.hs 
module Maybe2 
    ( 
    foldrMaybe, 
    composeMaybe 
    ) where 
 
foldrMaybe :: (a -> b -> Maybe b) -> b -> [a] -> Maybe b 
foldrMaybe f z [] = Just z 
foldrMaybe f z (a:as) = 
    case foldrMaybe f z as of 
      Nothing -> Nothing 
      Just b -> f a b 
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composeMaybe :: (a -> Maybe b) -> (b -> Maybe c) -> (a -> Maybe c) 
composeMaybe f g = 
    \x -> case f x of 
            Nothing -> Nothing 
     Just y -> g y 

7.6 GraphInductive.hs 
module GraphInductive ( 
    RecursiveGraph (..), 
    RecursiveContext (..), 
    RecursiveNode (..), 
    RecursiveEdge (..), 
    listRecursiveNodes, 
    listRecursiveEdges, 
    NodeName, 
    nodeName, 
    nodeLabel, 
    nullNodeName, 
    matchNodeName, 
    match, 
    mapGraph, 
    findEdge, 
    flatten, 
    deepen, 
    insEdgeTo, 
    insNode, 
    insNodes 
    ) where 
     
import List 
import Maybe2 
 
---------------------------------------------------------------------- 
-- Recursive graph, defined inductively 
---------------------------------------------------------------------- 
type NodeComponent = Integer 
type NodeName = [NodeComponent] 
 
-- Get the longest common prefix of two node names 
commonPrefix :: NodeName -> NodeName -> NodeName 
commonPrefix xs [] = [] 
commonPrefix [] ys = [] 
commonPrefix (x:xs) (y:ys) | x == y = x:(commonPrefix xs ys) 
commonPrefix (x:xs) (y:ys) | x /= y = commonPrefix xs ys 
 
-- Test if a node is a local node 
isLocal :: NodeName -> Bool 
isLocal nn = length nn == 1 
 
nullNodeName = [] :: NodeName 
 
data RecursiveNode a b = 
     SimpleNode    NodeName a | 
     RecursiveNode NodeName (RecursiveGraph a b) a 
     deriving (Eq) 
      
instance (Show a, Show b) => Show (RecursiveNode a b) where 
    show (SimpleNode nn a) = decorate ["(", ",", ")"] [show nn, show a] 
    show (RecursiveNode nn sg a) = 
       decorate ["(", ",", ",{{", "}})"] [show nn, show a, show sg] 
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nodeLabel :: RecursiveNode a b -> -- Node to access 
             a                    -- Returned node label 
nodeLabel (SimpleNode nn a) = a 
nodeLabel (RecursiveNode nn subgraph a) = a 
 
nodeName :: RecursiveNode a b -> -- Node to access 
            NodeName             -- Returned node name 
nodeName (SimpleNode nn a) = nn 
nodeName (RecursiveNode nn subgraph a) = nn 
 
-- Make a node flatter 
nodeUp :: RecursiveNode a b -> -- The node to deepen 
          NodeName ->          -- Additional node components 
   RecursiveNode a b 
nodeUp (SimpleNode nn a) up = SimpleNode (up ++ nn) a 
nodeUp (RecursiveNode nn subgraph a) up = RecursiveNode (up ++ nn) subgraph a 
 
-- Determine if a node is recursive 
isRecursive :: RecursiveNode a b -> -- Node to query 
               Bool                 -- True if recursive 
isRecursive (SimpleNode _nn _a) = False 
isRecursive (RecursiveNode _nn _sg _a) = True 
 
-- Print some information with punctuation as decoration 
decorate :: [String] -> [String] -> String 
decorate punctuation xs | length punctuation == length xs = 
    concat (zipWith (++) xs punctuation) 
decorate punctuation xs | length punctuation == length xs + 1 = 
    concat (zipWith (++) punctuation (xs ++ [""])) 
decorate _ _ = error "decorate.punctuation length" 
 
---------------------------------------------------------------------- 
-- Recursive Edges 
---------------------------------------------------------------------- 
data RecursiveEdge b = 
    RecursiveEdge 
    { 
    reSource    :: NodeName, 
    reUplink    :: Int, 
    reDownlink  :: NodeName, 
    reSink      :: NodeName, 
    reEdgeLabel :: b 
    } deriving (Eq) 
 
instance (Show b) => Show (RecursiveEdge b) where 
    show (RecursiveEdge src up down sink label) = 
        if up == 0 
 then if null down 
      then decorate ["<", ":", "-->", ">"] 
                    [show label, show src, show sink] 
      else decorate ["<", ",", "-->", ">"] 
                    [show label, show src, show down, show sink] 
 else if null down 
             then decorate ["<", ",", "-->", ">"] 
                    [show label, show src, show up, show sink] 
      else decorate ["<", ",", ",", "-->", ">"] 
                    [show label, show src, show up, show down,show sink] 
 
---------------------------------------------------------------------- 
-- A recursive context has a list of predecessor edges (added one 
-- at a time), a list of successor edges (added one at a time), 
-- and a node (added only once) 
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---------------------------------------------------------------------- 
data RecursiveContext a b = 
    RecursiveContext 
    { 
    rcPreds  :: [RecursiveEdge b], 
    rcNode   :: RecursiveNode a b, 
    rcSuccs  :: [RecursiveEdge b] 
    } deriving (Eq) 
     
instance (Show a, Show b) => Show (RecursiveContext a b) where 
    show (RecursiveContext preds node succs) = 
      let outsuccs = concat (intersperse "," (map show succs)) 
   outpreds = concat (intersperse "," (map show preds)) 
      in if null preds 
         then if null succs 
              then decorate ["(-|", "|-)"] [show node] 
              else "(-|" ++ show node ++ "|" ++ outsuccs ++ "-)" 
         else if null succs 
              then "(-" ++ outpreds ++ "|" ++ show node ++ "|-)" 
              else "(-" ++ outpreds ++ "|" ++ show node ++ 
                   "|" ++ outsuccs ++ "-)" 
 
-- Get the list of edges in the context 
contextEdges :: RecursiveContext a b -> -- Context to listify 
                [RecursiveEdge b]       -- Resulting list of edges 
contextEdges (RecursiveContext preds node succs) = preds ++ succs 
 
---------------------------------------------------------------------- 
-- Finally, the recursive graph data type 
---------------------------------------------------------------------- 
data RecursiveGraph a b = 
    EmptyRecursiveGraph | 
    RecursiveGraph (RecursiveGraph a b) (RecursiveContext a b) 
    deriving (Eq) 
 
instance (Show a, Show b) => Show (RecursiveGraph a b) where 
    show (EmptyRecursiveGraph) = "{G}" 
    show (RecursiveGraph g cont) = show g ++ " &C " ++ show cont 
 
-- A single step decomposition of a graph 
type Decomp a b = (Maybe (RecursiveContext a b), RecursiveGraph a b) 
 
-- An infix operator to extend a recursive graph 
infixr & 
c & g = RecursiveGraph g c 
 
---------------------------------------------------------------------- 
-- Operators on graphs, stolen and modified from Martin Erwig 
---------------------------------------------------------------------- 
-- Insert a node in its proper place in the hierarchy 
insNode :: RecursiveNode a b ->  -- Node to add 
           RecursiveGraph a b -> -- Graph to be augmented 
    Maybe (RecursiveGraph a b) -- Augmented graph 
insNode n g = insNodeName (nodeLabel n) (nodeName n) g 
 
-- This is an insert of a list of top level nodes, per Martin Erwig 
insNodes :: [RecursiveNode a b] -> -- List of nodes to add 
            RecursiveGraph a b ->  -- Graph to be augmented 
            Maybe (RecursiveGraph a b) -- Augmented graph 
insNodes [] g = Just g 
insNodes (n:ns) g = 
    let mg = insNode n g 
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    in case mg of 
         Nothing -> Nothing 
  Just g -> insNodes ns g 
 
-- This insert places a node identified by a node name in its 
-- proper place in the graph 
insNodeName :: a ->                  -- Label of new node 
               NodeName ->           -- Node to insert 
               RecursiveGraph a b -> -- Graph to be augmented 
               Maybe (RecursiveGraph a b) -- Augmented graph (maybe) 
insNodeName a nn EmptyRecursiveGraph = 
    Just (RecursiveGraph EmptyRecursiveGraph 
                         (RecursiveContext [] (SimpleNode nn a) [])) 
insNodeName a [] g = error "insNodeName.[]" 
insNodeName a [n] g = 
    Just (RecursiveGraph g (RecursiveContext [] (SimpleNode [n] a) [])) 
insNodeName a nn@(n:ns) 
              rg@(RecursiveGraph g rc@(RecursiveContext preds node succs)) = 
    case node of 
      (SimpleNode nn' a') -> 
         if (nn == nn') 
  then error "insNodeName.conflict" 
  else let mg' = insNodeName a nn g 
       in case mg' of 
            Nothing -> Nothing 
     Just g' -> Just (RecursiveGraph g' rc) 
      (RecursiveNode nn' subgraph a') -> 
         if isPrefixOf nn' nn 
  then let mg' = insNodeName a (drop (length nn') nn) subgraph 
       in case mg' of 
            Nothing -> Nothing 
     Just g' -> 
       Just (RecursiveGraph 
                             g 
                             (RecursiveContext 
                                preds 
                                (RecursiveNode nn' g' a') 
                                succs)) 
         else let mg' = insNodeName a nn g 
       in case mg' of 
            Nothing -> Nothing 
     Just g' -> Just (RecursiveGraph g' rc) 
      
insNodeNames :: (Show a, Show b) => 
                [(a, NodeName)] ->         -- List of new nodes 
                RecursiveGraph a b ->      -- Graph to be augmented 
                Maybe (RecursiveGraph a b) -- Augmented graph (maybe) 
insNodeNames [] g = Just g 
insNodeNames ((a, nn):anns) g = 
    let mg' = insNodeName a nn g 
    in case mg' of 
         Nothing -> Nothing 
  Just g' -> insNodeNames anns g' 
 
---------------------------------------------------------------------- 
-- Insert to edges in the recursive graph, given the sink of the 
-- to edge 
---------------------------------------------------------------------- 
insEdgeTo :: (Show a, Show b) => 
             RecursiveEdge b ->       -- Edge to insert 
             RecursiveGraph a b ->      -- Graph into which edge is inserted 
             Maybe (RecursiveGraph a b) -- Resulting graph 
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insEdgeTo ret EmptyRecursiveGraph = 
    error ("insEdgeTo.Empty: " ++ show ret ++ "\n") 
insEdgeTo ret@(RecursiveEdge source up down sink b) 
          rg@(RecursiveGraph g rc@(RecursiveContext preds node succs)) = 
    let simplerec node nn = nodeName node == nn 
 recrec node nn = isPrefixOf (nodeName node) nn 
 newret = convertToDown ret 
 simplemod g (RecursiveContext preds node succ) = 
          RecursiveGraph g (RecursiveContext (newret:preds) node succs) 
        recmod g newsubgraph (RecursiveContext preds node succ) = 
   let newnode = RecursiveNode 
                   (nodeName node) newsubgraph (nodeLabel node) 
          in RecursiveGraph g (RecursiveContext preds newnode succs) 
    in match rg sink sink simplerec simplemod recrec recmod 
 
insEdgesTo :: (Show a, Show b) => 
              [RecursiveEdge b] ->   -- Edges to insert 
              RecursiveGraph a b ->  -- Graph into which edges are inserted 
              Maybe (RecursiveGraph a b) -- Resulting graph 
insEdgesTo edges g = foldrMaybe insEdgeTo g edges 
 
---------------------------------------------------------------------- 
-- Insert from edges in the recursive graph, given the sink of the 
-- from edge 
---------------------------------------------------------------------- 
insEdgeFrom :: (Show a, Show b) => 
               RecursiveEdge b ->         -- Edge to insert 
               RecursiveGraph a b ->      -- Graph into which edge is inserted 
               Maybe (RecursiveGraph a b) -- Resulting graph 
insEdgeFrom ref EmptyRecursiveGraph = 
    error ("insEdgeFrom.Empty: " ++ show ref ++ "\n") 
insEdgeFrom ref@(RecursiveEdge source up down sink b) 
            rg@(RecursiveGraph g rc@(RecursiveContext preds node succs)) = 
    let simplerec node nn = nodeName node == nn 
 recrec node nn = isPrefixOf (nodeName node) nn 
        newref = convertFromDown ref 
 simplemod g (RecursiveContext preds node succ) = 
          RecursiveGraph g (RecursiveContext preds node (newref:succs)) 
        recmod g newsubgraph (RecursiveContext preds node succ) = 
   let newnode = RecursiveNode 
                   (nodeName node) newsubgraph (nodeLabel node) 
          in RecursiveGraph g (RecursiveContext preds newnode succs) 
    in match rg source source simplerec simplemod recrec recmod 
--                         ((RecursiveEdgeFrom up down sink b):succs))) 
 
insEdgesFrom :: (Show a, Show b) => 
                [RecursiveEdge b] ->   -- Edges to insert 
                RecursiveGraph a b ->  -- Graph into which edges are inserted 
                Maybe (RecursiveGraph a b) -- Resulting graph 
insEdgesFrom edges g = foldrMaybe insEdgeFrom g edges 
 
---------------------------------------------------------------------- 
-- Insert an entire context into its proper place in the graph 
-- (not just an append) 
---------------------------------------------------------------------- 
insContext :: (Show a, Show b) => 
              RecursiveContext a b -> -- Context to insert 
              RecursiveGraph a b ->   -- Graph to be augmented 
       Maybe (RecursiveGraph a b) -- Resulting graph 
insContext (RecursiveContext preds node succs) g = 
    let mg1 = insNode node g 
    in case mg1 of 
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         Nothing -> Nothing 
  Just g1 -> 
    let mg2 = insEdgesTo preds g1 
    in case mg2 of 
         Nothing -> Nothing 
  Just g2 -> insEdgesFrom succs g2 
 
---------------------------------------------------------------------- 
-- Graph matching, and other decomposition operators 
---------------------------------------------------------------------- 
-- Decompose a graph, taking out the context that introcudes the node 
-- with the specified name and label, be it a simple or a recursive node 
matchNodeName :: NodeName ->           -- node name to look for 
                 RecursiveGraph a b -> -- Graph to search 
                 Decomp a b            -- Decomposition of the graph 
matchNodeName nn EmptyRecursiveGraph = (Nothing, EmptyRecursiveGraph) 
matchNodeName nn rg@(RecursiveGraph g rc@(RecursiveContext preds node succs)) = 
    if nodeName node == nn 
    then (Just rc, g) 
    else case node of 
           SimpleNode nn' a -> 
      let (mcont, g') = matchNodeName nn g 
      in case mcont of 
           Nothing -> (Nothing, rg) 
    Just cont -> (Just cont, RecursiveGraph g' rc) 
    RecursiveNode nn' subgraph a -> 
      if null (tail nn) 
      then (Nothing, rg) 
      else let (mcont', g') = matchNodeName (tail nn) subgraph 
           in case mcont' of 
         Nothing -> 
           let (mcont'', g'') = matchNodeName nn g 
    in case mcont'' of 
         Nothing -> (Nothing, rg) 
         Just cont'' -> 
            (Just cont'', RecursiveGraph g'' rc) 
         Just cont' -> 
           (Just cont', 
            RecursiveGraph g (RecursiveContext 
                         preds 
           (RecursiveNode nn' g' a) 
           succs)) 
 
-- Define an operator that will identify a context (possibly 
-- deeply buried within the graph, and mdofify it in place, 
-- according to the modifier specified. 
match :: RecursiveGraph a b ->  -- Graph to search and modify 
         NodeName ->            -- Node name to look for 
  NodeName ->            -- Node name preserved during recursion 
  -- Simple node recognizer 
  (RecursiveNode a b -> 
   NodeName -> 
   Bool) -> 
  -- Simple node modifier: 
  (RecursiveGraph a b -> 
   RecursiveContext a b -> 
   RecursiveGraph a b) -> 
  -- Recursive node recognizer 
  (RecursiveNode a b -> 
   NodeName -> 
   Bool) -> 
  -- Recursive node modifier: 
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  (RecursiveGraph a b -> 
   RecursiveGraph a b -> 
   RecursiveContext a b -> 
   RecursiveGraph a b) -> 
  Maybe (RecursiveGraph a b) 
match EmptyRecursiveGraph nnlocal nnglobal simplerec simplemod recrec recmod = 
    error "match.empty" 
match rg@(RecursiveGraph g rc@(RecursiveContext preds node succs)) 
      nnlocal nnglobal simplerec simplemod recrec recmod = 
    case node of 
      (SimpleNode nn a) -> 
         if simplerec node nnlocal 
  then Just (simplemod g rc) 
         else let mg = match g nnlocal 
                      nnglobal simplerec 
        simplemod recrec recmod 
              in case mg of 
                   Nothing -> Nothing 
                   Just g -> Just (RecursiveGraph g rc) 
      (RecursiveNode nn subgraph a) -> 
  if recrec node nnlocal 
  then let mnewsubgraph = 
             match subgraph (drop (length nn) nnlocal) nnglobal 
            simplerec simplemod recrec recmod 
       in case mnewsubgraph of 
            Nothing -> Nothing 
     Just newsubgraph -> Just (recmod g newsubgraph rc) 
         else let mg = match g nnlocal 
                      nnglobal simplerec 
        simplemod recrec recmod 
              in case mg of 
            Nothing -> Nothing 
     Just g -> Just (RecursiveGraph g rc) 
 
---------------------------------------------------------------------- 
-- Analyzers for recursive graphs 
---------------------------------------------------------------------- 
 
findEdge :: RecursiveGraph a b -> -- Graph to search 
            NodeName ->           -- Source of edge to search for 
     NodeName ->           -- Sink of edge to search for 
     Bool 
findEdge g source sink = 
    let (mcont, g) = matchNodeName source g 
 findSink :: [RecursiveEdge b] -> Bool 
 findSink [] = False 
 findSink (e:es) = (reSink e == sink) || (findSink es) 
 findSource :: [RecursiveEdge b] -> Bool 
 findSource [] = False 
 findSource (e:es) = (reSource e == source) || (findSource es) 
    in case mcont of 
         Nothing -> False 
  Just cont -> 
    let (mcont', g') = matchNodeName sink g 
           in case mcont' of 
         Nothing -> False 
  Just cont' -> findSink (rcSuccs cont) || 
                findSource (rcPreds cont') 
 
---------------------------------------------------------------------- 
-- Graph algorithms specifically for a recursive graph 
---------------------------------------------------------------------- 
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-- Produce the list of top level nodes (simple or recursive) 
-- that make up a graph 
listRecursiveNodes :: RecursiveGraph a b -> -- Recursive graph to listify 
                      [RecursiveNode a b]   -- list of nodes in the graph 
listRecursiveNodes EmptyRecursiveGraph = [] 
listRecursiveNodes (RecursiveGraph g cont) = 
    (rcNode cont):(listRecursiveNodes g) 
 
-- Produce the list of top level edges in the graph 
listRecursiveEdges :: RecursiveGraph a b -> -- Recursive graph to listify 
                      [RecursiveEdge b]     -- list of edges in the graph 
listRecursiveEdges EmptyRecursiveGraph = [] 
listRecursiveEdges 
    (RecursiveGraph g cont@(RecursiveContext preds node succs)) = 
    listRecursiveEdges g ++ 
      case node of 
        (SimpleNode nn a) -> contextEdges cont 
        (RecursiveNode nn sg a) -> contextEdges cont ++ (listRecursiveEdges sg) 
 
-- Flatten a graph into a single level graph, but with the 
-- recursive information stored up in the node names and edge names 
flatten :: NodeName ->           -- Node name at next higher level 
           RecursiveGraph a b -> -- Graph to flatten 
    RecursiveGraph a b    -- Flattened graph 
flatten upnn EmptyRecursiveGraph = EmptyRecursiveGraph 
flatten upnn (RecursiveGraph g (RecursiveContext preds node succs)) = 
    let newpreds = map (convertToUp upnn) preds 
 newsuccs = map (convertFromUp upnn) succs 
 newnode  = nodeUp node upnn 
    in case node of 
         (SimpleNode nn a) -> 
            RecursiveGraph (flatten upnn g) 
                           (RecursiveContext newpreds newnode newsuccs) 
         (RecursiveNode nn subgraph a) -> 
            -- A crucial property is that the empty recursive node 
            -- should be inserted before any of its subnodes or edges 
     let emptynode = (RecursiveContext 
                               newpreds 
                               (RecursiveNode nn EmptyRecursiveGraph a) 
                               newsuccs) 
            in merge (RecursiveGraph 
                       (flatten upnn g) 
                       emptynode) 
                     (flatten nn subgraph) 
       
-- Deepen a flattened graph, restoring its recursive structure. 
-- Assume that nodes are sorted, with prefix always preceding a 
-- node with a name that is an extension of the prefix 
-- NEED flatten to establish this, or need function to sort the 
-- flattened graph 
deepen :: (Show a, Show b) => 
          RecursiveGraph a b ->      -- Graph to deepend 
          Maybe (RecursiveGraph a b) -- Resulting deepened graph 
deepen EmptyRecursiveGraph = Just EmptyRecursiveGraph 
deepen (RecursiveGraph g rc@(RecursiveContext preds node succs)) = 
    let mdeeper = deepen g 
    in case mdeeper of 
         Nothing -> Nothing 
  Just deeper -> 
           case node of 
             (SimpleNode nn a) -> 
                insContext (RecursiveContext preds node succs) deeper 
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             (RecursiveNode nn subgraph a) -> 
         let msg = deepen subgraph 
  in case msg of 
       Nothing -> Nothing 
       Just sg -> 
                        Just (RecursiveGraph 
                                deeper 
                                (RecursiveContext 
                                   preds 
                                   (RecursiveNode nn sg a) 
                                   succs)) 
 
-- Convert a node with ups and downs in a recursive graph to a node 
-- with complex source and sink but no ups and downs for a flattened 
-- graph     
convertToDown :: RecursiveEdge b -> -- Edge to convert 
                 RecursiveEdge b    -- Converted list of edges 
convertToDown ret@(RecursiveEdge source ups downs sink b) = 
    let cp = commonPrefix source sink 
 ups = length source - length cp - 1 
    in if ups == 0 
       then if null cp 
            then RecursiveEdge [last source] 0 (init sink) [last sink] b 
     else RecursiveEdge [last source] 0 [] [last sink] b 
       else RecursiveEdge source ups (cp ++ (init sink)) [last sink] b 
 
convertFromDown:: RecursiveEdge b -> -- Edge to convert 
                  RecursiveEdge b    -- Converted list of edges 
convertFromDown ref@(RecursiveEdge source ups downs sink b) = 
    let cp = commonPrefix source sink 
 ups = length source - length cp - 1 
    in if ups == 0 
       then if null cp 
            then RecursiveEdge [last source] 0 (init sink) [last sink] b 
     else RecursiveEdge [last source] 0 [] [last sink] b 
       else RecursiveEdge [last source] ups (init sink) [last sink] b 
 
-- Convert a node with ups and downs in a recursive graph to a node 
-- with complex source and sink but no ups and downs for a flattened 
-- graph     
convertToUp :: NodeName ->        -- Context in which to convert up 
               RecursiveEdge b -> -- Edge to convert 
               RecursiveEdge b    -- Converted list of edges 
convertToUp nn (RecursiveEdge source ups downs sink b) = 
    if isLocal source 
    then if null downs 
         then RecursiveEdge (nn ++ source) 0 [] (nn ++ sink) b 
  else RecursiveEdge source 0 [] (downs ++ sink) b 
    else RecursiveEdge source 0 [] (downs ++ sink) b 
 
convertFromUp :: NodeName ->        -- Context in which to convert up 
                 RecursiveEdge b -> -- Edge to convert 
                 RecursiveEdge b    -- Converted list of edges 
convertFromUp nn (RecursiveEdge source up downs sink b) = 
    if isLocal sink 
    then if null downs 
         then RecursiveEdge (nn ++ source) 0 [] (nn ++ sink) b 
  else RecursiveEdge source 0 [] (downs ++ sink) b 
    else RecursiveEdge (nn ++ source) 0 [] sink b 
 
-- Merge two graphs, assuming that sll the nodes of one can be 
-- merged into the other. 
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merge :: RecursiveGraph a b -> -- First graph to merge 
         RecursiveGraph a b -> -- Second graph to merge 
  RecursiveGraph a b    -- The merged graph 
merge g EmptyRecursiveGraph = g 
merge g (RecursiveGraph h c) = RecursiveGraph (merge g h) c 
 
---------------------------------------------------------------------- 
-- maps and folds 
---------------------------------------------------------------------- 
 
mapGraph :: (a -> a) -> 
            RecursiveGraph a b -> 
     RecursiveGraph a b 
mapGraph f EmptyRecursiveGraph = EmptyRecursiveGraph 
mapGraph f (RecursiveGraph g (RecursiveContext preds node succs)) = 
    case node of 
      (SimpleNode nn a) ->  
        RecursiveGraph 
   (mapGraph f g) 
   (RecursiveContext preds (SimpleNode nn (f a)) succs) 
      (RecursiveNode nn sg a) -> 
        RecursiveGraph 
   (mapGraph f g) 
   (RecursiveContext 
             preds 
             (RecursiveNode nn (mapGraph f sg) (f a)) 
             succs) 
 

7.7 GraphFlat.hs 
module GraphFlat 
    ( 
    module GraphInductive, 
    FlatGraph (..), 
    flat2Recursive 
    ) where 
 
import GraphInductive 
 
---------------------------------------------------------------------- 
-- Some utilities that make it easier to test the recursive graph 
-- data structure. In particular, it is nice to input and output 
-- the graph in a traditional list of vertices and edges format. 
---------------------------------------------------------------------- 
 
data FlatGraph a b = 
    FlatGraph 
    { 
    fgNodes :: [(NodeName, a)], 
    fgEdges :: [(NodeName, NodeName, b)] 
    } 
     
thd :: (a, b, c) -> c 
thd (a, b, c) = c 
 
instance (Show a, Show b) => Show (FlatGraph a b) where 
    show (FlatGraph nodes edges) = 
        let showedge :: (Show b) => b -> String -> String 
     showedge b s = if null s 
                    then show b 
      else show b ++ ", " ++ s 
            shownode :: (Show b) => b -> String -> String 
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     shownode a s = if null s 
                    then show a 
      else show a ++ ", " ++ s 
        in "{ " ++ "[" ++ foldr shownode "" (map snd nodes) ++ "]" ++ " // " ++ 
                   "[" ++ foldr showedge "" (map thd edges) ++ "]" ++ " }" 
 
flat2Recursive ::      -- Convert a flat graph to a recusive graph 
    (Show a, Show b, Eq b) => 
    FlatGraph a b ->   -- The flat graph to convert 
    RecursiveGraph a b -- The resulting recursive graph 
flat2Recursive (FlatGraph nodes edges) = 
    let maddnodes = 
   insNodes (map (uncurry SimpleNode) nodes) EmptyRecursiveGraph 
 makeEdgeTo :: (Show a, Show b, Eq b) => 
               (NodeName, NodeName, b) -> 
               RecursiveGraph a b -> 
        Maybe (RecursiveGraph a b) 
        makeEdgeTo (src, snk, b) g = 
   insEdgeTo (RecursiveEdge src 0 [] snk b) g 
    in case maddnodes of 
         Nothing -> error "flat2Recursive.addnodes" 
  Just addnodes -> 
    case foldrMaybe makeEdgeTo addnodes edges of 
      Nothing -> error "flat2Recursive.addeges" 
      Just g -> g 
 
foldrMaybe :: (a -> b -> Maybe b) -> b -> [a] -> Maybe b 
foldrMaybe f z [] = Just z 
foldrMaybe f z (a:as) = 
    case foldrMaybe f z as of 
      Nothing -> Nothing 
      Just b -> f a b 

7.8 GraphSystem.hs 
module GraphSystem where 
 
import GraphFlat 
import List 
import System 
import Separation 
 
---------------------------------------------------------------------- 
--  System Instances 
---------------------------------------------------------------------- 
instance Containers (RecursiveGraph a b) (RecursiveNode a b) NodeName where 
    select g nn = 
      let (mcont, g') = matchNodeName nn g 
      in fmap rcNode mcont 
    -- The node name nn should be the same as the name of the node 
    addElem g nn node = 
      let mg' = insNode node g 
      in case mg' of 
           Nothing -> g 
           Just g' -> g' 
    deleteElem g nn = 
      let (mcont, g') = matchNodeName nn g 
      in case mcont of 
           Nothing -> g 
    Just cont -> g' 
    emptyCont = EmptyRecursiveGraph 
    elements = listRecursiveNodes 
    idelements g = zip (map nodeName nodes) nodes 
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      where nodes = listRecursiveNodes g 
 
instance (Component a) => Component (RecursiveNode a b) where 
    stepComponent (SimpleNode nn a) = SimpleNode nn (stepComponent a) 
    stepComponent (RecursiveNode nn sg a) = 
        RecursiveNode nn sg (stepComponent a) 
    stopComponent (SimpleNode nn a) = SimpleNode nn (stopComponent a) 
    stopComponent (RecursiveNode nn sg a) = 
        RecursiveNode nn sg (stopComponent a) 
    startComponent () = SimpleNode nullNodeName (startComponent ()) 
 
instance (Component a) => 
         System (RecursiveGraph a b) (RecursiveNode a b) NodeName where 
    startSystem = EmptyRecursiveGraph 
    stepSystem nn g = 
      let simplerec node nn = nodeName node == nn 
   simplemod g (RecursiveContext preds node succs) = 
     RecursiveGraph 
       g 
       (RecursiveContext 
         preds 
  (SimpleNode (nodeName node) (stepComponent (nodeLabel node))) 
  succs) 
          recrec node nn = isPrefixOf (nodeName node) nn 
   recmod g sg (RecursiveContext preds node succs) = 
     RecursiveGraph 
       g 
       (RecursiveContext 
         preds 
  (RecursiveNode 
    (nodeName node) 
    sg 
    (stepComponent (nodeLabel node))) 
  succs) 
   mg' = match g nn nn simplerec simplemod recrec recmod 
      in case mg' of 
           Nothing -> g 
    Just g' -> g' 
    stopSystem g = mapGraph stopComponent g 
 
---------------------------------------------------------------------- 
--  System Instances 
---------------------------------------------------------------------- 
instance (Component a) => 
         Separation (RecursiveGraph a b) (RecursiveNode a b) NodeName where 
    interactionMatrix g nn1 nn2 = 
      if findEdge g nn1 nn2 
      then \g' nn1' nn2' -> True -- Can model communication protocol here 
      else \g' nn1' nn2' -> False 

7.9 KrenzSystem.hs 
module KrenzSystem 
  ( 
  KrenzSystem, 
  KrenzFilterProperty 
  ) where 
 
import GraphInductive 
import GraphSystem 
import Container 
import System 
import Separation 
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data KrenzFilterProperty b = 
    KrenzFilterProperty 
    { 
    kfpOther  :: b,   -- Other edge freight 
    kfpFilter :: Prop -- Filter Property 
    } 
     
type KrenzSystem a b = RecursiveGraph a (KrenzFilterProperty b) 
 
instance Containers (KrenzSystem a b) 
                    (RecursiveNode a (KrenzFilterProperty b)) NodeName 
 
instance (Component a) => Component (RecursiveNode a (KrenzFilterProperty b)) 
 
instance (Component a) => 
         System (KrenzSystem a b) 
         (RecursiveNode a (KrenzFilterProperty b)) NodeName 
 
instance (Component a) => 
         Separation (KrenzSystem a b) 
             (RecursiveNode a (KrenzFilterProperty b)) NodeName 

7.10 KrenzAssuranceGraph.hs 
module KrenzAssuranceSystem where 
 
import KrenzSystem 
import GraphInductive 
import System 
import Separation 
 
-- The other freigth is also Prop 
type KrenzAssuranceSystem a = KrenzSystem a Prop 
 
instance Containers (KrenzAssuranceSystem a) 
                    (RecursiveNode a (KrenzFilterProperty Prop)) NodeName 
 
instance (Component a) => 
         Component (RecursiveNode a (KrenzFilterProperty Prop)) 
 
instance (Component a) => 
         System (KrenzAssuranceSystem a) 
         (RecursiveNode a (KrenzFilterProperty Prop)) NodeName 
 
instance (Component a) => 
         Separation (KrenzAssuranceSystem a) 
             (RecursiveNode a (KrenzFilterProperty Prop)) NodeName 

7.11 Category.hs 
module Category where 
 
import Prelude hiding (product, Functor) 
import Monad hiding (Functor) 
import EdisonPrelude 
import qualified Collection as C 
import Maybe 
 
------------------------------------------------------------------ 
--  The categories defined here use the underlying set concept from 
--  The edision "set" has constructors "empty" and "insert". This 
--  means that the sets modelled are constructive sets, not general 
--  sets. The category class below thus uses a constructive set of 
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--  objects and a constructive set of arrows. This permits 
--  the definition of constructors for the categories, and puts 
--  in the domain of "constructive category theory". No need anymore 
--  for distinctions such as "locally small". 
-- 
--  The definitions and properties are based on the thesis of 
--  Yellamraju Venkata Srinivas, titled "Pattern Matching: A 
--  Sheaf Theoretic Approach", published in 1991. I have also 
--  used the references "Categories for the working Mathematician" 
--  by Saunders MacLane, and "Categories" by T. S. Blyth, and 
--  "Toposes, Triples, and Theories" by Michael Barr and 
--  Charles Wells 
------------------------------------------------------------------ 
 
class (C.Set s o, C.Set s a) => Category c s o a where 
    -- Analyzers 
    dom          :: c s o a -> a -> o 
    cod          :: c s o a -> a -> o 
    catId        :: c s o a -> o -> a 
    compose      :: c s o a -> a -> a -> Maybe a 
    -- Constructors for a category 
    emptyCat     :: c s o a 
    mkCat        :: s o ->      -- Set of objects 
                    s a ->      -- Set of arrows 
      (a -> o) -> -- Dom 
      (a -> o) -> -- Cod 
      c s o a 
    -- Destructors for a category 
    objects      :: c s o a -> s o 
    arrows       :: c s o a -> s a 
    -- build the hom sets right into the definition of a category 
    morphisms    :: c s o a -> o -> o -> s a 
    morphisms c src snk = 
        C.filter (\a -> dom c a == src && cod c a == snk) (arrows c) 
  
compose' :: (Category c s o a) => c s o a -> a -> a -> a 
compose' c a1 a2 = fromJust (compose c a1 a2) 
composable :: (Category c s o a) => c s o a -> a -> a -> Bool 
composable c f g = dom c f == cod c g 
 
-- Composition is associative 
property Assoc c = All f g h. 
    (compose' c f (compose' c g h)) === (compose' c (compose' c f g) h) 
-- Two arrows are composable iff the compose function does not 
-- return Nothing 
property Composition c = All f g. 
    lift (((compose c f g) /= Nothing) == composable c f g) 
-- The identify laws, left and right 
property Identity c = All f. 
    compose' c (catId c (dom c f)) f === f /\ 
    compose' c f (catId c (dom c f)) === f 
-- The domain and codomain of the identity arrow on an object are the 
-- object itself 
property IdArrow c = All o. 
    dom c (catId c o) === o /\ 
    cod c (catId c o) === o     
 
------------------------------------------------------------------ 
-- The opposite of a category  
------------------------------------------------------------------ 
 
-- The domain and codomain functions have been interchanged, thus 
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-- the opposite of a category is the same category with all the 
-- arrows reversed. 
opposite :: (Category c s o a) => c s o a -> c s o a 
opposite c = 
  let os = objects c 
      as = arrows c 
      domop = dom c 
      codop = cod c 
  in mkCat os as codop domop 
   
------------------------------------------------------------------ 
-- Product of two categories 
------------------------------------------------------------------ 
 
instance (C.CollX s x, C.CollX s y) => C.CollX s (x,y) 
instance (C.Coll s x, C.Coll s y) => C.Coll s (x,y) 
instance (C.SetX s x, C.SetX s y) => C.SetX s (x,y) 
instance (C.Set s x, C.Set s y) => C.Set s (x,y) 
 
makepairs :: (C.Set s x, C.Set s y) => s x -> s y -> s (x, y) 
makepairs sx sy = C.fromList [(x,y) | x <- C.toList sx, y <- C.toList sy] 
 
product :: 
  (Category c s o a, Category c s o' a', Category c s (o, o') (a, a')) => 
  c s o a -> c s o' a' -> c s (o, o') (a, a') 
product c c' = mkCat pos pas pdom pcod 
  where pos = makepairs (objects c) (objects c') 
 pas = makepairs (arrows c) (arrows c') 
 pdom (a, a') = (dom c a, dom c' a') 
 pcod (a, a') = (cod c a, cod c' a') 
 
-- The product of two Id arrows is an Id arrow 
property ProductId c c' = All o o'. 
    catId (product c c') (o, o') === (catId c o, catId c o') 
     
------------------------------------------------------------------ 
-- Functors 
------------------------------------------------------------------ 
 
class (Category c s o a, Category c s o' a') => Functor f c s o a o' a' where 
    -- Destructors 
    objectmap :: f c s o a o' a' -> o -> o' 
    arrowmap  :: f c s o a o' a' -> a -> a' 
    -- Constructor 
    mkFunctor :: (o -> o') -> (a -> a') -> f c s o a o' a' 
 
property FunctorId c f c' = All o a. 
  catId c' (objectmap f o) === (arrowmap f (catId c o)) 
property FunctorArrow c f c' = All a. 
  dom c (arrowmap f a) === objectmap f (dom c a) 
property FunctorComposable c f c' = 
    All h k. lift (composable c h k) ==> 
             lift (composable c (arrowmap f h) (arrowmap f k)) 
property FunctorCompose c f c' = All h k. 
    compose' c (arrowmap f h) (arrowmap f k) === arrowmap f (compose' c h k) 
 
------------------------------------------------------------------ 
-- The Hom Set functor 
------------------------------------------------------------------ 
 
data (C.Set s a) => HomSet s o a = MkHomSet 
  { 
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  homdom :: o, 
  homcod :: o, 
  homset :: s a 
  } deriving (Eq) 
   
instance (Eq (HomSet s o a), C.Set s a) => C.CollX s (HomSet s o a) 
instance (Eq (HomSet s o a), C.Set s a) => C.Coll s (HomSet s o a) 
instance (Eq (HomSet s o a), C.Set s a) => C.SetX s (HomSet s o a) 
instance (Eq (HomSet s o a), C.Set s a) => C.Set s (HomSet s o a) 
instance (Eq (HomArrow s o a), C.Set s a) => C.CollX s (HomArrow s o a) 
instance (Eq (HomArrow s o a), C.Set s a) => C.Coll s (HomArrow s o a) 
instance (Eq (HomArrow s o a), C.Set s a) => C.SetX s (HomArrow s o a) 
instance (Eq (HomArrow s o a), C.Set s a) => C.Set s (HomArrow s o a) 
 
------------------------------------------------------------------ 
-- The hom category, a subcategory of Set, produced from the 
-- objects and arrows of another category. 
------------------------------------------------------------------ 
 
data (C.Set s a) => HomArrow s o a = MkHomArrow 
  { 
  homardom :: HomSet s o a, 
  homarcod :: HomSet s o a, 
  homarrul :: s a -> s a 
  } 
   
homsetof :: (Category c s o a) => c s o a -> o -> o -> HomSet s o a 
homsetof c src snk = MkHomSet src snk (morphisms c src snk) 
 
homarrowof :: (Category c s o a) => c s o a -> (a, a) -> HomArrow s o a 
homarrowof c (f, g) = 
  MkHomArrow (homsetof c (dom c f) (dom c g)) 
             (homsetof c (cod c f) (cod c g)) 
      (\x -> (C.fromList 
               (map (\e -> compose' c f (compose' c e g)) 
        (C.toList x)))) 
       
homarid :: (Category c s o a) => c s o a -> HomSet s o a -> HomArrow s o a 
homarid c homset = MkHomArrow homset homset id 
 
homcompose :: (Eq (s a),Category c s o a) => 
              c s o a -> HomArrow s o a -> HomArrow s o a -> 
       Maybe (HomArrow s o a) 
homcompose c (MkHomArrow src1 snk1 r1) (MkHomArrow src2 snk2 r2) = 
  if (snk1 == src2) 
  then Just (MkHomArrow src1 snk2 (r2 . r1)) 
  else Nothing 
   
homop :: (C.Set s a) => HomArrow s o a -> HomArrow s o a 
homop (MkHomArrow src snk r) = MkHomArrow snk src r 
 
instance (Eq (HomSet s o a), Eq (HomArrow s o a), Category c s o a) => 
         Category c s (HomSet s o a) (HomArrow s o a) 
 
-- Produce the category of hom sets and arrows 
sets :: (Eq (s a), Eq (HomArrow s o a), Category c s o a) => 
        c s o a -> c s (HomSet s o a) (HomArrow s o a) 
sets c = let  
             pos = makepairs (objects c) (objects c) 
             pas = makepairs (arrows c) (arrows c) 
             setobs = C.fromList (map (genhomset c) (C.toList pos)) 
      genhomset :: (Category c s o a) => 
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                   c s o a -> (o, o) -> HomSet s o a 
      genhomset c (o1, o2) = MkHomSet o1 o2 (morphisms c o1 o2) 
      setars = C.fromList (map (genhomarr c) (C.toList pas)) 
      genhomarr :: (Category c s o a) => 
                   c s o a -> (a, a) -> HomArrow s o a 
      genhomarr c (f, g) = 
        MkHomArrow (genhomset c (dom c f, dom c g)) 
                          (genhomset c (cod c f, cod c g)) 
     (\x -> C.fromList 
              (map (\a -> (compose' c f (compose' c a g))) 
       (C.toList x))) 
         in mkCat setobs setars homardom homarcod 
 
------------------------------------------------------------------ 
-- The hom set functor. 
------------------------------------------------------------------ 
 
homsetfunctor :: 
  (Category c s o a, Category c s (o, o) (a, a), 
   Functor f c s (o, o) (a, a) (HomSet s o a) (HomArrow s o a)) => 
  c s o a -> f c s (o, o) (a, a) (HomSet s o a) (HomArrow s o a) 
homsetfunctor c = 
  let cop = opposite c 
      copxc = product cop c 
  in mkFunctor (uncurry (homsetof c)) (homarrowof c) 
   
------------------------------------------------------------------ 
-- The contravariant Hom Functor, which is the hom set functor on 
-- the first argument only. The second argument is fixed at some 
-- object of the category 
------------------------------------------------------------------ 
 
contravarianthomobjs :: (Category c s o a) => c s o a -> o -> o -> HomSet s o a 
contravarianthomobjs c o' o = MkHomSet o o' (morphisms c o o') 
 
contravarianthomarrows :: (Category c s o a) => 
                          c s o a -> o -> a -> HomArrow s o a 
contravarianthomarrows c o' a = (curry (homarrowof c)) (catId c o') a 
 
contravarianthom :: 
  (Category c s o a, Category c s (o, o) (a, a), 
   Functor f c s o a (HomSet s o a) (HomArrow s o a)) => 
  c s o a -> o -> f c s o a (HomSet s o a) (HomArrow s o a) 
contravarianthom c o' = 
  let cop = opposite c 
  in mkFunctor (contravarianthomobjs cop o') (contravarianthomarrows cop o') 
 
------------------------------------------------------------------ 
-- Seives. 
-- A sieve is a collection of arrows, with common 
-- codomain, closed under right composition. 
------------------------------------------------------------------ 
 
-- Given a category, and an object (the common codomain), make a sieve 
-- out of a set of arrows (the set is currently represented by a list) 
class (Category c s o a) => Sieve c s o a where 
  isSieve :: c s o a -> s a -> o -> Bool 
  allSieves :: c s o a -> o -> s (s a) 
 
-- Now specify the Sieve properties using the Programatica properties 
property CommonCodomain c e = All f g o. 
  lift (isSieve c e o) ==> (lift (C.member e f) /\ lift (C.member e f)) ==> 
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  (cod c f === cod c g) 
property RightComposition c e = All f g o. 
  lift (isSieve c e o) /\ lift (C.member e f) /\ lift (composable c f g) ==> 
  lift (C.member e (compose' c f g)) 
-- Any sieve on an object is an element of (Sieves o a) 
property AllSieves c = All o as. 
  lift (isSieve c as o) ==> lift (C.member (allSieves c o) as) 
 
------------------------------------------------------------------ 
-- Sieve as a subfunctor of the contravariant Hom Functor 
-- "Subfunctor" is a bit of a misnomer here. As far as I can tell, 
-- there is no formal concept of subfunctor. What is meant is 
-- that the value of the sieve functor, at any object o, is a 
-- subset of the value of the contravariant hom functor on o 
------------------------------------------------------------------ 
 
sievehomobjs :: (Sieve c s o a) => c s o a -> s a -> o -> o -> HomSet s o a 
sievehomobjs c s o' o = MkHomSet o o' (C.intersect (morphisms c o o') s) 
 
sievehomarrows :: (Category c s o a) => c s o a -> o -> a -> HomArrow s o a 
sievehomarrows = contravarianthomarrows 
 
sievefunctor :: 
  (Sieve c s o a, Functor f c s o a (HomSet s o a) (HomArrow s o a)) => 
  c s o a -> s a -> o -> f c s o a (HomSet s o a) (HomArrow s o a) 
sievefunctor c s o = 
  let cop = opposite c 
  in mkFunctor (sievehomobjs cop s o) (sievehomarrows cop o) 
 
------------------------------------------------------------------ 
-- Grothendieck topology 
-- The properties here are somewhat difficult, so it is necessary 
-- to refer to the thesis of Srinivas (or to some other reference 
-- on sheaf theory, such as MacLane and Moerdick) 
------------------------------------------------------------------ 
 
class (Sieve c s o a) => GrothendieckTopology c s o a where 
  j :: c s o a -> o -> s a 
   
property JYieldsSieves c j = All o. lift (isSieve c (j c o) o) 
 
-- The maximal sieve contains all arrows with codomain o 
maximalSieve :: (Category c s o a) => c s o a -> o -> s a 
maximalSieve c o = C.filter (\f -> cod c f == o) (arrows c) 
 
-- The maximal sieve is a cover 
property IdentityCover j = All gt o. 
  lift (C.member (j gt o) (maximalSieve gt o)) 
   
-- Stability of covers under a change of base 
property StabilityUnderChangeOfBase j gt = All r o. 
  lift (C.member (j gt o) r) ==> 
  (All f. lift (C.member (j gt o) ((star gt f) r))) 
 
star :: (GrothendieckTopology c s o a) => c s o a -> a -> s a -> s a 
star c f r | isSieve c r (cod c f) = 
  C.filter (\g -> C.member r (compose' c f g)) (maximalSieve c (dom c f)) 
 
-- Stability of covers under refinement 
property StabilityUnderRefinement gt j = All r s o f. 
  lift (C.member (j gt o) r) /\ 
  lift (not (null (allSieves gt o))) /\ 
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  (All f s. lift (C.member r f)) /\ 
            lift (C.member (allSieves gt o) s) ==> 
            lift (C.member (j gt o) ((star gt f) s)) 

7.12 GraphCategory.hs 
module GraphCategory 
    ( 
    RecursiveGraphHomomorphism (..) 
    ) 
    where 
 
import Prelude hiding (product, Functor) 
import GraphInductive 
import Maybe2 
import Category 
import EdisonPrelude 
import qualified Collection as C 
 
---------------------------------------------------------------------- 
-- Define a recursive graph homomorphism 
---------------------------------------------------------------------- 
 
-- The homomorphism has a source, a sink, and a function from the 
-- source to the sink 
data RecursiveGraphHomomorphism a b = 
    RecursiveGraphHomomorphism 
    { 
    -- The source and sink of the homomorphism 
    rghSource :: RecursiveGraph a b, 
    rghSink   :: RecursiveGraph a b, 
    -- The node and edges in the sink are (possibly) mapped to 
    -- the nodes and edges in the source 
    rghnodemap :: RecursiveNode a b -> Maybe (RecursiveNode a b), 
    rghedgemap :: RecursiveEdge b -> Maybe (RecursiveEdge b) 
    } 
 
-- Compose two recursive graph homomorphisms 
rghcompose :: (Eq a, Eq b) => 
              RecursiveGraphHomomorphism a b -> 
              RecursiveGraphHomomorphism a b -> 
              Maybe (RecursiveGraphHomomorphism a b) 
rghcompose f g = 
     if rghSink g == rghSource g 
     then Just (RecursiveGraphHomomorphism 
                 (rghSource g) 
                 (rghSink g) 
                 (composeMaybe (rghnodemap f) (rghnodemap g)) 
                 (composeMaybe (rghedgemap f) (rghedgemap g))) 
     else Nothing 
 
-- The identify morphism is a function that leaves the recursive 
-- graph unchanged. Each node is mapped to the singleton list of nodes 
-- having that one node as a member, and similarly for edges. 
rghid :: RecursiveGraph a b -> RecursiveGraphHomomorphism a b 
rghid rg = 
    RecursiveGraphHomomorphism 
      rg 
      rg 
      (\n -> Just n) 
      (\e -> Just e) 
 
---------------------------------------------------------------------- 
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-- Now make a class for graph category 
---------------------------------------------------------------------- 
 
-- First, an abstract data type to serve as an instance. Note that the 
-- parameters "o" for objects, and "a" for arrows are ignored in this 
-- declaration. 
data (C.Set s (RecursiveGraph n e), 
      C.Set s (RecursiveGraphHomomorphism n e)) => GraphCategory n e s o a =  
    GraphCategory 
    { 
    gcObjects :: s (RecursiveGraph n e), 
    gcArrows  :: s (RecursiveGraphHomomorphism n e) 
    } 
     
-- Next, a class (API) like interface for the graph category 
class (C.Set s o, C.Set s a) => 
     GraphCategoryC c n e s o a | n e -> o, o -> a where 
    gccObjects        :: c n e s o a -> s o 
    gccArrows         :: c n e s o a -> s a 
    gccEmptyGraph     :: c n e s o a -> o 
    gccRecursiveGraph :: c n e s o a -> o -> RecursiveContext a b -> o 
    gccEmptyCat       :: c n e s o a 
    gccMkGraphCat     :: s o -> s a -> c n e s o a 
 
-- The abstract data type is an instance of the API class 
instance (C.Set s (RecursiveGraph n e), 
          C.Set s (RecursiveGraphHomomorphism n e)) => 
   GraphCategoryC 
     GraphCategory 
       n e s 
       (RecursiveGraph n e) 
       (RecursiveGraphHomomorphism n e) 
 
-- If it is an instance of the graph category, then a category can be 
-- made out of it. 
instance (Eq n, Eq e, 
          C.Set s (RecursiveGraph n e), 
          C.Set s (RecursiveGraphHomomorphism n e), 
   GraphCategoryC c n e s o a) => 
     Category (c n e) s (RecursiveGraph n e) (RecursiveGraphHomomorphism n e) 
    where 
     dom c rgh     = rghSource rgh 
     cod c rgh     = rghSink rgh 
     catId c rg    = rghid rg 
     compose c f g = rghcompose f g 
     objects c     = gccObjects c 
     arrows c      = gccArrows c 
     emptyCat      = gccEmptyCat 
     mkCat os as dom cod = gccMkGraphCat os as 

8 Hol Source 
This section contains the Hol source code for the current version of the Haskell 
specifications that have been translated to Hol. So far, only the inductive definition of the 
recursive graph have been translated into Hol, however, this is the fundamental data 
structure of the specification. 

8.1 GraphInductive.sml 
(* HOL Source for GraphInductive *) 
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load "bossLib"; 
open bossLib; 
load "integerTheory"; 
open integerTheory; 
load "listTheory"; 
open listTheory; 
load "stringTheory"; 
open stringTheory; 
 
(* This one is good *) 
val x = Hol_datatype 
    `RecursiveNode = SimpleNode of int list => 'a | 
                     RecursiveNode of int list => RecursiveGraph => 'a; 
     RecursiveEdge = 
       <|source:   int list; 
         uplink:   int list; 
         downlink: int list; 
         sink:     int list; 
         edgeLabel: 'b 
        |>; 
     RecursiveAdjacency = RecursiveAdjacency of RecursiveEdge list; 
     RecursiveContext = 
       <|preds:   RecursiveEdge list; 
         newnode: RecursiveNode; 
         succs:   RecursiveEdge list 
        |>; 
     RecursiveGraph = EmptyRecursiveGraph | 
                      RecursiveGraph of RecursiveGraph => RecursiveContext; 
     Decomp = 
       <|flag: bool; 
         component: RecursiveContext; 
         subgraph:  RecursiveGraph 
        |>` 
     handle e => Raise e; 
 
TypeBase.axiom_of (valOf (TypeBase.read "RecursiveGraph")) handle e => Raise e; 
map type_of [``RecursiveGraph``, 
             ``RecursiveContext``, 
             ``RecursiveAdjacency``, 
             ``RecursiveEdge``, 
             ``RecursiveNode``, 
             ``Decomp`` 
            ]; 
 
``x: (bool, int) RecursiveNode`` handle e => Raise e; 
``RecursiveNode [1] EmptyRecursiveGraph "label"`` handle e => Raise e; 
type_of it; 
 
Define `insNode n g = 
           RecursiveGraph g 
                          <|preds:=[]; 
                            newnode:=n; 
                            succs:=[]|>`; 
type_of ``insNode``; 

9 To do list 
The following is a list of tasks to complete on the specifications presented in this section. 

• Completed by version 3.0: Dynamic graphs: The ability to add and delete 
nodes from the recursive graph. This will be a very straightforward extension of 
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the current recursive graph class. Once added to the recursive graph class, the new 
capabilities should carry through to all the instances, such as Krenz system. 

• Completed by version 2.0: Grothendieck topology on the graph: A topological 
view of the system, permitting the formulation (and automated answering) of 
what if questions. For example: Is the system still an instance of the specified 
Krenz information flow policy when a particular node (and edges to and from the 
node) are added? 

• Completed by version 3.0: Testing: The functions in the specification will be 
tested (and corrected). In particular, the flatten and deepen functions will be 
tested. 

 Added version 1.0: Node freight of different types: Add the ability to have node 
freight (and node properties) of different types in different subgraphs of the 
recursive graph. Version 3 update: This appears to be a straightforward exercise 
in the use of existential types in Haskell. During earlier versions of the report, this 
looked like a more difficult task. 

 Added version 1.0: Edge freight of different types: Add the ability to have edge 
freight (and edge properties) of different types in different subgraphs of the 
recursive graph. Version 3 update: This appears to be a straightforward exercise 
in the use of existential types in Haskell. During earlier versions of the report, this 
looked like a more difficult task. 

 Added version 1.0: Graphical output: Add the ability to make a graphical output 
of a Krenz system or a Krenz assurance system. This will be done if a suitable 
graphics package can be interfaced to Haskell. This item is of low priority. 
Version 3 update: There is a nice graph drawing package called Da Vinci, which 
has an interface to Haskell. This will probably be used for the Krenz system. 

 Added version 3.0: It should be possible to define a category as a graph with 
additional properties. This will be investigated, and done if possible. This will 
result in an inductive definition of a category. This may be a result worth 
publishing. 

 Added version 3.0: Having seen a simpler definition, it may be possible to do 
another definition of recursive graph that is not inductive, but still simple, having 
clear constructors and destructors, but permitting more a elegant and efficient 
definition of the flatten and deepen primitives. 
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11 Acronyms 
ADT .................. Abstract Data Type 
CC .................... Common Criteria 
FGL .................. Functional Graph Library 
HOL ................. Higher Order Logic 
ID ..................... Identifier 
I/O .................... Input / Output 
KAG ................. Krenz Assurance Graph 
KMP ................. Knuth Morris Pratt algorithm 
MASK ............... Mathematically Analyzed Separation Kernel 
NT .................... New Technology 
PhD .................. Philosophy Doctorate 
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