

The Separation and Krenz
Specifications

Version 3.0

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 2 of 57

table of contents

1 OBJECTIVE AND INTRODUCTION ... 6
1.1 INTRODUCTION TO VERSION 1.0 ... 6
1.2 INTRODUCTION TO VERSION 2.0 ... 7
1.3 INTRODUCTION TO VERSION 3.0 ... 8

2 INFORMAL DESCRIPTION OF SEPARATION .. 9
2.1 SEPARATION CONCEPT AT THE OPERATING SYSTEM LEVEL 9
2.2 ABSTRACTION OF THE SEPARATION CONCEPT .. 10

3 INFORMAL DESCRIPTION OF THE KRENZ .. 11
3.1 KRENZ CONCEPT AT THE OPERATING SYSTEM LEVEL ... 11
3.2 ABSTRACTION OF THE KRENZ CONCEPT ... 12
3.3 THE KRENZ ASSURANCE GRAPH CONCEPT.. 13

4 HIERARCHICAL SYSTEM CONCEPT .. 14
4.1 HIERARCHICAL SYSTEM CONCEPT AT THE OPERATING SYSTEM LEVEL 14
4.2 ABSTRACTION OF THE HIERARCHICAL SYSTEM CONCEPT 15

5 DESCRIPTION OF SEPARATION / KRENZ HIERARCHY 16
5.1 RECURSIVE GRAPHS .. 16
5.2 DYNAMIC SYSTEMS ... 18
5.3 PARAMETERIZING SEPARATION VS. KRENZ.. 19
5.4 HIERARCHICAL SEPARATION AND KRENZ .. 19

5.4.1 System and Separation classes.. 19
5.4.2 The Recursive Graph class ... 21
5.4.3 Graph with properties instances ... 22
5.4.4 Krenz System instances ... 23
5.4.5 Krenz Assurance Graph instances .. 24

6 TOPOLOGY (AND THE ENTERPRISE KRENZ) .. 25
6.1 TOPOLOGY AND PATTERN MATCHING FOR THE SEPARATION SPECIFICATION 25
6.2 THE CATEGORICAL FRAMEWORK FOR PATTERN MATCHING (SEPARATION) 27
6.3 TOPOLOGY AND PATTERN MATCHING FOR THE KRENZ SPECIFICATION 27
6.4 TOPOLOGY / PATTERN MATCHING FOR KRENZ ASSURANCE SPECIFICATION 29

6.4.1 Matching the assurance properties in the Krenz Assurance Graph 30
6.5 AXIOMS OF A GROTHENDIECK TOPOLOGY ... 31

7 HASKELL SOURCE.. 32
7.1 CONTAINER.HS ... 32
7.2 RECURSIVECONTAINER.HS .. 33
7.3 SYSTEM.HS... 33
7.4 SEPARATION.HS ... 34
7.5 MAYBE2.HS ... 34

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 3 of 57

7.6 GRAPHINDUCTIVE.HS ... 35
7.7 GRAPHFLAT.HS .. 44
7.8 GRAPHSYSTEM.HS ... 45
7.9 KRENZSYSTEM.HS ... 46
7.10 KRENZASSURANCEGRAPH.HS .. 47
7.11 CATEGORY.HS .. 47
7.12 GRAPHCATEGORY.HS .. 53

8 HOL SOURCE .. 54
8.1 GRAPHINDUCTIVE.SML .. 54

9 TO DO LIST .. 55

10 REFERENCES .. 56

11 ACRONYMS ... 57

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 4 of 57

List of figures
Figure 1: Separation at the operating system level ... 9
Figure 2: Informal separation property ... 10
Figure 3: Abstract version of separation ... 10
Figure 4 Abstract separation property... 11
Figure 5: Informal description of the Krenz ... 12
Figure 6: Extension of the Krenz Concept .. 12
Figure 7: The Krenz Assurance Graph ... 13
Figure 8: Hierarchical levels within a complex system .. 14
Figure 9: Recursion in the operating system separation concept (Repeats Figure 1) 15
Figure 10: Separation as Haskell signatures ... 15
Figure 11: Extending the separation concept to a hierarchy ... 16
Figure 12: Hierarchical Graph .. 17
Figure 13: Inter-level edges in the recursive graph .. 17
Figure 14: Flattened Hierarchical Graph .. 18
Figure 15: Separation Specification Hierarchy Classes .. 20
Figure 16: The Haskell separation properties ... 21
Figure 17: Recursive Graph Hierarchy of Classes .. 21
Figure 18: Recursive Directed Graph as an instance of the Recursive Graph 22
Figure 19: A graph with properties, as an instance of the Separation class...................... 23
Figure 20: Krenz system as an instance of the separation class 24
Figure 21: Krenz Assurance System Instances ... 24
Figure 22: Separation / Subgraph Matching ... 25
Figure 23: Retry on Separation pattern matching ... 26
Figure 24: Separation / Subgraph Site .. 26
Figure 25: Composed embedding ... 27
Figure 26: Krenz System Matching .. 28
Figure 27: Krenz System Site ... 28
Figure 28: Composed cover for a Krenz system ... 29
Figure 29: Krenz Assurance Site .. 29
Figure 30: Refining an Assurance ... 30
Figure 31: Krenz assurance matching property .. 30

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 5 of 57

Figure 32: Refining an Assurance and a Filter ... 31
Figure 33: Krenz filter matching property .. 31
Figure 34: Stability under a Change of Basis (from Srinivas Thesis [8]) 32
Figure 35: Stability under Refinement (from Srinivas thesis [8]) 32

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 6 of 57

1 Objective and Introduction
1.1 Introduction to version 1.0
The purpose of this report is to present the work to build the separation specification on
the Programatica project. In fact, this report will also present the beginnings of the Krenz
specification on the Programatica project. The reason for combining these two is that the
Krenz specification depends upon the Separation specification. The specifications have
been designed as a hierarchy of Haskell classes and instances. The Krenz specifications
are instances of classes that are sufficiently general to handle the separation specifications
and several versions of the Krenz specifications.
The statement of work for the Programatica project calls for a Krenz model at several
levels, including the enterprise, network, and platform levels. The Haskell classes
presented in this report have been parameterized to cover the required Krenz levels, as
well as other instances of Krenz not anticipated in the statement of work. This
parameterization of the Haskell classes to encompass many instances of Separation and
Krenz is a significant accomplishment of this work.
The enterprise Krenz model calls for a concept of topology to be introduced. The
framework of Haskell classes presented in this report will lay the foundation for the
concept of topology to be introduced in the enterprise Krenz report. The objective of the
topological concept is to be able to answer questions such as the following:

• Conformance to Security Policy: Given an enterprise constructed from many
network, platforms, processes, threads, etc., does the enterprise conform to the
Krenz model of information flow specified for the enterprise?

• Security of alteration: Given a proposed change to an enterprise (e.g. an
additional network, an additional platform, etc.) is the resulting network still in
conformance to the Krenz model of information flow for the enterprise? If not,
what filters must be added to bring the proposed change into conformance?

The second question (security of alteration) reveals another objective of the hierarchy of
Haskell classes. The architecture should be dynamic, so that new elements and
connections can be added. For example, new networks, network connections, platforms,
etc. can be added to an enterprise. This is a significant advance over the Mathematically
Analyzed Separation Kernel (MASK). MASK supported only a static set of processes,
threads, and communication paths between them.
The objectives of the hierarchy of Haskell classes are summarized in Table 1. This report
presents the hierarchy of classes in a form sufficient to support the objectives listed in
Table 1 for the separation property. To support the Krenz properties will require some
extensions. In particular, the hierarchy of classes at this time does support the addition of
elements in the architecture, but not the addition of connections between the elements of
the architecture.
A final objective of the hierarchy of classes (not accomplished at the time of this report)
is to extend the parameterization of the classes. The classes are polymorphic in the type
of elements and connections that comprise the architecture. In Haskell, this means that

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 7 of 57

the elements and connections can be of any type, but they must be consistent throughout
the architecture, i.e. all the elements are of the same (polymorphic) type, and all the
connections are of the same (polymorphic) type. It would be nice to have an architecture
that is built from elements of one type in one part of the architecture, and of a different
type in another part of the architecture. For example, it would be nice to use Linux
platforms in one place and NT platforms in another place. Haskell has mechanisms to
permit this kind of extended polymorphism. In future versions of this hierarchy of
classes, we will investigate the use of these Haskell mechanisms to extend the
polymorphism.

Table 1: Objectives of the hierarchy of Haskell classes

Objective Description Further information
Parameterized model The ability to instantiate the hierarchy of

classes to capture many versions of
Separation and Krenz.

Section 5.3.

Hierarchy of levels The ability to specify a hierarchy of
elements, each having its own separation
or Krenz property

Section 5.4.

Topology The introduction of a topological concept,
permitting what if questions about
modifications to the architecture.

Version 2.0 of this
report (see section 1.2)

Dynamic architecture The ability to add elements to the
architecture (adding connections not yet
done)

Section 0.

Extended
polymorphism

The ability to compose an architecture of
elements with many different types.

Future report

1.2 Introduction to version 2.0
This version of the specifications adds a concept of topology to the Separation and Krenz
specifications. The notion of topology used is that of a Grothendieck Topology, as
described in the PhD thesis of Srinivas [8] and in other texts [1]. Underlying the concept
of Grothendieck Topology are the concepts of Category [3, 4, 5, 6], Sieve [1, 8], and
Sheaf. [1, 8].
For the separation specification, the basic idea underlying the addition of Grothendieck
topology is that each instance of the separation specification is an object in a category
(called Sep), and a separation homomorphism is an arrow in the category. In the
category (Krenz), objects are instances of the Krenz specification, and arrows are
homomorphisms that preserve the Krenz structure. The Krenz Assurance Graph lives in a
special instance of the Krenz category, called KAG.
The reason for adding a topology to the Separation and Krenz specifications is to provide
the structure in which pattern matching takes place. The development of a pattern-
matching algorithm, based on the Knuth-Morris-Pratt (KMP) algorithm, is the subject of

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 8 of 57

the thesis of Srinivas (8). Based upon this pattern-matching algorithm, questions can be
asked such as:
 Is a complex system an instance of a Separation specification?
 Is a complex system an instance of a Krenz specification?
 Is a complex system an instance of a Krenz Assurance specification?
 If a modification is to be made to a system, will it still satisfy a (Separation /

Krenz / Krenz Assurance) specification?
The Krenz specifications are also intended to be the basis for formal security models for
computer platforms and networks. The Krenz specification has a protection profile
associated with it, which is the starting point of seeking security assurances under the
common criteria (CC).
A significant success of the version 2.0 effort is that the Haskell specifications from
version 1.0 were reused without modification. Two new files (CategoryC.hs in section 0
and GraphCategory.hs in section 7.12) were added to the version 1.0 specifications. This
speaks highly of the reusability of Haskell definitions and code.

1.3 Introduction to version 3.0
The most important changes in this version of the specification are:
 Theorem proving: The theorem proving aspect of the specification has been

considered. Several theorem provers were investigated (Hol, PVS, Maude, and
Isabelle), and Hol was chosen as the theorem prover to use on the Krenz
specifications. The simpler definition of recursive graph was carried through to all
of the other definitions (such as the Krenz System) built on top of the recursive
graph concept. The theorem proving considerations have had three major effects:

♦ Inductive definition of recursive graphs: The definition of the recursive
graph data structure was modified to use an inductive definition, based on
the work of Martin Erwig ([1]). The previous definition of recursive graph
had no clear structure, and it was unclear how to map it into Hol for
theorem proving.

♦ Simplification of other parts of the specification: Based on the simpler
method of defining recursive graphs, the other specifications built on the
recursive graph were also simplified.

♦ Dynamic version of recursive graphs: As a natural byproduct of the
inductive definition of recursive graphs, the recursive graph structure is
now dynamic, i.e. nodes and edges can be added to or deleted from a
recursive graph.

 Testing: The deepen and flatten methods of the recursive graph were tested on
several graphs. Testing the functions is a necessary first step before the theorem
proving effort begins.

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 9 of 57

 Network Krenz: The work of the previous two specifications has already
introduced the structures necessary for the network version of the Krenz
specification, so no additional work was needed here.

The informal portion of this document (section 2 through section 6) remain unchanged in
version 3 of the report. The Haskell source (section 7) has been updated with the new
Haskell source. The Hol source (partial at this point) is now included in section 8.

2 Informal Description of Separation
This section describes the separation property. The separation property first arose in the
context of an operating system. The separation property is first described at the operating
system level in section 2.1. This property is abstracted to suit any instance of the
separation property in section 2.2.

2.1 Separation concept at the operating system level
Separation at the operating system level is depicted in Figure 1. Many operating systems
(such as NT and Unix) are good at separating processes in terms of providing separate
address spaces, such that reads and writes to one address space are independent of reads
and writes to another address space. However, these operating systems are poor at
separating processes in terms of the operating system itself. What this means is shown in
Figure 1. By means of operating system interfaces, one process can influence the internal
state of the operating system. This influence can later be detected by another process
running under control of the same operating system.

Process1 Process2

Segment1 Segment2

Kernel

Access Access

Internal
State

Kernel CallKernel Call
Unwanted
interference

Processes interfere with each
other in subtle ways via the
OS/Kernel, so it is not possible to
evaluate the properties of one
process in isolation

Figure 1: Separation at the operating system level

Allocation and de-allocation of resources is a common example of such paths of
influence. One process allocates resources, and the other process can detect that resources
have been allocated, often by using operating system status tools that return the level of
resource allocation. The “disk free (df)” utility of Unix is a good example of this. Widely
used operating systems have hundreds (even thousands) of interfaces, and abundant

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 10 of

opportunities to communicate information by means of operating system interfaces that
were not intended as communication mechanisms.
A separation kernel is designed to eliminate information flows by means of the kernel,
and permit only explicitly allowed communication by the communication mechanisms
provided by the kernel. The separation property captures the resulting separation between
the processes. Informally, the separation property is:

Informal Separation Property: Processes A and B are separated if the actions
of process A cannot influence the actions of process B, and the actions of
process B cannot influence the actions of process A.

Figure 2: Informal separation property

Note the word “cannot”, rather than “does not”. Two processes might be designed so that
they “do not” influence each other, even though there are mechanisms that might enable
them to influence each other. “Cannot” means there is no mechanism for the two
processes to influence each other, except for the explicitly allowed communications
mechanisms of the operating system.

2.2 Abstraction of the separation concept
The separation property can be abstracted from the context of operating systems, to apply
to any instance where separation is of interest. Other examples of separation are
separation between the bands of different radio stations, separation between
compartments in a battleship (provided by bulkheads), and separation between
communications channels in a network. The abstract separation property to capture all
these instances of separation is depicted in Figure 3.

CA

Step

Start

CB

Step

Start

CC

Step

Start

System

Start

Step

Some components are permitted to affect
each other, some are not

Figure 3: Abstract version of separation

In Figure 3, separation is described as the separation of the components of a larger
system. The system has two operations, start, and step. The start operation places the
system in an initial state, and the step operation advances the state of the system,
resulting in updates to some or all of the system state.
The system is built from components. Each component has its own start and stop
operation, which initialize and advance the state of the component. The system start and
stop operations are defined in terms of the component start and stop operations. For

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 11 of

example, the system start operation could invoke the start operation of each of the
components of the system. This version of separation requires a select operation that
returns a component of the system, given the ID of the component. Thus (select s a)
denotes component a of system s.
In this abstract context, an informal statement of the separation property is:

Abstract separation property: System component A is separated from system
component B if the results of the Start and Step operations of component A are
not influenced by the Start and Step operations of component B. In other words,
the operation of component A is the same, no matter how operations by
component B are interleaved with the operations of component A.

Figure 4 Abstract separation property

This statement maps down to the operating system version of separation (section 2.1).
The processes are the components of the system, and the system consists of all the
processes, together with the operating system itself. The process operations (such as
executing machine language instructions, or making calls to the operating system)
become versions of the abstract Step operation. The select operation corresponds to the
operating system scheduler, which determines the next process to run.

3 Informal Description of The Krenz
Like the separation concept, the Krenz concept originated as a property of interest for an
operating system. The Krenz concept at the operating system level is described in section
3.1. The Krenz concept is then extended to arbitrary information flow policies in section
3.2.

3.1 Krenz concept at the operating system level
The Krenz concept at the operating system level is depicted in Figure 5. The platform
controlled by the operating system is divided into different information processing
modes. Examples of modes are classified and unclassified, proprietary and public,
protected and unprotected. The Krenz information flow policy requires specifies that
when information flows between two modes, it must flow through a filter. For example,
information flowing from an unclassified mode to a classified mode must be sent through
a filter that includes encryption, and possibly a dirty word scan.

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 12 of

Mode A

Mode B

Filter A  B
Filter B  A

Figure 5: Informal description of the Krenz

At the platform level, different realizations of the Krenz are possible:
• The Krenz could be an enhancement to the boot up. The desired mode of

processing is determined, and the user is permitted to boot up in the desired mode.
Only resources appropriate to that mode are made visible to the user.

• The Krenz could be implemented as an envelope to the underlying platform and
operating system. All I/O by the platform, operating system, and applications
would be intercepted by the Krenz, which would establish the abstraction of
different information processing modes and the filters between them. This
realization would permit hot switches between modes.

• The Krenz could be a higher-level software layer, such as VMWare. VMWare is
used to control access by the user mode software to the underlying hardware, and
therefore to any I/O as well. This realization of the Krenz also permits hot
switches between modes.

The Krenz concept depends upon the separation concept. If the only information flow
from mode A to mode B is via a specified filter, then the underlying operating system
must ensure that there are no flows between mode A and mode B other than via the
explicitly allowed communication mechanisms.

3.2 Abstraction of the Krenz concept
Like the operating system concept, the Krenz concept can be abstracted away from the
operating system context. This abstraction is shown in Figure 6.

Mode1 Mode2

Mode3

Filter1

Filter2

Filter3

Filter4

Figure 6: Extension of the Krenz Concept

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 13 of

The Krenz concept is formulated as a directed graph.
• Nodes: The nodes in the directed graph are either

o Modes: The information processing modes, such as classified or
unclassified.

o Filters: The filters between the information processing modes.
• Edges: The edges in the directed graph are uni-directional information flows

The filter nodes are trusted to perform their filter functions correctly, whereas the mode
nodes are untrusted. As shown in Figure 6, filters can be composed. For example, filter 2
and filter 4 have been composed.
This model represents an abstraction of the Krenz concept from the operating system
level, since nodes and edges have no fixed semantics. Nodes could be networks, domains,
threads, etc, and the edges the corresponding communication links between the nodes.
In this model, we have chosen to model the filters as nodes. Another choice would be to
model the information modes as nodes, and the filters as edges. It is not clear which is a
better choice at this time, and both models will be explored in the course of the
Programatica project.

3.3 The Krenz assurance graph concept
The Krenz concept can be further extended as depicted in Figure 7. The extension is that
properties have been assigned to the edges in the Krenz graph. In the Krenz graph, the
information processing modes were untrusted, and had no useful assurance properties. In
the Krenz assurance graph, an information-processing mode could be trusted to satisfy
the specified property on the specified output arc. This permits discussing a limited trust
(limited to the specified property) for the information-processing mode. Untrusted modes
would have “True” as their output property, meaning that there is no property (other than
tautologies) that can be asserted about the output of the information mode.

Mode1 Mode2

Mode3

Filter1

Filter2

Filter3

Filter4

P1

P2

P3P4

P5

P7

P6

Figure 7: The Krenz Assurance Graph

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 14 of

4 Hierarchical system concept
The separation and Krenz concepts both started at the operating system level, and were
later abstracted to arbitrary information flow situations. With this abstraction, it is
tempting to apply the separation and Krenz concepts to other systems requiring security
assurance. In particular, we have the goal of applying the Krenz concept to complex
systems that span a number of levels of complexity. An example of a complex system
spanning many levels is shown in Figure 8.

Coalition

Enterprise

Network

Platform

Processor

Processes

Process

Thread
Figure 8: Hierarchical levels within a complex system

Each level in the hierarchy has its own separation and krenz concerns. For example,
networks can be separated, and connected by filter components such as network
encryptors and firewalls. The coalition may be formed from enterprises, and there may be
rules (filters) governing the flow of information between the enterprises. The Krenz
model should enable the formulation of the following types of questions:

• Conformance to information flow policy: Does an architecture, spanning levels
from coalition down to thread, conform to a specified Krenz information flow
policy?

• Security of changes to the architecture: Does a proposed change to the
architecture, such as a new process, a new network, a new connection (etc.), still
conform to the specified Krenz information flow policy? If not, what filters
should be inserted to maintain conformance to the information flow policy?

If the model enables formulation of these questions, then it should also enable automated
tools to answer these questions.

4.1 Hierarchical System concept at the operating system level
There is already a notion of a hierarchy of systems in the operating system level
separation concept, as shown in Figure 9. The system level has start and step operations,
and its components also have start and step operations. This suggests that a minor

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 15 of

modification to the separation concept is to make each of the components into a
separation system, with its own subcomponents.

CA

Step

Start

CB

Step

Start

CC

Step

Start

System

Start

Step

Some components are permitted to affect
each other, some are not

Figure 9: Recursion in the operating system separation concept (Repeats Figure 1)

The separation concept is displayed as Haskell classes and signatures in Figure 10. The
system level has its own select, start, and stop operations, shown in the upper left of the
square. The system has four components, each of which is a system in its own right,
having select, start and stop operations.

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

Component

Component

Component

Component
System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

SYSTEM

Figure 10: Separation as Haskell signatures

4.2 Abstraction of the hierarchical system concept
The extension of the separation concept to more levels is depicted in Figure 11. The
hierarchy now has three levels, a super system, comprised of fours systems, each of
which is comprised of four subsystems. It is clear that this nesting of systems can be
extended to any number of levels in the hierarchy.

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 16 of

System cs c cid
start :: cs
step :: cid -> cs -> cs
stop :: cs -> cs

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

SU
PE

R
SY

ST
E

M

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

SYSTEM

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM
System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

SYSTEM

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM
System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

SYSTEM

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM

SUBSYSTEM
System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

System cs c cid
start :: cs
step :: cid->cs->cs
stop :: cs -> cs

SYSTEM

Figure 11: Extending the separation concept to a hierarchy

Figure 11 shows extending the separation concept to an arbitrary number of levels. Now
we want to extend the Krenz concept to an arbitrary number of levels. The separation
concept is presented nicely as nested systems. The Krenz concept has been modeled (in
section 3) as a graph, so extending the Krenz concept to an arbitrary number of levels
requires a multi level graph. This development is described in the following sections (see
sections 5.1 and 5.4).

5 Description of Separation / Krenz Hierarchy
This section informally describes the hierarchy of Haskell classes and instances used to
achieve the objectives stated in section 1. The description begins with the hierarchical
graph class in section 5.1. Then the dynamical system specification is described in
section 5.2. The use of parameters to make Separation, Krenz, and Krenz assurance
specifications is described in section 5.3. The hierarchy of classes and instances is then
described in section 5.4.

5.1 Recursive Graphs
The recursive graph data structure is used to capture the hierarchical separation and
Krenz concepts discussed in section 4. The recursive graph data structure is illustrated in
Figure 12.

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 17 of

5

2

1
2

4
1 3

4

21

4 3

4
2

3

6

2

1

1

3

Level 1

Level 2

Level 3

Figure 12: Hierarchical Graph

The example recursive graph shown in Figure 12 has three levels. The highest level (level
1) has three simple nodes, labeled 1, 2, 4, and 6, and two complex nodes, labeled 3 and 5.
Edges are shown between some of the simple nodes in the level 1 graph. The complex
nodes are recursive graphs themselves. The level 1 node labeled 3 is a recursive graph at
level 2, having simple nodes 1, 2, and 3, and a complex node labeled 4. The rest of the
recursive graph is described similarly.
All of the edges shown in Figure 12 are edges between simple nodes of the same level. In
addition, it is possible to have edges between the nodes at different levels in the recursive
graph, or across levels in the recursive graph, as shown in Figure 13.

5

2

1
2

4
1 3

4

21

4 3

4
2

3

6

2

1

1

3

Level 1

Level 2

Level 3

ac
ro

ss
(3

,[U
p,

5,
1]

)

do
w

n(
1,

[3
,1

])

up
(2

,[U
p,

3]
)

Figure 13: Inter-level edges in the recursive graph

The graph of Figure 13 has the following inter-graph edges:

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 18 of

 Down: An edge down, from node 1 at level 1 to node 2 in subgraph 4.
 Up: An edge up, from node 2 in the right subgraph at level 3, to node 3 in the

right subgraph at level 2.
 Across: An edge across from node 3 in the left subgraph at level 2 to the right

subgraph at level 2. Note that the edge is specified as the list [Up, 5, 1]. This
specification means to go up one level, then to node 5 at that level (which turns
out to be a complex node), and then to node 1 inside the complex node.

The Haskell class declaration for the recursive graph class contains a flatten and a deepen
function. The flattened version of the recursive graph of Figure 13 is shown in Figure 14.
The recursive graph has been flattened to have only one level. The complex nodes are
expanded into the level above them.

Figure 14: Flattened Hierarchical Graph

Note that the structure of the recursive graph of Figure 13can be recovered from the
flattened graph of Figure 14, because the information about the structure of the graph was
stored in the names of the nodes. For example, the node named 3,4,1 indicates simple
node 1 of complex node 4, of complex node 3 at the top level.
The recursive graph is the framework for defining the separation, Krenz, and Krenz
assurance graph concepts that span levels of complexity. The use of this framework will
be described in section 5.4.

5.2 Dynamic Systems
As stated in section 1, an objective of these specifications is to enable a dynamic
separation kernel, a dynamic Krenz system, and a dynamic Krenz assurance system. This
means that nodes and edges can be added to or deleted from an instance of separation,
Krenz, or Krenz assurance graph. At present, the dynamic addition and deletion of nodes
is defined only in the simplest version of the Separation specification. Extending this
capability to the hierarchical separation and Krenz specification requires only the
addition of functions to the recursive graph specification that will permit the addition and
deletion of nodes and edges.

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 19 of

5.3 Parameterizing Separation vs. Krenz
The recursive graph specification (section 5.1) will be used to capture the separation,
Krenz, and Krenz assurance graph concepts. This is done by parameterizing the recursive
graph data structure. The parameters are called freight, and the freight is carried by each
node and edge in the graph structure. The freight has the following characteristics:

• Node Freight: The simple nodes carry the freight, not the complex nodes (see
Figure 13). However, the simple nodes that comprise a complex node can carry
freight. If needed, freight can be added to the complex nodes if this extension to
the specification is needed.

• Edge Freight: The edges can also carry freight.
• Polymorphic Freight: The freight is specified as a polymorphic parameter, so

that the nodes and edges can carry freight of any type. The node freight parameter
is different from the edge freight parameter, so the nodes and edges can carry
freight of different type.

As noted in section 1, the polymorphic parameter implies that all the nodes at all the
levels of the graph have freight of the same polymorphic type. An objective of future
versions of this specification is to lift this restriction, so that different subgraphs of a
recursive graph can have node freight of different types.

5.4 Hierarchical Separation and Krenz
The separation, krenz, and krenz assurance graph specifications can be realized as data
types that are instances of the appropriate classes.
 Separation: Each of the separation, krenz, and krenz assurance graph

specifications are instances of the separation class. From this class the inherit the
concept of a system that can be initialized (the start operation), advanced (the step
operation), and they inherit the separation property. The separation class is
described in section 5.4.1.

• Recursive graph: From the recursive graph class, the separation, krenz, and
krenz assurance graph specifications inherit the hierarchy of nodes and subgraphs.
The recursive graph concept was described in section 5.1, and the specifications
will be described in section 5.4.2.

By combining inheritance from the separation class and the recursive graph class, the
specifications gain the separation concept, applied at each level of the hierarchy given in
the recursive graph. It is this combination which permits us to achieve the objectives of
the specifications laid out in section 1.

5.4.1 System and Separation classes

The system and specification classes are built up from lower level classes as shown in
Figure 15.

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 20 of

Eq cid

Containers cs c cid Component c

System cs c cid

Separation cs c cid

Figure 15: Separation Specification Hierarchy Classes

A brief description of each of the classes of Figure 15 follows:
 Eq: The equality class comes from the standard Haskell prelude. It contains

equality and inequality operators.
 Component: The component class defines a basic component of a system, with its

own start, step, and stop operations. These operations are sufficient to describe an
object with an internal state that can be initialized (start), advance (step), and
terminate (stop).

 Containers: The container class defines the basic operations of any dynamic
container. The elements in the container each have an identifier. The basic
operations are:
 select: Given an id, find the element (if any) of the container that has that

identifier.
 addElem: Add an element (with its id) to the container.
 deleteElem: Delete and element (with its id) from the container.

 System: The system class defines the concept of a system that contains
components. Thus the system class inherits from both the containers class and the
component class. The system class adds the idea that both the system level and
the component level have start, stop and step operations.

• Separation: In terms of standard Haskell, the separation class is exactly equal to
the system class. In terms of Programatica, the separation class adds properties to
the system class. The separation property is shown in Figure 16.

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 21 of

property FirstSeparation = All ps. All x. All y.

 select (stepSystem ps x) y =/= select ps y ==>

 ((interactionMatrix ps x y) ps x y === True)

property SecondSeparation =

 All ps. All x. All y.

 select (stepSystem ps x) y =/= select ps y ==>

 (Exists f.

 select (stepSystem ps x) y === f (select ps x) (select ps y))
Figure 16: The Haskell separation properties

5.4.2 The Recursive Graph class

The recursive graph class, like the separation class, is constructed from more primitive
classes. The hierarchy of classes leading to the recursive graph class is shown in Figure
17. The recursive graph class inherits from the node and edge classes, which define the
minimum characteristics of nodes and edges, respectively. Both nodes and edges are
defined in terms of paths, inherited from the path class. The nodes require paths, because
the ID of a node can be a path. This capability is used when a recursive graph is flattened,
as described in section 5.1. The id of a node in the flattened graph is a path that contains
enough information to reconstruct the recursive graph from the flattened graph.

CPath p

Cnode n p CEdge e p

CRecursiveGraph rg n p

Figure 17: Recursive Graph Hierarchy of Classes

A brief description of each of the classes of Figure 17 follows:
 CPath: The archetype of the path class is the list.

 isup :: p -> Bool: Determine if the path is an “Up” path,
from a lower level in the graph to a higher level.

 concatpath :: p -> p -> p: Concatenate two paths

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 22 of

 restpath :: p -> p: Determine the remainder of the path, after
the first element is removed.

 pathlength :: p -> Int: Determine the length of the path.
 matchfirst :: p -> p -> Bool: Determine if the first elements of

two paths match.
 addup :: p -> p: Add an “Up” element to the front of the

path.
 emptypath :: p: Construct an empty path.

 CNode: The node type of the graph. It must have at least the following functions
defined:

 pathofnode :: n -> p: Determine the path of the node.
 constructnode :: n -> p -> n: Construct a node from an input node

and a path.
 newnode :: p -> n: Create a new node from a path.

 CEdge: The edge type of the graph. There are several utility functions defined on
the graph class. The two most important functions are:
 flatten: Flatten as recursive graph, as described in section 5.1.
 deepen: Deepen a flattened recursive graph, as described in section 5.1.

Because flatten and deepen are defined on the graph class, anything than can inherit from
the graph class gets flatten and deepen for free. This is used to provide flatten and deepen
for the separation, krenz, and krenz assurance graph specifications in later sections.

5.4.3 Graph with properties instances

The first construction performed uses the recursive graph class, described in section
5.4.2. It adds freight to the nodes and edges of the recursive graph, and this freight is then
used to enable the nodes and edges of the recursive graph to have associated properties.
The instantiation of the recursive graph class to establish the graph with freight (and
hence the graph with properties) is shown in Figure 18.

CPath p

Cnode n p
CEdge e p

CRecursiveGraph rg n p

CPath p

CNodeFreight p
(GraphComponent p nf ef) p CEdge (EdgeFreight p ef) p

CRecursiveGraph (RecursiveDirectedGraph p nf ef
(NodeFreight p (GraphComponent p nf ef)
(EdgeFreight p ef) p

Figure 18: Recursive Directed Graph as an instance of the Recursive Graph

The recursive directed graph is the instance of the recursive graph that carries freight on
its nodes and edges. Because it is an instance of the recursive graph class, and because

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 23 of

the recursive graph class inherits (via the Haskell class constraint mechanism) from
Cnode and Cedge, the implies some requirements on the recursive directed graph
instance. In particular the node type of the recursive directed graph instance (NodeFreight
p (GraphComponent p nf ef)) must be an instance of Cnode. Furthermore, the edge type
of the recursive directed graph (EdgeFreight p ef) must be an instance of the edge class.
Figure 18 shows these requirements upon the recursive directed class instance.
The recursive directed graph is specialized to the Graph Property data structure, in which
the node freight and edge freight have been specialized to node properties and edge
properties, respectively. The node and edge properties both incorporate the type Prop,
which is the Programatica tool 0 type for program properties. The graph with properties
data structure is then made an instance of the separation class, as shown in Figure 19.

Eq cid

Containers cs c cid Component c

System cs c cid

Separation cs c cid

Eq p

System(GraphProperty p n np ep)
(NodeProperty n np) p

Separation(GraphProperty p n np ep)
(NodeProperty n np) p

Component n (NodeProperty n np)

Containers (GraphProperty p n np ep)
(NodeProperty n np) p

Figure 19: A graph with properties, as an instance of the Separation class

Because the graph with properties data structure is defined using the recursive graph class
(via the recursive directed graph instance), and using the separation class, it inherits from
both. This data structure has the hierarchical structure of the recursive graph, properties
carried by each node and edge in the recursive graph, and the separation property applied
to each node in the recursive graph. This data structure is rich enough to support
separation, krenz, and krenz assurance instances.

5.4.4 Krenz System instances

The krenz system is defined using the graph property data structure. The node property is
defined as a flag that determines if the node is a filter or not. If the node is a filter, then a
filter property is associated with the node. This achieves the abstraction described
informally in section 3.2. Because the Krenz is a version of the graph property data
structure, the Krenz, like the graph property data structure, becomes an instance of the
separation class. The fact that the Krenz system is an instance of the separation class
implies some other class / instance relationships, which are shown in Figure 20.

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 24 of

Eq cid

Containers cs c cid Component c

System cs c cid

Separation cs c cid

Eq p

System (KrenzSystem pn) n p

Separation (KrenzSystem p n) n p

Component n

Containers (KrenzSystem p n) n p

Figure 20: Krenz system as an instance of the separation class

5.4.5 Krenz Assurance Graph instances

The Krenz Assurance Graph is a slight modification to the Krenz System (section 5.4.4).
The Krenz system makes no use of the edge properties of the underlying recursive
directed graph. The Krenz Assurance Graph uses the edge freight to carry edge properties
in order to realize the abstraction described in section 3.3. The instantiation requirements
of the Krenz assurance graph are similar to those of the Krenz System. The requirements
for the Krenz assurance graph are shown in Figure 21.

Eq cid

Containers cs c cid Component c

System cs c cid

Separation cs c cid

Eq p

Separation
(KrenzAssuranceSystem p n) n p

Component n
Containers
(KrenzAssuranceSystem p n) n p

System (KrenzAssuranceSystem pn)
n p

Figure 21: Krenz Assurance System Instances

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 25 of

6 Topology (and the Enterprise Krenz)
This section describes (informally) the concept of topology that is layered on top of the
Separation and Krenz specifications. Section 6.1 describes the Grothendieck topology
concept in the context of the Separation specification, section 6.2 describes the
Grothendieck topology concept in the context of the Krenz specification, and section 6.4
describes the Grothendieck topology concept in the context of the Krenz assurance graph
specification.
The new Haskell source for the specification containing categories, sieves, and
Grothendieck topologies, is in section 0. The Haskell specification that makes the
recursive graph (and recursive graph homomorphims) an instance of the category class is
given in section 7.12.

6.1 Topology and pattern matching for the Separation specification
The first concept of topology for instances of the separation specification is shown in
Figure 22. There is an instance of separation (called the pattern), which consists of two
nodes (Node1 and Node2), and a single arrow between them. There is another instance of
separation (the target), which has three nodes, with several arrows between them.

Node1 Node2

Node3

Pattern

Node1 Node2

Target

Match!

Would cause no match

• Node n can match
collection of nodes
[m], together with the
edges between nodes
in [m]

• When n matches N,
and m matches M,
then the edge (n,m)
can match all the
edges from N to M

This matching tests the connectedness of
the pattern vs. the connectedness of the
target

 Figure 22: Separation / Subgraph Matching

Suppose the pattern of Figure 22 is a separation specification, and the target is the
configuration of several processes running on a separation kernel. Then the pattern
indicates that there are two domains, and communication is permitted to flow in one
direction from the domain represented by Node1 to the domain represented by Node2.
The target indicates that there are three processes, with the separation kernel permitting
interprocess communications as shown in the figure. With this interpretation, Figure 22
shows one way of grouping the processes such that they form an instance of the pattern
specification. If Node1 and Node2 of the target are grouped together to match Node1 of
the pattern, and Node3 of the target is used to match Node2 of the target, then the only
flows from the processes matching Node1 of the pattern are flowing to the process(es)
matching Node2 of the pattern. Thus there is a match based upon these choices. If the
dashed arrow is added to the target process configuration, then the choices made to not

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 26 of

constitute a match to the pattern. However, with the dashed line added, other choices can
be made, as shown in Figure 23. With these choices, mapping Node2 and Node3 of the
target to Node1 of the pattern, and Node1 of the target to Node2 of the pattern, then there
is once again a pattern match.

Node1

Node2

Node3

Pattern

Node1

Node2

Target

Match!

Figure 23: Retry on Separation pattern matching

These examples demonstrate that the pattern matching requires choices, and some of the
choices may result in a match, while other choices do not result in a match.
The basic notion of pattern matching here is that of an embedding of one instance of
separation into another instance of separation. A more general example is shown in
Figure 24, Here there are three instances of the separation specification, and embeddings
are shown from one instance (the pattern instance), to the second instance (the
intermediate instance), to the third instance (the target instance).

Node1

Node2

Node3

Pattern

Node1

Node2

Intermediate

Subcover

Node1

Node2

Node3

Node4

Cover

Target

Figure 24: Separation / Subgraph Site

The two embeddings of Figure 24 can be composed into another embedding, which is
shown in Figure 25. This demonstrates that the embeddings are mappings that can be

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 27 of

composed. The preserve structure in that the structure of the pattern still exists in the
target, via grouping of nodes and arrows in the target.

Pattern

Node1

Node2

Node1

Node2

Node3

Node4

Cover

Target

Figure 25: Composed embedding

6.2 The categorical framework for pattern matching (Separation)
There are two levels at which the concept of category might be applied:
 Intra-instance: Within an instance of separation, each node can be viewed as an

object in a category, while the connections between nodes can be viewed as
arrows in a category.

 Inter-instance: Each instance of separation is considered an object in the category,
and each homomorphism between instances is considered an arrow in the
category.

The first case (intra-instance) is not useful here. The arrow in the category represents the
relation “directly communicates”. The composition of two arrows may no longer
represent a “directly communicates” path supported by the underlying separation kernel.
The second case is what is described in section 6.1, and this is the basis for defining the
category Sep as follows:
 Objects: The objects are instances of the separation specification.
 Arrows: The arrows are homomorphisms between instances of separation.

With this definition of the category Sep, the machinery of a Grothendieck topology,
including sieves, sheaves, and hom sets, can be defined. This machinery is built up in the
Haskell file Category.hs (see section 0).

6.3 Topology and pattern matching for the Krenz specification

The concept of a Grothendieck topology can be defined for instances of the Krenz system
specification in the same way as it was defined for the separation specification (section
6.1). An example of pattern matching, in the same spirit as discussed in section 6.1 is
illustrated in Figure 26. In the pattern match attempt shown, Node1 of the target is

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 28 of

matched to Node1 of the pattern, Filter1, Filter2 and Filter4 of the target are matched to
Filter1 of the pattern, and Node2 and Node3 of the target are matched to Node2 of the
pattern. In this case, the match has failed, because Filter3 of the target is left unaccounted
for. In the pattern match attempt shown, there is no way to match the target to the pattern.
If Filter3 is deleted from the target, then the pattern match shown succeeds.

Node1

Node2

Node3

Filter1

Filter2

Filter3

Filter4

 Node n can match collection of
nodes [m], together with the edges
between nodes in [m]

 When n matches N, and m
matches M, then the edge (n,m)
can match all the edges from N to
M

 Node cannot match filter
 Filter f from n to m can match

sequence of filters F from N to M if
the I/O property of the sequence F
is stronger than (implies) the I/O
property of the filter f

 Filter f from n to m can match
several filters from N to M (same
restriction as above)

Pattern

Node1
Node2

Target

Filter1

No match!

Figure 26: Krenz System Matching

The embeddings of instances of Krenz system specification can be composed, as with
embeddings of instances of the separation specification. The second cover fails, but with
Filter3 of the target deleted, the second cover succeeds. Note that “cover” is a special
type of Krenz system homomorphism.

Node1

Node2Pattern

Node1

Node2

Target

Subcover
Cover

Filter1
Node1

Node2

Node3

Filter1

Filter2

Filter3

Filter4

Filter1 Filter2

Filter3

Cover fails

Figure 27: Krenz System Site

The composition of the two covers in Figure 27 is shown in Figure 28.

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 29 of

Pattern

Node1

Node2

Cover

Filter1

Node1

Node2

Node3

Filter1Filter2

Filter4

Target

Figure 28: Composed cover for a Krenz system

The Krenz specification is the basis for a category Krenz as follows:
 Objects: The objects are instances of the Krenz system specification.
 Arrows: The arrows are homomorphisms between instances of the Krenz system

specification.

6.4 Topology / pattern matching for Krenz assurance specification
The concept of pattern matching in a Krenz Assurance Graph (KAG) is defined in the
same spirit as the pattern matching in section 6.1 and section 6.2. The concepts of
embedding and composition of embeddings carries through as with the previous cases.

• Same rules as Krenz
with additions for the
assurance properties
(Pj)

Node1

Node2

Node3

Filter1

Filter2

Filter3

Filter4

Pattern

Node1
Node2

Target

Filter1

No match!

p6 p7

p6

p6

f1
^ p6

p2

p3

f2

f3

p8

Figure 29: Krenz Assurance Site

Based on the pattern matching concept shown in Figure 30, the category KAG can be
defined as follows:

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 30 of

 Objects: Instances of the Krenz assurance graph specification.
 Arrows: Homomorphisms (and the special cases of embeddings) between instance

of the Krenz assurance graph specification.
Structurally, the pattern match for Krenz assurance graphs shown in Figure 29 is the
same as the pattern match shown in Figure 26. The pattern match in the Krenz Assurance
Graph system carries with it additional requirements. These additional requirements are
discussed in 6.4.1.

6.4.1 Matching the assurance properties in the Krenz Assurance Graph

As shown in the previous examples, a node in the pattern may match several nodes in the
target, and an arrow in the pattern may match several arrows in the target. In the category
KAG, the arrows carry assurance properties, and there are requirements on the assurances
for a match between an arrow in the pattern and a group of arrows in the target. These
requirements are illustrated in Figure 30.

• If n  N and m M then
p  P only if P is stronger
the p, I.e. P => p

• If n  N and m M then
we must have P1 or … or Pn
=> p (the disjunction of the
refinements implies
assurance proposition

n m
p

N M
P

n m
p

N M

P1

P2

Figure 30: Refining an Assurance

The requirement is that the disjunction of the assurance requirements of the arrows in the
target must be at least as strong as the assurance requirement of the arrow in the pattern.
This requirement is stated more formally in Figure 31.

Krenz assurance matching property: P1 ∨ … ∨ Pn => p
Figure 31: Krenz assurance matching property

This means that when a Krenz assurance graph is refined, the properties assigned to the
arrows in the refined (more detailed) graph must be strong enough to imply the properties
in the unrefined (less detailed) graph.
A similar requirement applies to the filter properties in the Krenz assurance graph. This
additional requirment is depicted in Figure 32.

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 31 of

• Refinement
requirement: P and F
and Q => p and f and q

• Refinement
requirement: (P1 and F1
and Q1) or … or (Pn and
Fn and Qn) => (p and
f and q)

n m
p

N MP

f q

F Q

n m
p

N M
P1

f q

F1 Q1

FnPn Qn

Figure 32: Refining an Assurance and a Filter

This requirement takes into account not only the property associated with the filter, but
also the assurance properties associated with the arrows to and from the filter. The filter
is viewed as an intermediary between two nodes, and the total property seen between the
two nodes is the conjunction of the two arrow assurance properties with the filter
property. With this understanding of the “property of a filter”, the requirement on the
filters in the refinement is that the disjunction of the properties of the filters in the target
that refine a filter in the pattern must be at least as strong as the property of the filter in
the pattern. This requirement is stated more formally in Figure 33.

Krenz filter matching property: P1 ∨ … ∨ Pn => p
Figure 33: Krenz filter matching property

6.5 Axioms of a Grothendieck Topology
This section illustrates the definition of a Grothendieck topology. This section is based on
the PhD thesis of Srinivas (8). A Grothendieck topology (C, J) has the following two
components:
 Category C:
 Cover J: The function J assigns to each object a of C a set J(a) of sieves on a.

The elements R ∈ J(a) are called covers of a.
 The Grothendieck Topology satisfies the following three axioms:

 Identity cover: For every object a of C, the maximal sieve { f | cod(f) = a }∈ J
(a).

 Stability under change of base: If R ∈ J(a) and f : b → a is an arrow of C, then
the sieve f*(R) = { g : c → b | f ° g ∈ R } is in J(b). This axiom is illustrated by
Figure 34.

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 32 of

 Stability under refinement: If R ∈ J(a) and S is a sieve on a such that for each
arrow f : b → a in R, we have f*(S) ∈ J(b), then S ∈ J(a). This axiom is
illustrated by Figure 35.

Figure 34: Stability under a Change of Basis (from Srinivas Thesis [8])

Figure 35: Stability under Refinement (from Srinivas thesis [8])

7 Haskell Source
This section contains the Haskell source code for the current version of the specifications.
Each subsection of this section contains one Haskell source file. The files were compiled
using Programatica tool 0, which is a variant of Haskell 98.

7.1 Container.hs
module Container
 (

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 33 of

 Containers (select, isAssigned, addElem, deleteElem),
 AssignedNew,
 AssignedDelete
)
 where

import List

class (Eq cid) => Containers cs c cid | cs -> c, cs -> cid where
 select :: cs -> cid -> Maybe c
 isAssigned :: cs -> cid -> Bool
 -- Defined it using "case" to avoid requiring (Eq c)
 isAssigned cs cid =
 case select cs cid of
 Nothing -> False
 Just ida -> True
 addElem :: cs -> cid -> c -> cs
 deleteElem :: cs -> cid -> cs
 emptyCont :: cs
 elements :: cs -> [c]
 idelements :: cs -> [(cid,c)]

-- An assigned pid cannot be created again
property IsAssigned cs cid = (isAssigned cs cid) === True -- HACK HACK HACK
property AssignedNew =
 All cs cid c. IsAssigned cs cid ==> (addElem cs cid c === cs)

-- An unassigned pid cannot be deleted
property NotIsAssigned cs cid = not (isAssigned cs cid) === True -- HACK
property AssignedDelete =
 All cs cid. NotIsAssigned cs cid ==> deleteElem cs cid === cs

7.2 RecursiveContainer.hs
module RecursiveContainer
 (
 IdList,
 RecursiveContainer,
 Containers,
)
 where

import Container
import List

class (Containers cs c cid) => RecursiveContainer cs c cid where
 mkComplex :: cid -> [c] -> Maybe cs
 mkSimple :: [(cid,c)] -> cs
 isComplex :: cs -> Bool

7.3 System.hs
module System
 (
 Containers (..),
 Component (..),
 System (..)
)
 where

import Container

class Component c where
 stepComponent :: c -> c

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 34 of

 stopComponent :: c -> c
 startComponent :: () -> c

class (Component c, Containers cs c cid) => System cs c cid where
 startSystem :: cs
 -- Cannot inherit Process for ps CUZ step for ps requires the extra
 -- parameter. Is there a way we could do this with a property?
 stepSystem :: cid -> cs -> cs
 stepSystemN :: cs -> cid -> Int -> cs
 stepSystemN cs cid 0 = cs
 stepSystemN cs cid 1 = stepSystem cid cs
 stepSystemN cs cid (n+1) = stepSystem cid (stepSystemN cs cid n)
 stopSystem :: cs -> cs

-- Stepping a stopped system causes no change
property StopProp = All x. All y. stepSystem x (stopSystem y) === x

-- The fibration of the system
property Fiber = All cs. All cid. All c.
 select cs cid === Just c ==>
 select (stepSystem cid cs) cid === Just (stepComponent c)

7.4 Separation.hs
module Separation where

import System

class System cs c cid => Separation cs c cid where
 -- This generalizes the interaction matrix, so that each pair of
 -- processes can have their own predicate determining what is valid
 -- communication between them.
 interactionMatrix :: cs -> cid -> cid -> (cs -> cid -> cid -> Bool)

property FirstSeparation = All ps. All x. All y.
 select (stepSystem ps x) y =/= select ps y ==>
 ((interactionMatrix ps x y) ps x y === True)
property SecondSeparation =
 All ps. All x. All y.
 select (stepSystem ps x) y =/= select ps y ==>
 (Exists f.
 select (stepSystem ps x) y === f (select ps x) (select ps y))
-- NOTE: Second separation axiom can be stated without higher order.
-- property forall ps1 ps2.select (steps ps1 x) y /=
-- select (steps ps2 x) y ==>
-- (select ps1 x /= select ps2 x ||
-- select ps1 y /= select ps2 y)

7.5 Maybe2.hs
module Maybe2
 (
 foldrMaybe,
 composeMaybe
) where

foldrMaybe :: (a -> b -> Maybe b) -> b -> [a] -> Maybe b
foldrMaybe f z [] = Just z
foldrMaybe f z (a:as) =
 case foldrMaybe f z as of
 Nothing -> Nothing
 Just b -> f a b

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 35 of

composeMaybe :: (a -> Maybe b) -> (b -> Maybe c) -> (a -> Maybe c)
composeMaybe f g =
 \x -> case f x of
 Nothing -> Nothing
 Just y -> g y

7.6 GraphInductive.hs
module GraphInductive (
 RecursiveGraph (..),
 RecursiveContext (..),
 RecursiveNode (..),
 RecursiveEdge (..),
 listRecursiveNodes,
 listRecursiveEdges,
 NodeName,
 nodeName,
 nodeLabel,
 nullNodeName,
 matchNodeName,
 match,
 mapGraph,
 findEdge,
 flatten,
 deepen,
 insEdgeTo,
 insNode,
 insNodes
) where

import List
import Maybe2

--
-- Recursive graph, defined inductively
--
type NodeComponent = Integer
type NodeName = [NodeComponent]

-- Get the longest common prefix of two node names
commonPrefix :: NodeName -> NodeName -> NodeName
commonPrefix xs [] = []
commonPrefix [] ys = []
commonPrefix (x:xs) (y:ys) | x == y = x:(commonPrefix xs ys)
commonPrefix (x:xs) (y:ys) | x /= y = commonPrefix xs ys

-- Test if a node is a local node
isLocal :: NodeName -> Bool
isLocal nn = length nn == 1

nullNodeName = [] :: NodeName

data RecursiveNode a b =
 SimpleNode NodeName a |
 RecursiveNode NodeName (RecursiveGraph a b) a
 deriving (Eq)

instance (Show a, Show b) => Show (RecursiveNode a b) where
 show (SimpleNode nn a) = decorate ["(", ",", ")"] [show nn, show a]
 show (RecursiveNode nn sg a) =
 decorate ["(", ",", ",{{", "}})"] [show nn, show a, show sg]

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 36 of

nodeLabel :: RecursiveNode a b -> -- Node to access
 a -- Returned node label
nodeLabel (SimpleNode nn a) = a
nodeLabel (RecursiveNode nn subgraph a) = a

nodeName :: RecursiveNode a b -> -- Node to access
 NodeName -- Returned node name
nodeName (SimpleNode nn a) = nn
nodeName (RecursiveNode nn subgraph a) = nn

-- Make a node flatter
nodeUp :: RecursiveNode a b -> -- The node to deepen
 NodeName -> -- Additional node components
 RecursiveNode a b
nodeUp (SimpleNode nn a) up = SimpleNode (up ++ nn) a
nodeUp (RecursiveNode nn subgraph a) up = RecursiveNode (up ++ nn) subgraph a

-- Determine if a node is recursive
isRecursive :: RecursiveNode a b -> -- Node to query
 Bool -- True if recursive
isRecursive (SimpleNode _nn _a) = False
isRecursive (RecursiveNode _nn _sg _a) = True

-- Print some information with punctuation as decoration
decorate :: [String] -> [String] -> String
decorate punctuation xs | length punctuation == length xs =
 concat (zipWith (++) xs punctuation)
decorate punctuation xs | length punctuation == length xs + 1 =
 concat (zipWith (++) punctuation (xs ++ [""]))
decorate _ _ = error "decorate.punctuation length"

--
-- Recursive Edges
--
data RecursiveEdge b =
 RecursiveEdge
 {
 reSource :: NodeName,
 reUplink :: Int,
 reDownlink :: NodeName,
 reSink :: NodeName,
 reEdgeLabel :: b
 } deriving (Eq)

instance (Show b) => Show (RecursiveEdge b) where
 show (RecursiveEdge src up down sink label) =
 if up == 0
 then if null down
 then decorate ["<", ":", "-->", ">"]
 [show label, show src, show sink]
 else decorate ["<", ",", "-->", ">"]
 [show label, show src, show down, show sink]
 else if null down
 then decorate ["<", ",", "-->", ">"]
 [show label, show src, show up, show sink]
 else decorate ["<", ",", ",", "-->", ">"]
 [show label, show src, show up, show down,show sink]

--
-- A recursive context has a list of predecessor edges (added one
-- at a time), a list of successor edges (added one at a time),
-- and a node (added only once)

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 37 of

--
data RecursiveContext a b =
 RecursiveContext
 {
 rcPreds :: [RecursiveEdge b],
 rcNode :: RecursiveNode a b,
 rcSuccs :: [RecursiveEdge b]
 } deriving (Eq)

instance (Show a, Show b) => Show (RecursiveContext a b) where
 show (RecursiveContext preds node succs) =
 let outsuccs = concat (intersperse "," (map show succs))
 outpreds = concat (intersperse "," (map show preds))
 in if null preds
 then if null succs
 then decorate ["(-|", "|-)"] [show node]
 else "(-|" ++ show node ++ "|" ++ outsuccs ++ "-)"
 else if null succs
 then "(-" ++ outpreds ++ "|" ++ show node ++ "|-)"
 else "(-" ++ outpreds ++ "|" ++ show node ++
 "|" ++ outsuccs ++ "-)"

-- Get the list of edges in the context
contextEdges :: RecursiveContext a b -> -- Context to listify
 [RecursiveEdge b] -- Resulting list of edges
contextEdges (RecursiveContext preds node succs) = preds ++ succs

--
-- Finally, the recursive graph data type
--
data RecursiveGraph a b =
 EmptyRecursiveGraph |
 RecursiveGraph (RecursiveGraph a b) (RecursiveContext a b)
 deriving (Eq)

instance (Show a, Show b) => Show (RecursiveGraph a b) where
 show (EmptyRecursiveGraph) = "{G}"
 show (RecursiveGraph g cont) = show g ++ " &C " ++ show cont

-- A single step decomposition of a graph
type Decomp a b = (Maybe (RecursiveContext a b), RecursiveGraph a b)

-- An infix operator to extend a recursive graph
infixr &
c & g = RecursiveGraph g c

--
-- Operators on graphs, stolen and modified from Martin Erwig
--
-- Insert a node in its proper place in the hierarchy
insNode :: RecursiveNode a b -> -- Node to add
 RecursiveGraph a b -> -- Graph to be augmented
 Maybe (RecursiveGraph a b) -- Augmented graph
insNode n g = insNodeName (nodeLabel n) (nodeName n) g

-- This is an insert of a list of top level nodes, per Martin Erwig
insNodes :: [RecursiveNode a b] -> -- List of nodes to add
 RecursiveGraph a b -> -- Graph to be augmented
 Maybe (RecursiveGraph a b) -- Augmented graph
insNodes [] g = Just g
insNodes (n:ns) g =
 let mg = insNode n g

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 38 of

 in case mg of
 Nothing -> Nothing
 Just g -> insNodes ns g

-- This insert places a node identified by a node name in its
-- proper place in the graph
insNodeName :: a -> -- Label of new node
 NodeName -> -- Node to insert
 RecursiveGraph a b -> -- Graph to be augmented
 Maybe (RecursiveGraph a b) -- Augmented graph (maybe)
insNodeName a nn EmptyRecursiveGraph =
 Just (RecursiveGraph EmptyRecursiveGraph
 (RecursiveContext [] (SimpleNode nn a) []))
insNodeName a [] g = error "insNodeName.[]"
insNodeName a [n] g =
 Just (RecursiveGraph g (RecursiveContext [] (SimpleNode [n] a) []))
insNodeName a nn@(n:ns)
 rg@(RecursiveGraph g rc@(RecursiveContext preds node succs)) =
 case node of
 (SimpleNode nn' a') ->
 if (nn == nn')
 then error "insNodeName.conflict"
 else let mg' = insNodeName a nn g
 in case mg' of
 Nothing -> Nothing
 Just g' -> Just (RecursiveGraph g' rc)
 (RecursiveNode nn' subgraph a') ->
 if isPrefixOf nn' nn
 then let mg' = insNodeName a (drop (length nn') nn) subgraph
 in case mg' of
 Nothing -> Nothing
 Just g' ->
 Just (RecursiveGraph
 g
 (RecursiveContext
 preds
 (RecursiveNode nn' g' a')
 succs))
 else let mg' = insNodeName a nn g
 in case mg' of
 Nothing -> Nothing
 Just g' -> Just (RecursiveGraph g' rc)

insNodeNames :: (Show a, Show b) =>
 [(a, NodeName)] -> -- List of new nodes
 RecursiveGraph a b -> -- Graph to be augmented
 Maybe (RecursiveGraph a b) -- Augmented graph (maybe)
insNodeNames [] g = Just g
insNodeNames ((a, nn):anns) g =
 let mg' = insNodeName a nn g
 in case mg' of
 Nothing -> Nothing
 Just g' -> insNodeNames anns g'

--
-- Insert to edges in the recursive graph, given the sink of the
-- to edge
--
insEdgeTo :: (Show a, Show b) =>
 RecursiveEdge b -> -- Edge to insert
 RecursiveGraph a b -> -- Graph into which edge is inserted
 Maybe (RecursiveGraph a b) -- Resulting graph

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 39 of

insEdgeTo ret EmptyRecursiveGraph =
 error ("insEdgeTo.Empty: " ++ show ret ++ "\n")
insEdgeTo ret@(RecursiveEdge source up down sink b)
 rg@(RecursiveGraph g rc@(RecursiveContext preds node succs)) =
 let simplerec node nn = nodeName node == nn
 recrec node nn = isPrefixOf (nodeName node) nn
 newret = convertToDown ret
 simplemod g (RecursiveContext preds node succ) =
 RecursiveGraph g (RecursiveContext (newret:preds) node succs)
 recmod g newsubgraph (RecursiveContext preds node succ) =
 let newnode = RecursiveNode
 (nodeName node) newsubgraph (nodeLabel node)
 in RecursiveGraph g (RecursiveContext preds newnode succs)
 in match rg sink sink simplerec simplemod recrec recmod

insEdgesTo :: (Show a, Show b) =>
 [RecursiveEdge b] -> -- Edges to insert
 RecursiveGraph a b -> -- Graph into which edges are inserted
 Maybe (RecursiveGraph a b) -- Resulting graph
insEdgesTo edges g = foldrMaybe insEdgeTo g edges

--
-- Insert from edges in the recursive graph, given the sink of the
-- from edge
--
insEdgeFrom :: (Show a, Show b) =>
 RecursiveEdge b -> -- Edge to insert
 RecursiveGraph a b -> -- Graph into which edge is inserted
 Maybe (RecursiveGraph a b) -- Resulting graph
insEdgeFrom ref EmptyRecursiveGraph =
 error ("insEdgeFrom.Empty: " ++ show ref ++ "\n")
insEdgeFrom ref@(RecursiveEdge source up down sink b)
 rg@(RecursiveGraph g rc@(RecursiveContext preds node succs)) =
 let simplerec node nn = nodeName node == nn
 recrec node nn = isPrefixOf (nodeName node) nn
 newref = convertFromDown ref
 simplemod g (RecursiveContext preds node succ) =
 RecursiveGraph g (RecursiveContext preds node (newref:succs))
 recmod g newsubgraph (RecursiveContext preds node succ) =
 let newnode = RecursiveNode
 (nodeName node) newsubgraph (nodeLabel node)
 in RecursiveGraph g (RecursiveContext preds newnode succs)
 in match rg source source simplerec simplemod recrec recmod
-- ((RecursiveEdgeFrom up down sink b):succs)))

insEdgesFrom :: (Show a, Show b) =>
 [RecursiveEdge b] -> -- Edges to insert
 RecursiveGraph a b -> -- Graph into which edges are inserted
 Maybe (RecursiveGraph a b) -- Resulting graph
insEdgesFrom edges g = foldrMaybe insEdgeFrom g edges

--
-- Insert an entire context into its proper place in the graph
-- (not just an append)
--
insContext :: (Show a, Show b) =>
 RecursiveContext a b -> -- Context to insert
 RecursiveGraph a b -> -- Graph to be augmented
 Maybe (RecursiveGraph a b) -- Resulting graph
insContext (RecursiveContext preds node succs) g =
 let mg1 = insNode node g
 in case mg1 of

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 40 of

 Nothing -> Nothing
 Just g1 ->
 let mg2 = insEdgesTo preds g1
 in case mg2 of
 Nothing -> Nothing
 Just g2 -> insEdgesFrom succs g2

--
-- Graph matching, and other decomposition operators
--
-- Decompose a graph, taking out the context that introcudes the node
-- with the specified name and label, be it a simple or a recursive node
matchNodeName :: NodeName -> -- node name to look for
 RecursiveGraph a b -> -- Graph to search
 Decomp a b -- Decomposition of the graph
matchNodeName nn EmptyRecursiveGraph = (Nothing, EmptyRecursiveGraph)
matchNodeName nn rg@(RecursiveGraph g rc@(RecursiveContext preds node succs)) =
 if nodeName node == nn
 then (Just rc, g)
 else case node of
 SimpleNode nn' a ->
 let (mcont, g') = matchNodeName nn g
 in case mcont of
 Nothing -> (Nothing, rg)
 Just cont -> (Just cont, RecursiveGraph g' rc)
 RecursiveNode nn' subgraph a ->
 if null (tail nn)
 then (Nothing, rg)
 else let (mcont', g') = matchNodeName (tail nn) subgraph
 in case mcont' of
 Nothing ->
 let (mcont'', g'') = matchNodeName nn g
 in case mcont'' of
 Nothing -> (Nothing, rg)
 Just cont'' ->
 (Just cont'', RecursiveGraph g'' rc)
 Just cont' ->
 (Just cont',
 RecursiveGraph g (RecursiveContext
 preds
 (RecursiveNode nn' g' a)
 succs))

-- Define an operator that will identify a context (possibly
-- deeply buried within the graph, and mdofify it in place,
-- according to the modifier specified.
match :: RecursiveGraph a b -> -- Graph to search and modify
 NodeName -> -- Node name to look for
 NodeName -> -- Node name preserved during recursion
 -- Simple node recognizer
 (RecursiveNode a b ->
 NodeName ->
 Bool) ->
 -- Simple node modifier:
 (RecursiveGraph a b ->
 RecursiveContext a b ->
 RecursiveGraph a b) ->
 -- Recursive node recognizer
 (RecursiveNode a b ->
 NodeName ->
 Bool) ->
 -- Recursive node modifier:

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 41 of

 (RecursiveGraph a b ->
 RecursiveGraph a b ->
 RecursiveContext a b ->
 RecursiveGraph a b) ->
 Maybe (RecursiveGraph a b)
match EmptyRecursiveGraph nnlocal nnglobal simplerec simplemod recrec recmod =
 error "match.empty"
match rg@(RecursiveGraph g rc@(RecursiveContext preds node succs))
 nnlocal nnglobal simplerec simplemod recrec recmod =
 case node of
 (SimpleNode nn a) ->
 if simplerec node nnlocal
 then Just (simplemod g rc)
 else let mg = match g nnlocal
 nnglobal simplerec
 simplemod recrec recmod
 in case mg of
 Nothing -> Nothing
 Just g -> Just (RecursiveGraph g rc)
 (RecursiveNode nn subgraph a) ->
 if recrec node nnlocal
 then let mnewsubgraph =
 match subgraph (drop (length nn) nnlocal) nnglobal
 simplerec simplemod recrec recmod
 in case mnewsubgraph of
 Nothing -> Nothing
 Just newsubgraph -> Just (recmod g newsubgraph rc)
 else let mg = match g nnlocal
 nnglobal simplerec
 simplemod recrec recmod
 in case mg of
 Nothing -> Nothing
 Just g -> Just (RecursiveGraph g rc)

--
-- Analyzers for recursive graphs
--

findEdge :: RecursiveGraph a b -> -- Graph to search
 NodeName -> -- Source of edge to search for
 NodeName -> -- Sink of edge to search for
 Bool
findEdge g source sink =
 let (mcont, g) = matchNodeName source g
 findSink :: [RecursiveEdge b] -> Bool
 findSink [] = False
 findSink (e:es) = (reSink e == sink) || (findSink es)
 findSource :: [RecursiveEdge b] -> Bool
 findSource [] = False
 findSource (e:es) = (reSource e == source) || (findSource es)
 in case mcont of
 Nothing -> False
 Just cont ->
 let (mcont', g') = matchNodeName sink g
 in case mcont' of
 Nothing -> False
 Just cont' -> findSink (rcSuccs cont) ||
 findSource (rcPreds cont')

--
-- Graph algorithms specifically for a recursive graph
--

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 42 of

-- Produce the list of top level nodes (simple or recursive)
-- that make up a graph
listRecursiveNodes :: RecursiveGraph a b -> -- Recursive graph to listify
 [RecursiveNode a b] -- list of nodes in the graph
listRecursiveNodes EmptyRecursiveGraph = []
listRecursiveNodes (RecursiveGraph g cont) =
 (rcNode cont):(listRecursiveNodes g)

-- Produce the list of top level edges in the graph
listRecursiveEdges :: RecursiveGraph a b -> -- Recursive graph to listify
 [RecursiveEdge b] -- list of edges in the graph
listRecursiveEdges EmptyRecursiveGraph = []
listRecursiveEdges
 (RecursiveGraph g cont@(RecursiveContext preds node succs)) =
 listRecursiveEdges g ++
 case node of
 (SimpleNode nn a) -> contextEdges cont
 (RecursiveNode nn sg a) -> contextEdges cont ++ (listRecursiveEdges sg)

-- Flatten a graph into a single level graph, but with the
-- recursive information stored up in the node names and edge names
flatten :: NodeName -> -- Node name at next higher level
 RecursiveGraph a b -> -- Graph to flatten
 RecursiveGraph a b -- Flattened graph
flatten upnn EmptyRecursiveGraph = EmptyRecursiveGraph
flatten upnn (RecursiveGraph g (RecursiveContext preds node succs)) =
 let newpreds = map (convertToUp upnn) preds
 newsuccs = map (convertFromUp upnn) succs
 newnode = nodeUp node upnn
 in case node of
 (SimpleNode nn a) ->
 RecursiveGraph (flatten upnn g)
 (RecursiveContext newpreds newnode newsuccs)
 (RecursiveNode nn subgraph a) ->
 -- A crucial property is that the empty recursive node
 -- should be inserted before any of its subnodes or edges
 let emptynode = (RecursiveContext
 newpreds
 (RecursiveNode nn EmptyRecursiveGraph a)
 newsuccs)
 in merge (RecursiveGraph
 (flatten upnn g)
 emptynode)
 (flatten nn subgraph)

-- Deepen a flattened graph, restoring its recursive structure.
-- Assume that nodes are sorted, with prefix always preceding a
-- node with a name that is an extension of the prefix
-- NEED flatten to establish this, or need function to sort the
-- flattened graph
deepen :: (Show a, Show b) =>
 RecursiveGraph a b -> -- Graph to deepend
 Maybe (RecursiveGraph a b) -- Resulting deepened graph
deepen EmptyRecursiveGraph = Just EmptyRecursiveGraph
deepen (RecursiveGraph g rc@(RecursiveContext preds node succs)) =
 let mdeeper = deepen g
 in case mdeeper of
 Nothing -> Nothing
 Just deeper ->
 case node of
 (SimpleNode nn a) ->
 insContext (RecursiveContext preds node succs) deeper

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 43 of

 (RecursiveNode nn subgraph a) ->
 let msg = deepen subgraph
 in case msg of
 Nothing -> Nothing
 Just sg ->
 Just (RecursiveGraph
 deeper
 (RecursiveContext
 preds
 (RecursiveNode nn sg a)
 succs))

-- Convert a node with ups and downs in a recursive graph to a node
-- with complex source and sink but no ups and downs for a flattened
-- graph
convertToDown :: RecursiveEdge b -> -- Edge to convert
 RecursiveEdge b -- Converted list of edges
convertToDown ret@(RecursiveEdge source ups downs sink b) =
 let cp = commonPrefix source sink
 ups = length source - length cp - 1
 in if ups == 0
 then if null cp
 then RecursiveEdge [last source] 0 (init sink) [last sink] b
 else RecursiveEdge [last source] 0 [] [last sink] b
 else RecursiveEdge source ups (cp ++ (init sink)) [last sink] b

convertFromDown:: RecursiveEdge b -> -- Edge to convert
 RecursiveEdge b -- Converted list of edges
convertFromDown ref@(RecursiveEdge source ups downs sink b) =
 let cp = commonPrefix source sink
 ups = length source - length cp - 1
 in if ups == 0
 then if null cp
 then RecursiveEdge [last source] 0 (init sink) [last sink] b
 else RecursiveEdge [last source] 0 [] [last sink] b
 else RecursiveEdge [last source] ups (init sink) [last sink] b

-- Convert a node with ups and downs in a recursive graph to a node
-- with complex source and sink but no ups and downs for a flattened
-- graph
convertToUp :: NodeName -> -- Context in which to convert up
 RecursiveEdge b -> -- Edge to convert
 RecursiveEdge b -- Converted list of edges
convertToUp nn (RecursiveEdge source ups downs sink b) =
 if isLocal source
 then if null downs
 then RecursiveEdge (nn ++ source) 0 [] (nn ++ sink) b
 else RecursiveEdge source 0 [] (downs ++ sink) b
 else RecursiveEdge source 0 [] (downs ++ sink) b

convertFromUp :: NodeName -> -- Context in which to convert up
 RecursiveEdge b -> -- Edge to convert
 RecursiveEdge b -- Converted list of edges
convertFromUp nn (RecursiveEdge source up downs sink b) =
 if isLocal sink
 then if null downs
 then RecursiveEdge (nn ++ source) 0 [] (nn ++ sink) b
 else RecursiveEdge source 0 [] (downs ++ sink) b
 else RecursiveEdge (nn ++ source) 0 [] sink b

-- Merge two graphs, assuming that sll the nodes of one can be
-- merged into the other.

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 44 of

merge :: RecursiveGraph a b -> -- First graph to merge
 RecursiveGraph a b -> -- Second graph to merge
 RecursiveGraph a b -- The merged graph
merge g EmptyRecursiveGraph = g
merge g (RecursiveGraph h c) = RecursiveGraph (merge g h) c

--
-- maps and folds
--

mapGraph :: (a -> a) ->
 RecursiveGraph a b ->
 RecursiveGraph a b
mapGraph f EmptyRecursiveGraph = EmptyRecursiveGraph
mapGraph f (RecursiveGraph g (RecursiveContext preds node succs)) =
 case node of
 (SimpleNode nn a) ->
 RecursiveGraph
 (mapGraph f g)
 (RecursiveContext preds (SimpleNode nn (f a)) succs)
 (RecursiveNode nn sg a) ->
 RecursiveGraph
 (mapGraph f g)
 (RecursiveContext
 preds
 (RecursiveNode nn (mapGraph f sg) (f a))
 succs)

7.7 GraphFlat.hs
module GraphFlat
 (
 module GraphInductive,
 FlatGraph (..),
 flat2Recursive
) where

import GraphInductive

--
-- Some utilities that make it easier to test the recursive graph
-- data structure. In particular, it is nice to input and output
-- the graph in a traditional list of vertices and edges format.
--

data FlatGraph a b =
 FlatGraph
 {
 fgNodes :: [(NodeName, a)],
 fgEdges :: [(NodeName, NodeName, b)]
 }

thd :: (a, b, c) -> c
thd (a, b, c) = c

instance (Show a, Show b) => Show (FlatGraph a b) where
 show (FlatGraph nodes edges) =
 let showedge :: (Show b) => b -> String -> String
 showedge b s = if null s
 then show b
 else show b ++ ", " ++ s
 shownode :: (Show b) => b -> String -> String

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 45 of

 shownode a s = if null s
 then show a
 else show a ++ ", " ++ s
 in "{ " ++ "[" ++ foldr shownode "" (map snd nodes) ++ "]" ++ " // " ++
 "[" ++ foldr showedge "" (map thd edges) ++ "]" ++ " }"

flat2Recursive :: -- Convert a flat graph to a recusive graph
 (Show a, Show b, Eq b) =>
 FlatGraph a b -> -- The flat graph to convert
 RecursiveGraph a b -- The resulting recursive graph
flat2Recursive (FlatGraph nodes edges) =
 let maddnodes =
 insNodes (map (uncurry SimpleNode) nodes) EmptyRecursiveGraph
 makeEdgeTo :: (Show a, Show b, Eq b) =>
 (NodeName, NodeName, b) ->
 RecursiveGraph a b ->
 Maybe (RecursiveGraph a b)
 makeEdgeTo (src, snk, b) g =
 insEdgeTo (RecursiveEdge src 0 [] snk b) g
 in case maddnodes of
 Nothing -> error "flat2Recursive.addnodes"
 Just addnodes ->
 case foldrMaybe makeEdgeTo addnodes edges of
 Nothing -> error "flat2Recursive.addeges"
 Just g -> g

foldrMaybe :: (a -> b -> Maybe b) -> b -> [a] -> Maybe b
foldrMaybe f z [] = Just z
foldrMaybe f z (a:as) =
 case foldrMaybe f z as of
 Nothing -> Nothing
 Just b -> f a b

7.8 GraphSystem.hs
module GraphSystem where

import GraphFlat
import List
import System
import Separation

--
-- System Instances
--
instance Containers (RecursiveGraph a b) (RecursiveNode a b) NodeName where
 select g nn =
 let (mcont, g') = matchNodeName nn g
 in fmap rcNode mcont
 -- The node name nn should be the same as the name of the node
 addElem g nn node =
 let mg' = insNode node g
 in case mg' of
 Nothing -> g
 Just g' -> g'
 deleteElem g nn =
 let (mcont, g') = matchNodeName nn g
 in case mcont of
 Nothing -> g
 Just cont -> g'
 emptyCont = EmptyRecursiveGraph
 elements = listRecursiveNodes
 idelements g = zip (map nodeName nodes) nodes

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 46 of

 where nodes = listRecursiveNodes g

instance (Component a) => Component (RecursiveNode a b) where
 stepComponent (SimpleNode nn a) = SimpleNode nn (stepComponent a)
 stepComponent (RecursiveNode nn sg a) =
 RecursiveNode nn sg (stepComponent a)
 stopComponent (SimpleNode nn a) = SimpleNode nn (stopComponent a)
 stopComponent (RecursiveNode nn sg a) =
 RecursiveNode nn sg (stopComponent a)
 startComponent () = SimpleNode nullNodeName (startComponent ())

instance (Component a) =>
 System (RecursiveGraph a b) (RecursiveNode a b) NodeName where
 startSystem = EmptyRecursiveGraph
 stepSystem nn g =
 let simplerec node nn = nodeName node == nn
 simplemod g (RecursiveContext preds node succs) =
 RecursiveGraph
 g
 (RecursiveContext
 preds
 (SimpleNode (nodeName node) (stepComponent (nodeLabel node)))
 succs)
 recrec node nn = isPrefixOf (nodeName node) nn
 recmod g sg (RecursiveContext preds node succs) =
 RecursiveGraph
 g
 (RecursiveContext
 preds
 (RecursiveNode
 (nodeName node)
 sg
 (stepComponent (nodeLabel node)))
 succs)
 mg' = match g nn nn simplerec simplemod recrec recmod
 in case mg' of
 Nothing -> g
 Just g' -> g'
 stopSystem g = mapGraph stopComponent g

--
-- System Instances
--
instance (Component a) =>
 Separation (RecursiveGraph a b) (RecursiveNode a b) NodeName where
 interactionMatrix g nn1 nn2 =
 if findEdge g nn1 nn2
 then \g' nn1' nn2' -> True -- Can model communication protocol here
 else \g' nn1' nn2' -> False

7.9 KrenzSystem.hs
module KrenzSystem
 (
 KrenzSystem,
 KrenzFilterProperty
) where

import GraphInductive
import GraphSystem
import Container
import System
import Separation

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 47 of

data KrenzFilterProperty b =
 KrenzFilterProperty
 {
 kfpOther :: b, -- Other edge freight
 kfpFilter :: Prop -- Filter Property
 }

type KrenzSystem a b = RecursiveGraph a (KrenzFilterProperty b)

instance Containers (KrenzSystem a b)
 (RecursiveNode a (KrenzFilterProperty b)) NodeName

instance (Component a) => Component (RecursiveNode a (KrenzFilterProperty b))

instance (Component a) =>
 System (KrenzSystem a b)
 (RecursiveNode a (KrenzFilterProperty b)) NodeName

instance (Component a) =>
 Separation (KrenzSystem a b)
 (RecursiveNode a (KrenzFilterProperty b)) NodeName

7.10 KrenzAssuranceGraph.hs
module KrenzAssuranceSystem where

import KrenzSystem
import GraphInductive
import System
import Separation

-- The other freigth is also Prop
type KrenzAssuranceSystem a = KrenzSystem a Prop

instance Containers (KrenzAssuranceSystem a)
 (RecursiveNode a (KrenzFilterProperty Prop)) NodeName

instance (Component a) =>
 Component (RecursiveNode a (KrenzFilterProperty Prop))

instance (Component a) =>
 System (KrenzAssuranceSystem a)
 (RecursiveNode a (KrenzFilterProperty Prop)) NodeName

instance (Component a) =>
 Separation (KrenzAssuranceSystem a)
 (RecursiveNode a (KrenzFilterProperty Prop)) NodeName

7.11 Category.hs
module Category where

import Prelude hiding (product, Functor)
import Monad hiding (Functor)
import EdisonPrelude
import qualified Collection as C
import Maybe

--
-- The categories defined here use the underlying set concept from
-- The edision "set" has constructors "empty" and "insert". This
-- means that the sets modelled are constructive sets, not general
-- sets. The category class below thus uses a constructive set of

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 48 of

-- objects and a constructive set of arrows. This permits
-- the definition of constructors for the categories, and puts
-- in the domain of "constructive category theory". No need anymore
-- for distinctions such as "locally small".
--
-- The definitions and properties are based on the thesis of
-- Yellamraju Venkata Srinivas, titled "Pattern Matching: A
-- Sheaf Theoretic Approach", published in 1991. I have also
-- used the references "Categories for the working Mathematician"
-- by Saunders MacLane, and "Categories" by T. S. Blyth, and
-- "Toposes, Triples, and Theories" by Michael Barr and
-- Charles Wells
--

class (C.Set s o, C.Set s a) => Category c s o a where
 -- Analyzers
 dom :: c s o a -> a -> o
 cod :: c s o a -> a -> o
 catId :: c s o a -> o -> a
 compose :: c s o a -> a -> a -> Maybe a
 -- Constructors for a category
 emptyCat :: c s o a
 mkCat :: s o -> -- Set of objects
 s a -> -- Set of arrows
 (a -> o) -> -- Dom
 (a -> o) -> -- Cod
 c s o a
 -- Destructors for a category
 objects :: c s o a -> s o
 arrows :: c s o a -> s a
 -- build the hom sets right into the definition of a category
 morphisms :: c s o a -> o -> o -> s a
 morphisms c src snk =
 C.filter (\a -> dom c a == src && cod c a == snk) (arrows c)

compose' :: (Category c s o a) => c s o a -> a -> a -> a
compose' c a1 a2 = fromJust (compose c a1 a2)
composable :: (Category c s o a) => c s o a -> a -> a -> Bool
composable c f g = dom c f == cod c g

-- Composition is associative
property Assoc c = All f g h.
 (compose' c f (compose' c g h)) === (compose' c (compose' c f g) h)
-- Two arrows are composable iff the compose function does not
-- return Nothing
property Composition c = All f g.
 lift (((compose c f g) /= Nothing) == composable c f g)
-- The identify laws, left and right
property Identity c = All f.
 compose' c (catId c (dom c f)) f === f /\
 compose' c f (catId c (dom c f)) === f
-- The domain and codomain of the identity arrow on an object are the
-- object itself
property IdArrow c = All o.
 dom c (catId c o) === o /\
 cod c (catId c o) === o

--
-- The opposite of a category
--

-- The domain and codomain functions have been interchanged, thus

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 49 of

-- the opposite of a category is the same category with all the
-- arrows reversed.
opposite :: (Category c s o a) => c s o a -> c s o a
opposite c =
 let os = objects c
 as = arrows c
 domop = dom c
 codop = cod c
 in mkCat os as codop domop

--
-- Product of two categories
--

instance (C.CollX s x, C.CollX s y) => C.CollX s (x,y)
instance (C.Coll s x, C.Coll s y) => C.Coll s (x,y)
instance (C.SetX s x, C.SetX s y) => C.SetX s (x,y)
instance (C.Set s x, C.Set s y) => C.Set s (x,y)

makepairs :: (C.Set s x, C.Set s y) => s x -> s y -> s (x, y)
makepairs sx sy = C.fromList [(x,y) | x <- C.toList sx, y <- C.toList sy]

product ::
 (Category c s o a, Category c s o' a', Category c s (o, o') (a, a')) =>
 c s o a -> c s o' a' -> c s (o, o') (a, a')
product c c' = mkCat pos pas pdom pcod
 where pos = makepairs (objects c) (objects c')
 pas = makepairs (arrows c) (arrows c')
 pdom (a, a') = (dom c a, dom c' a')
 pcod (a, a') = (cod c a, cod c' a')

-- The product of two Id arrows is an Id arrow
property ProductId c c' = All o o'.
 catId (product c c') (o, o') === (catId c o, catId c o')

--
-- Functors
--

class (Category c s o a, Category c s o' a') => Functor f c s o a o' a' where
 -- Destructors
 objectmap :: f c s o a o' a' -> o -> o'
 arrowmap :: f c s o a o' a' -> a -> a'
 -- Constructor
 mkFunctor :: (o -> o') -> (a -> a') -> f c s o a o' a'

property FunctorId c f c' = All o a.
 catId c' (objectmap f o) === (arrowmap f (catId c o))
property FunctorArrow c f c' = All a.
 dom c (arrowmap f a) === objectmap f (dom c a)
property FunctorComposable c f c' =
 All h k. lift (composable c h k) ==>
 lift (composable c (arrowmap f h) (arrowmap f k))
property FunctorCompose c f c' = All h k.
 compose' c (arrowmap f h) (arrowmap f k) === arrowmap f (compose' c h k)

--
-- The Hom Set functor
--

data (C.Set s a) => HomSet s o a = MkHomSet
 {

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 50 of

 homdom :: o,
 homcod :: o,
 homset :: s a
 } deriving (Eq)

instance (Eq (HomSet s o a), C.Set s a) => C.CollX s (HomSet s o a)
instance (Eq (HomSet s o a), C.Set s a) => C.Coll s (HomSet s o a)
instance (Eq (HomSet s o a), C.Set s a) => C.SetX s (HomSet s o a)
instance (Eq (HomSet s o a), C.Set s a) => C.Set s (HomSet s o a)
instance (Eq (HomArrow s o a), C.Set s a) => C.CollX s (HomArrow s o a)
instance (Eq (HomArrow s o a), C.Set s a) => C.Coll s (HomArrow s o a)
instance (Eq (HomArrow s o a), C.Set s a) => C.SetX s (HomArrow s o a)
instance (Eq (HomArrow s o a), C.Set s a) => C.Set s (HomArrow s o a)

--
-- The hom category, a subcategory of Set, produced from the
-- objects and arrows of another category.
--

data (C.Set s a) => HomArrow s o a = MkHomArrow
 {
 homardom :: HomSet s o a,
 homarcod :: HomSet s o a,
 homarrul :: s a -> s a
 }

homsetof :: (Category c s o a) => c s o a -> o -> o -> HomSet s o a
homsetof c src snk = MkHomSet src snk (morphisms c src snk)

homarrowof :: (Category c s o a) => c s o a -> (a, a) -> HomArrow s o a
homarrowof c (f, g) =
 MkHomArrow (homsetof c (dom c f) (dom c g))
 (homsetof c (cod c f) (cod c g))
 (\x -> (C.fromList
 (map (\e -> compose' c f (compose' c e g))
 (C.toList x))))

homarid :: (Category c s o a) => c s o a -> HomSet s o a -> HomArrow s o a
homarid c homset = MkHomArrow homset homset id

homcompose :: (Eq (s a),Category c s o a) =>
 c s o a -> HomArrow s o a -> HomArrow s o a ->
 Maybe (HomArrow s o a)
homcompose c (MkHomArrow src1 snk1 r1) (MkHomArrow src2 snk2 r2) =
 if (snk1 == src2)
 then Just (MkHomArrow src1 snk2 (r2 . r1))
 else Nothing

homop :: (C.Set s a) => HomArrow s o a -> HomArrow s o a
homop (MkHomArrow src snk r) = MkHomArrow snk src r

instance (Eq (HomSet s o a), Eq (HomArrow s o a), Category c s o a) =>
 Category c s (HomSet s o a) (HomArrow s o a)

-- Produce the category of hom sets and arrows
sets :: (Eq (s a), Eq (HomArrow s o a), Category c s o a) =>
 c s o a -> c s (HomSet s o a) (HomArrow s o a)
sets c = let
 pos = makepairs (objects c) (objects c)
 pas = makepairs (arrows c) (arrows c)
 setobs = C.fromList (map (genhomset c) (C.toList pos))
 genhomset :: (Category c s o a) =>

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 51 of

 c s o a -> (o, o) -> HomSet s o a
 genhomset c (o1, o2) = MkHomSet o1 o2 (morphisms c o1 o2)
 setars = C.fromList (map (genhomarr c) (C.toList pas))
 genhomarr :: (Category c s o a) =>
 c s o a -> (a, a) -> HomArrow s o a
 genhomarr c (f, g) =
 MkHomArrow (genhomset c (dom c f, dom c g))
 (genhomset c (cod c f, cod c g))
 (\x -> C.fromList
 (map (\a -> (compose' c f (compose' c a g)))
 (C.toList x)))
 in mkCat setobs setars homardom homarcod

--
-- The hom set functor.
--

homsetfunctor ::
 (Category c s o a, Category c s (o, o) (a, a),
 Functor f c s (o, o) (a, a) (HomSet s o a) (HomArrow s o a)) =>
 c s o a -> f c s (o, o) (a, a) (HomSet s o a) (HomArrow s o a)
homsetfunctor c =
 let cop = opposite c
 copxc = product cop c
 in mkFunctor (uncurry (homsetof c)) (homarrowof c)

--
-- The contravariant Hom Functor, which is the hom set functor on
-- the first argument only. The second argument is fixed at some
-- object of the category
--

contravarianthomobjs :: (Category c s o a) => c s o a -> o -> o -> HomSet s o a
contravarianthomobjs c o' o = MkHomSet o o' (morphisms c o o')

contravarianthomarrows :: (Category c s o a) =>
 c s o a -> o -> a -> HomArrow s o a
contravarianthomarrows c o' a = (curry (homarrowof c)) (catId c o') a

contravarianthom ::
 (Category c s o a, Category c s (o, o) (a, a),
 Functor f c s o a (HomSet s o a) (HomArrow s o a)) =>
 c s o a -> o -> f c s o a (HomSet s o a) (HomArrow s o a)
contravarianthom c o' =
 let cop = opposite c
 in mkFunctor (contravarianthomobjs cop o') (contravarianthomarrows cop o')

--
-- Seives.
-- A sieve is a collection of arrows, with common
-- codomain, closed under right composition.
--

-- Given a category, and an object (the common codomain), make a sieve
-- out of a set of arrows (the set is currently represented by a list)
class (Category c s o a) => Sieve c s o a where
 isSieve :: c s o a -> s a -> o -> Bool
 allSieves :: c s o a -> o -> s (s a)

-- Now specify the Sieve properties using the Programatica properties
property CommonCodomain c e = All f g o.
 lift (isSieve c e o) ==> (lift (C.member e f) /\ lift (C.member e f)) ==>

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 52 of

 (cod c f === cod c g)
property RightComposition c e = All f g o.
 lift (isSieve c e o) /\ lift (C.member e f) /\ lift (composable c f g) ==>
 lift (C.member e (compose' c f g))
-- Any sieve on an object is an element of (Sieves o a)
property AllSieves c = All o as.
 lift (isSieve c as o) ==> lift (C.member (allSieves c o) as)

--
-- Sieve as a subfunctor of the contravariant Hom Functor
-- "Subfunctor" is a bit of a misnomer here. As far as I can tell,
-- there is no formal concept of subfunctor. What is meant is
-- that the value of the sieve functor, at any object o, is a
-- subset of the value of the contravariant hom functor on o
--

sievehomobjs :: (Sieve c s o a) => c s o a -> s a -> o -> o -> HomSet s o a
sievehomobjs c s o' o = MkHomSet o o' (C.intersect (morphisms c o o') s)

sievehomarrows :: (Category c s o a) => c s o a -> o -> a -> HomArrow s o a
sievehomarrows = contravarianthomarrows

sievefunctor ::
 (Sieve c s o a, Functor f c s o a (HomSet s o a) (HomArrow s o a)) =>
 c s o a -> s a -> o -> f c s o a (HomSet s o a) (HomArrow s o a)
sievefunctor c s o =
 let cop = opposite c
 in mkFunctor (sievehomobjs cop s o) (sievehomarrows cop o)

--
-- Grothendieck topology
-- The properties here are somewhat difficult, so it is necessary
-- to refer to the thesis of Srinivas (or to some other reference
-- on sheaf theory, such as MacLane and Moerdick)
--

class (Sieve c s o a) => GrothendieckTopology c s o a where
 j :: c s o a -> o -> s a

property JYieldsSieves c j = All o. lift (isSieve c (j c o) o)

-- The maximal sieve contains all arrows with codomain o
maximalSieve :: (Category c s o a) => c s o a -> o -> s a
maximalSieve c o = C.filter (\f -> cod c f == o) (arrows c)

-- The maximal sieve is a cover
property IdentityCover j = All gt o.
 lift (C.member (j gt o) (maximalSieve gt o))

-- Stability of covers under a change of base
property StabilityUnderChangeOfBase j gt = All r o.
 lift (C.member (j gt o) r) ==>
 (All f. lift (C.member (j gt o) ((star gt f) r)))

star :: (GrothendieckTopology c s o a) => c s o a -> a -> s a -> s a
star c f r | isSieve c r (cod c f) =
 C.filter (\g -> C.member r (compose' c f g)) (maximalSieve c (dom c f))

-- Stability of covers under refinement
property StabilityUnderRefinement gt j = All r s o f.
 lift (C.member (j gt o) r) /\
 lift (not (null (allSieves gt o))) /\

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 53 of

 (All f s. lift (C.member r f)) /\
 lift (C.member (allSieves gt o) s) ==>
 lift (C.member (j gt o) ((star gt f) s))

7.12 GraphCategory.hs
module GraphCategory
 (
 RecursiveGraphHomomorphism (..)
)
 where

import Prelude hiding (product, Functor)
import GraphInductive
import Maybe2
import Category
import EdisonPrelude
import qualified Collection as C

--
-- Define a recursive graph homomorphism
--

-- The homomorphism has a source, a sink, and a function from the
-- source to the sink
data RecursiveGraphHomomorphism a b =
 RecursiveGraphHomomorphism
 {
 -- The source and sink of the homomorphism
 rghSource :: RecursiveGraph a b,
 rghSink :: RecursiveGraph a b,
 -- The node and edges in the sink are (possibly) mapped to
 -- the nodes and edges in the source
 rghnodemap :: RecursiveNode a b -> Maybe (RecursiveNode a b),
 rghedgemap :: RecursiveEdge b -> Maybe (RecursiveEdge b)
 }

-- Compose two recursive graph homomorphisms
rghcompose :: (Eq a, Eq b) =>
 RecursiveGraphHomomorphism a b ->
 RecursiveGraphHomomorphism a b ->
 Maybe (RecursiveGraphHomomorphism a b)
rghcompose f g =
 if rghSink g == rghSource g
 then Just (RecursiveGraphHomomorphism
 (rghSource g)
 (rghSink g)
 (composeMaybe (rghnodemap f) (rghnodemap g))
 (composeMaybe (rghedgemap f) (rghedgemap g)))
 else Nothing

-- The identify morphism is a function that leaves the recursive
-- graph unchanged. Each node is mapped to the singleton list of nodes
-- having that one node as a member, and similarly for edges.
rghid :: RecursiveGraph a b -> RecursiveGraphHomomorphism a b
rghid rg =
 RecursiveGraphHomomorphism
 rg
 rg
 (\n -> Just n)
 (\e -> Just e)

--

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 54 of

-- Now make a class for graph category
--

-- First, an abstract data type to serve as an instance. Note that the
-- parameters "o" for objects, and "a" for arrows are ignored in this
-- declaration.
data (C.Set s (RecursiveGraph n e),
 C.Set s (RecursiveGraphHomomorphism n e)) => GraphCategory n e s o a =
 GraphCategory
 {
 gcObjects :: s (RecursiveGraph n e),
 gcArrows :: s (RecursiveGraphHomomorphism n e)
 }

-- Next, a class (API) like interface for the graph category
class (C.Set s o, C.Set s a) =>
 GraphCategoryC c n e s o a | n e -> o, o -> a where
 gccObjects :: c n e s o a -> s o
 gccArrows :: c n e s o a -> s a
 gccEmptyGraph :: c n e s o a -> o
 gccRecursiveGraph :: c n e s o a -> o -> RecursiveContext a b -> o
 gccEmptyCat :: c n e s o a
 gccMkGraphCat :: s o -> s a -> c n e s o a

-- The abstract data type is an instance of the API class
instance (C.Set s (RecursiveGraph n e),
 C.Set s (RecursiveGraphHomomorphism n e)) =>
 GraphCategoryC
 GraphCategory
 n e s
 (RecursiveGraph n e)
 (RecursiveGraphHomomorphism n e)

-- If it is an instance of the graph category, then a category can be
-- made out of it.
instance (Eq n, Eq e,
 C.Set s (RecursiveGraph n e),
 C.Set s (RecursiveGraphHomomorphism n e),
 GraphCategoryC c n e s o a) =>
 Category (c n e) s (RecursiveGraph n e) (RecursiveGraphHomomorphism n e)
 where
 dom c rgh = rghSource rgh
 cod c rgh = rghSink rgh
 catId c rg = rghid rg
 compose c f g = rghcompose f g
 objects c = gccObjects c
 arrows c = gccArrows c
 emptyCat = gccEmptyCat
 mkCat os as dom cod = gccMkGraphCat os as

8 Hol Source
This section contains the Hol source code for the current version of the Haskell
specifications that have been translated to Hol. So far, only the inductive definition of the
recursive graph have been translated into Hol, however, this is the fundamental data
structure of the specification.

8.1 GraphInductive.sml
(* HOL Source for GraphInductive *)

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 55 of

load "bossLib";
open bossLib;
load "integerTheory";
open integerTheory;
load "listTheory";
open listTheory;
load "stringTheory";
open stringTheory;

(* This one is good *)
val x = Hol_datatype
 `RecursiveNode = SimpleNode of int list => 'a |
 RecursiveNode of int list => RecursiveGraph => 'a;
 RecursiveEdge =
 <|source: int list;
 uplink: int list;
 downlink: int list;
 sink: int list;
 edgeLabel: 'b
 |>;
 RecursiveAdjacency = RecursiveAdjacency of RecursiveEdge list;
 RecursiveContext =
 <|preds: RecursiveEdge list;
 newnode: RecursiveNode;
 succs: RecursiveEdge list
 |>;
 RecursiveGraph = EmptyRecursiveGraph |
 RecursiveGraph of RecursiveGraph => RecursiveContext;
 Decomp =
 <|flag: bool;
 component: RecursiveContext;
 subgraph: RecursiveGraph
 |>`
 handle e => Raise e;

TypeBase.axiom_of (valOf (TypeBase.read "RecursiveGraph")) handle e => Raise e;
map type_of [``RecursiveGraph``,
 ``RecursiveContext``,
 ``RecursiveAdjacency``,
 ``RecursiveEdge``,
 ``RecursiveNode``,
 ``Decomp``
];

``x: (bool, int) RecursiveNode`` handle e => Raise e;
``RecursiveNode [1] EmptyRecursiveGraph "label"`` handle e => Raise e;
type_of it;

Define `insNode n g =
 RecursiveGraph g
 <|preds:=[];
 newnode:=n;
 succs:=[]|>`;
type_of ``insNode``;

9 To do list
The following is a list of tasks to complete on the specifications presented in this section.

• Completed by version 3.0: Dynamic graphs: The ability to add and delete
nodes from the recursive graph. This will be a very straightforward extension of

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 56 of

the current recursive graph class. Once added to the recursive graph class, the new
capabilities should carry through to all the instances, such as Krenz system.

• Completed by version 2.0: Grothendieck topology on the graph: A topological
view of the system, permitting the formulation (and automated answering) of
what if questions. For example: Is the system still an instance of the specified
Krenz information flow policy when a particular node (and edges to and from the
node) are added?

• Completed by version 3.0: Testing: The functions in the specification will be
tested (and corrected). In particular, the flatten and deepen functions will be
tested.

 Added version 1.0: Node freight of different types: Add the ability to have node
freight (and node properties) of different types in different subgraphs of the
recursive graph. Version 3 update: This appears to be a straightforward exercise
in the use of existential types in Haskell. During earlier versions of the report, this
looked like a more difficult task.

 Added version 1.0: Edge freight of different types: Add the ability to have edge
freight (and edge properties) of different types in different subgraphs of the
recursive graph. Version 3 update: This appears to be a straightforward exercise
in the use of existential types in Haskell. During earlier versions of the report, this
looked like a more difficult task.

 Added version 1.0: Graphical output: Add the ability to make a graphical output
of a Krenz system or a Krenz assurance system. This will be done if a suitable
graphics package can be interfaced to Haskell. This item is of low priority.
Version 3 update: There is a nice graph drawing package called Da Vinci, which
has an interface to Haskell. This will probably be used for the Krenz system.

 Added version 3.0: It should be possible to define a category as a graph with
additional properties. This will be investigated, and done if possible. This will
result in an inductive definition of a category. This may be a result worth
publishing.

 Added version 3.0: Having seen a simpler definition, it may be possible to do
another definition of recursive graph that is not inductive, but still simple, having
clear constructors and destructors, but permitting more a elegant and efficient
definition of the flatten and deepen primitives.

10 References
1. FGL / Haskell – A Functional Graph Library (User Guide), Martin Erwig,

http://www.cs.orst.edu/~erwig/papers/abstracts.html#AMAST98
2. Sheaves in Geometry and Logic, Saunders Mac Lane and Ieke Moerdijk, Springer

Verlag, Berlin, 1992.
3. Elementary Categories, Elementary Toposes, Colin McLarty, Oxford Science

Publications, 1995.
4. Categories for Types, Roy L. Crole, Cambridge University Press, 1993.

The separation and Krenz specification Programatica Project
E:\2010-HCSScd\2001\hcss_cd\papers\ogi2.docCreated on 1/2/2001 9:45:00 AM

 Page 57 of

5. Categories, T. S. Blyth, Longman Group Limited, 1986.
6. Categories for the Working Mathematician, Saunders Mac Lane, Springer Verlag,

New York, 1971.
7. The Haskell School of Expression, Learning Functional Programming Through

Multimedia, Paul Hudak, Cambridge University Press, 2000.
8. Pattern Matching: A Sheaf-Theoretic Approach, Yallamraju Venkata Srinivas,

Phd Thesis, 1991
9. Top-down Synthesis of Divide and Conquer Algorithms, Doug R. Smith, Artificial

Intelligence 27 (1985), pages 43-96.
10. Toposes, Triples, and Theories, M. Barr and C. Wells, Number 278 in

Comprehensive studies in Mathematics, Springer-Verlag, 1985

11 Acronyms
ADT Abstract Data Type
CC Common Criteria
FGL Functional Graph Library
HOL Higher Order Logic
ID Identifier
I/O Input / Output
KAG Krenz Assurance Graph
KMP Knuth Morris Pratt algorithm
MASK Mathematically Analyzed Separation Kernel
NT New Technology
PhD Philosophy Doctorate

	1 Objective and Introduction
	1.1 Introduction to version 1.0
	1.2 Introduction to version 2.0
	1.3 Introduction to version 3.0

	2 Informal Description of Separation
	2.1 Separation concept at the operating system level
	2.2 Abstraction of the separation concept

	3 Informal Description of The Krenz
	3.1 Krenz concept at the operating system level
	3.2 Abstraction of the Krenz concept
	3.3 The Krenz assurance graph concept

	4 Hierarchical system concept
	4.1 Hierarchical System concept at the operating system level
	4.2 Abstraction of the hierarchical system concept

	5 Description of Separation / Krenz Hierarchy
	5.1 Recursive Graphs
	5.2 Dynamic Systems
	5.3 Parameterizing Separation vs. Krenz
	5.4 Hierarchical Separation and Krenz
	5.4.1 System and Separation classes
	5.4.2 The Recursive Graph class
	5.4.3 Graph with properties instances
	5.4.4 Krenz System instances
	5.4.5 Krenz Assurance Graph instances

	6 Topology (and the Enterprise Krenz)
	6.1 Topology and pattern matching for the Separation specification
	6.2 The categorical framework for pattern matching (Separation)
	6.3 Topology and pattern matching for the Krenz specification
	6.4 Topology / pattern matching for Krenz assurance specification
	6.4.1 Matching the assurance properties in the Krenz Assurance Graph

	6.5 Axioms of a Grothendieck Topology

	7 Haskell Source
	7.1 Container.hs
	7.2 RecursiveContainer.hs
	7.3 System.hs
	7.4 Separation.hs
	7.5 Maybe2.hs
	7.6 GraphInductive.hs
	7.7 GraphFlat.hs
	7.8 GraphSystem.hs
	7.9 KrenzSystem.hs
	7.10 KrenzAssuranceGraph.hs
	7.11 Category.hs
	7.12 GraphCategory.hs

	8 Hol Source
	8.1 GraphInductive.sml

	9 To do list
	10 References
	11 Acronyms

