
Tools for Information Security Assurance Arguments

Joon S. Park, Bruce Montrose, and Judith N. Froscher
Center for High Assurance Computer Systems

Naval Research Laboratory
{jpark, montrose, froscher}@itd.nrl.navy.mil

Abstract
To design a system that can be trusted or assess security
properties in a system, the related assurance arguments1

need to be developed and described effectively in an
understandable way. To meet this pressing need, we have
developed a prototype tool, VNRM (Visual Network Rating
Methodology), to help users develop a map to assurance
arguments and document it with related descriptions in a
common environment. This map depicts the claim trees for
the assurance arguments related to the enterprise security
objective. VNRM supports ECM (Enterprise Certification
Methodology) for deriving and organizing the related
assurance arguments effectively and uses CAML
(Composite Assurance Mapping Language) for describing
the assurance arguments in the map. After the successful
development of VNRM, we have started to develop a more
robust tool, SANE (Security Assurance Navigation and
Environment), providing more features, reusability of
assurance arguments, and access control to CAML maps.

1. Introduction

The emergence of new information technology has
changed life styles and the world economy. Information
Assurance (IA) problems have become more important as
the world uses more information systems, since the security
and survivability of information systems directly or
indirectly affect organizations, which rely on information
technology.

Hence, it is obvious that we need effective and efficient
methods for system design and assessment, providing
causalities, relationships, vulnerabilities2, threats3, system-

1 In this paper, we use the termsinformation security assurance
arguments, assurance argumentsandsecurity argumentsinterchangeably.
2 A vulnerability refers to a weakness of a system that can be exploited to
undermine the availability, integrity, confidentiality, and/or authenticity of
the information resources and/or the system itself.
3 A threat refers to a circumstance, thing, person, or event - which may
occur independent of the system - with the potential to violate the system
security or assets.

level viewpoints, and objectives of an entire enterprise.
Designers (developers) and assessors (evaluators) need to
clearly understand the problems at hand and describe them
using a common environment and tools. Particularly, when
we design or assess a large enterprise where many
components are integrated with and dependent on each
other, it is difficult to extract the necessary assurance
arguments for components and describe their relationships
and dependencies. To design a trusted system or assess
security properties in a system, the related assurance
arguments need to be developed and described efficiently in
an understandable way by means of an easy-to-use
language based on a sound methodology so that decision
makers can make informed decisions. This can reduce
lifecycle cost through early assurance discussions between
designers and assessors, and reduce the need for expensive
backtracking.

A variety of assurance techniques and methodologies are
used to provide the confidence that a system or component
satisfies its specification. As computing capabilities have
evolved from closed timesharing environments to widely
distributed computing resources that provide worldwide
connectivity, security countermeasures have also migrated
to a combination of protection, detection, response,
recovery, and survivability mechanisms. Traditional
assurance approaches (e.g., formal methods) do not scale
for comprehensive enterprise assurance and have seldom
been used to reason about detection and response, recovery,
or survivability. Assurance techniques that are affordable,
expressive, and effective are needed for enterprise
assurance arguments.

In this paper, we introduce tools to satisfy the above
requirements: VNRM (Visual Network Rating
Methodology) and SANE (Security Assurance Navigation
and Environment). SANE is a successor to VNRM and a
standalone tool (does not require external programs as
VNRM does), providing assurance argument reusability
and other features. VNRM and SANE help users to derive
and organize the related assurance arguments effectively
based on our methodology, ECM (Enterprise Certification
Methodology), and build a map of assurance arguments in
our language, CAML (Composite Assurance Mapping
Language). This map depicts the claim trees for the



assurance arguments related to the enterprise security
objective, providing causalities, relationships,
vulnerabilities, threats, and other system and environment
related issues. Our tools also help users to document the
CAML maps with related descriptions in a common
environment.

This paper is organized as follows. In Section 2, we
briefly explain the existing technologies that we applied to
and extended for our work. In Section 3, we introduce an
information security assurance argument map, including
our underlying methodology (ECM), language (CAML) to
build the map, and an example of the map. Section 4
describes VNRM. Section 5 describes SANE that we have
been extending on to provide more services. In Section 6,
we compare our work to the existing assurance
technologies, including Systems Security Engineering
Capability Maturity Model (SSE-CMM) and Common
Criteria (CC). Finally, Section 7 concludes this paper.

2. Related Work

Systems engineers use fault trees [RVH81] to reason
about the safety of composite safety critical systems. Fault
trees are a graphic representation of a combination of
events that can cause an undesired event to occur. They are
developed for analyzing and assessing system
dependability. In this approach, all the components and
their failure probabilities are represented, which
consequently cause the failure of the whole system. An
event at levelli is reduced to the combination of lower
levels, through some logic ports. Researchers at the
University of York and Defense Research Agency (DRA)
applied the fault tree approach to the Goal Structuring
Notation (GSN, [WKC97]), providing the breakdown of
safety requirements to arguments based upon available
evidence, to describe the safety arguments and safety
assessments. They developed a PC based tool, Safety
Argument Manager (SAM, [WMKF96]), which supports
GSN.

Researchers at the University of Virginia (UVA)
developed the Methodically Organized Argument Tree
(MOAT, [KW96]). MOAT provides hierarchically
organized arguments in a tree for each security property
that is to be analyzed. Each MOAT encapsulates an
argument that the system exhibits some desired security
property. The MOAT representation looks similar to fault
trees. However, the MOAT methodology permits the
integration of existing security assurance techniques, such
as formal methods, into a risk4-driven process model. It

4 A risk is a cost estimate based on the probability of a successful attack
and the value of the vulnerable asset. For instance, when the probability of
successful attack is high and the value of the vulnerable asset is high, the
risk is high, and vice versa.

orders the construction of assurance arguments using a
high-risk-first heuristic, and explores higher-risk areas more
fully and precisely than lower-risk areas.

The National Security Agency (NSA) developed a
matrix based methodology, Network Rating Methodology
(NRM, [BGB97]), an extension of their previous work,
Network Rating Model [LBB96], for assessing and
evaluating network security, either in operation or in
development, based upon a defined set of characteristics.
NRM notation is based on a matrix representation. Each
row represents an area of security concerns, such as
confidentiality, integrity, availability, and authenticity.
Each column represents a security service, such as
personnel, operational procedure, technology, and physical
environment. Each cell is filled with corresponding claims
or evidence for the related area of security concern and
service. The matrix is multi-dimensional depending on the
granularity required by the system owner. In other words,
lists of evidence in the next level of the matrix are given to
support the first-level claims.

Researchers at the Naval Research Laboratory
introduced the assurance strategy [PFL93, FNH94] in 1993.
The assurance strategy concerns not only the components
(hardware and software) of a system but also the
environment in which the components operate. They
identify assumptions and assertions that reflect information
security requirements for systems and use those concepts to
document the trade-off decision. In this approach,
assertions are predicates that are enforced by the system,
while assumptions are predicates that are enforced in the
system’s environment. The assurance strategy initially
documents the set of assumptions and assertions derived
from the requirements. It is elaborated and refined
throughout the development, yielding the assurance
argument, delivered with the system, which provides the
primary technical basis for the certification decision. If
assumptions for any discipline are identified that do not
correspond to assertions for some other entity, then these
assumptions represent vulnerabilities in using the system.

3. Information Security Assurance Argument
Map

An information security assurance argument map depicts
the claim trees for the assurance arguments related to the
enterprise security objective, providing causalities,
relationships, vulnerabilities, threats, and other system and
environment related issues. In this section, we introduce the
underlying methodology and language that we use in our
tools to derive the assurance arguments comprehensively
and organize them efficiently.



3.1. Underlying Methodology

To provide a good methodology for users to produce an
efficient and comprehensive description of information
security assurance arguments, we organize the arguments in
four different disciplines in a map based on the NRM
approach (described in Section 2): physical, personnel,
technical, and operational. Physical Security involves the
strength of physical mechanisms and structures used to
protect and house the technology, such as strength of locks
or safes. Operational Security involves the effectiveness of
manual procedures, policies, and guidelines for handling
and protecting information. The more conventional view of
assurance comes from Technological Security, which
involves security about combinations of hardware,
software, and communications. Finally, Personnel Security
involves assurance about people, their trustworthiness and
capabilities through some processes, such as personnel
background investigation, training, and evaluation. We do
not propose to “hard code” the precise partitioning of the
four disciplines in the argument maps for every application.
Different systems or applications may have a different
partitioning of their arguments for improved
understandability or a different level of assurance.
However, we believe the four different disciplines provide
comprehensive categories for most applications or systems.

We extend and apply our assurance strategy (described
in Section 2) to the four security disciplines in an assurance
argument map to elaborate the high-level enterprise security
objectives. We call this the Enterprise Certification
Methodology (ECM). Based on this methodology, the map
can be used to develop a rigorous specification of the
security posture of the entire enterprise. As a result, an
assurance argument map permits tracking security
vulnerabilities by identifying assumptions made in one
argument tree that are not matched by validating claims
made in another argument tree in the map. In other words, a
statement can be an assumption in one discipline while it
can be a claim in another discipline. For instance, the
statement “Users know authentication procedures” is an
assumption under the technical discipline, while it is a
claim under the personnel discipline. Such assumptions
becomedependenciesof the argument. Assumptions that
are not so linked become vulnerabilities that need to be
considered when assessing residual risk. These
vulnerabilities must be assessed when deciding whether the
residual risk is tolerable in the operational environment.
The map developer also needs to ensure the integrity of the
assumption validation mapping itself. If a portion of the
map for one application is reused for another application,
the reader may notice the lack of any claims to ensure
consistent application of the assumptions. Conscientious
application of the above approach helps to uncover such

gaps, identifying security vulnerabilities that were not
previously considered.

3.2. A Language for Information Assurance
Arguments

We have developed CAML (Composite Assurance
Mapping Language) by merging and extending several
existing technologies (described in Section 2) to describe
information security assurance arguments effectively in a
well-organized format. In this section, we briefly describe
the rules and components of CAML. The detailed
description and usage of CAML is available in [MMS00].
Figure 1 shows an example of CAML structure with its
primitives and definitions.

Distinct graphical primitives in different shapes
represent key components of the argument map. A textual
summary of each component is shown inside each shape.
The spine of an argument map hierarchically refines
security claims about the system into sub-claims that,
eventually, are linked with theevidencethat a claim is
satisfied. The flesh of an argument map describes
supporting information about the refinement such as the
generalstrategy, assumptionsand dependencies, justifying
reasons, and contextualmodels. Spine refinement may
proceed using either AND-decomposition or OR-
decomposition. By the AND-decomposition, all sub-claims
or evidence must hold for the decomposed claim to hold.
By the OR-decomposition, one of the sub-claims or
evidences must hold for the decomposed claim to hold.

Not all CAML components are needed for every
assurance map. Map developers use their discretion for
choosing the necessary components to convey their
argument satisfactorily. When a flesh component is
connected to an AND/OR connector, it means this flesh
component applies to all the arguments below the AND/OR
connector. When a flesh component is connected to a spine
(claim or evidence) directly, it means the flesh component
applies to the particular spine. To provide more detailed
descriptions of the map, the shapes can be hyperlinked. For
instance, architectural diagrams can be hyperlinked to
model shapes, and analytic proofs and tests can be
hyperlinked to evidence shapes.

CAML provides a medium through which to develop a
concise roadmap of the evidence that an enterprise
conforms to required security properties. Resolving the
competing factors involved with secure enterprise design
typically requires depending on diverse assurances that are
interrelated in complex ways. Users coherently and
consistently map out the assurance evidence and its
associated reasoning using CAML maps. The language
helps to tame the complex inter-relationships of the diverse
sources from which that evidence originates, and to



illuminate the process of balancing mission, security, and
cost. Such a common language is critical as a
communication medium for risk analysts, developers and
evaluators. It will allow them to come to a consistent
understanding and agreement on assurance requirements
and how an enterprise satisfies those requirements. Well-

constructed CAML maps contain rationale that promotes
confidence in their own consistency and completeness.
Additionally, getting early evaluator feedback in the
assurance mapping process helps to ensure that the final
enterprise design will be approved for operation with
minimal changes.

Definitions

• Objective: A statement expressing a security requirement of the countermeasure, system, network or enterprise that
is the reference of an argument.

• Claim: Statements that associate subjects with their attributes or properties.
• Assumption: A claim that is accepted without justification.
• Dependency: An assumption in one part of an argument that is validated by a claim in another part of the argument.
• Evidence: Data on which a judgment or conclusion about an assurance claim may be based.
• Hyperlink: A link from one component of an argument map to other components of the map or external components

to provide for the detail or clarification to the argument.
• Strategy: The approach taken for refining a claim into sub-claims or into evidences supporting the claim.
• Reason: A set of statements that ties together a set of sub-claims or evidences to establish a claim.
• Model: The architectural context on which a claim is based.

[Figure 1] An Example of CAML Structure with Its Primitives and Definitions



ModeledBy
Satisfies

DependsOn

Assumes

DemonstratedBy

SatisfiedBy

SatisfiedBy

SatisfiedBy

Ensure only
authorized users

can access
resources in the

organization.

O
B

J1

AND

Facilities are protected
from unauthorized

physical access and
disasters via safety
devices. (Physical

Discipline)

C
LM

1

Individuals are
trusted to follow

security
procedures.
(Personnel
Discipline)

C
LM

2

Servers provide
access control

mechanisms for
resources. (Technical

Discipline)

C
LM

3

Security procedures
ensure authorized

access to resources.
(Operational
Discipline)

C
LM

4

AND

Servers
authenticate

users before they
access the
resources.

C
LM

5 Servers refer to
the access

control policy.C
LM

6

OR

Users are
authenticated

by
passwords.

C
LM

7 Users are
authenticate

d by SSL.C
LM

8 Users are
authenticated
by Kerberos.C

LM
9 Users are

authenticated
by biometrics.C

LM
10

AND

PKC
authenti

cates
users.

E
V

D
2SSL

support
s PKC.E

V
D

1

System
architecture

diagramM
D

L1 ∗

Web server
supports

authentication
mechanisms.

A
S

M
1

Users know
authentication
procedures.D

P
D

1

CLM2

Figure 2. An Example of a CAML Map Developed Using VNRM



3.3 An Example of a CAML Map

In this section, we show an example of a CAML map
(denoted in Figure 2) that we developed using VNRM
(described in Section 4) based on ECM (described in
Section 3.1) to illustrate the approach. Because of space
constraints, we captured only part of the actual work in this
paper. The black dots around the claim boxes represent the
omitted parts in the figure. In the original VNRM
environment, distinct graphical primitives are denoted in
different colors as well as in different shapes. Note that a
different person may develop a different assurance map
from others for the same system.

The purpose of Figure 2 is to show the arguments related
to the objective, “Ensure only authorized users can access
resources in the organization.” As we introduced in Section
3, we partition the related security arguments into the four
disciplines: physical, personnel, technical, and operational
security disciplines. Each discipline has a high level claim
(CLM1 through CLM4 in the map), which is satisfied by
sub-claims and related arguments. Those claims are
connected by an AND-connector because all of them must
hold for the decomposed objective to be satisfied. The
decompositions for physical, personnel, and operational
disciplines are omitted in this particular example. The claim
for the physical security discipline (CLM1) would be
decomposed with arguments related to physical entry to the
facility, storage cabinets, safety devices, etc. The claim for
the personnel security discipline (CLM2) would be
decomposed with arguments related to users,
administrators, guards, etc. The claim for the operational
security discipline (CLM4) would be decomposed with
arguments related to organizational policies, guidelines, etc.

In this example, we decompose the claim for the
technical security discipline (CLM3). A system architecture
diagram is provided by a Model shape (MDL1) that is
hyperlinked (denoted by * symbol in MDL1) to external
information (not shown in this paper). Technically, the
servers authenticate users before users access the resources
(CLM5), where we assume that users know the
authentication procedures and the Web server supports
authentication mechanisms. The former assumption is
denoted in a Dependency shape (DSD1) because it has a
verifying link5 (CLM4) to a different partition (personnel
discipline), while the latter assumption is denoted in an
Assumption shape (ASM1), which still shows
vulnerabilities, because it does not have verifying links
(described in Section 3). Additionally, the servers refer to
the access control policy of the organization to make an

5 If the claim for the personnel security discipline would be decomposed
more in this example, this assumption would be linked to more refined
claims.

access control decision (CLM6). Since CLM5 through
CLM6 are required to hold for CLM3 to be true, they are
connected by an AND-connector. Continuing the
decomposition, CLM5 is decomposed into four possible
authentication techniques (CLM7 through CLM10) by
means of an OR-connector. This means that one of those
authentication techniques must be provided. Based on a
given situation, we may add more authentication techniques
under the OR-connector or remove some of them. Finally,
the claim CLM8 (Users are authenticated by SSL) is
decomposed into two evidences via an AND-connector.
Those evidences demonstrate why we can trust that SSL
can authenticate users. Similarly, the other claims can be
decomposed into evidence.

4. Visual Network Rating Methodology
(VNRM)

We have developed a prototype toolset, VNRM (Visual
Network Rating Methodology), to help users draw a
graphical assurance argument map in CAML (described in
Section 3.2) based on ECM (described in Section 3.1) that
evaluates whether the target system adequately supports
security services. The VNRM User’s manual [MS00] is
helpful in getting one started on using the tool. Additional
information, including a packaged demonstration, is
available at the VNRM website [VNRM00].

The VNRM toolset was built to be easy to use, maintain,
and extend. Its design supports ease-of-use by providing
graphical user interfaces that are familiar to a large portion
of the potential user community. The design uses standard,
widely accepted software components that support both the
need for familiar interfaces and the need to maintain
compatibility of VNRM with cutting edge technology. As
well-supported software components evolve, VNRM can
evolve in like manner with a minimal amount of effort.
Finally, extensibility is important to the evolving VNRM
design so that when users identify additional, value-added
functions, the toolset can be extended easily with minimal
changes to the existing implementation. The design
supports extensibility primarily through the use of client-
server and modular design techniques.

Figure 3 depicts the VNRM tool architecture. Solid lines
represent invocation and message passing between VNRM
components and dotted lines represent interactions between
human beings and VNRM components. The VNRM tool
consists of three major components: VNRM Explorer,
VNRM Tool Library, and VNRM Database (VNDB). The
VNRM Explorer, an interface that has the familiar look and
feel of the Microsoft Windows Explorer, provides a user-
friendly front-end to VNDB for tools in the VNRM Tool
Library. It provides a utility to help manage, build, and
review CAML assurance argument maps. The VNDB,



Figure 3. VNRM Tool Architecture

which is implemented in Microsoft Access, stores the
artifacts of an assurance argument, including the CAML
map and its documentation, on a project-by-project basis.
Users manage and access VNRM projects through the
VNRM Explorer. Tools in the library can update the VNDB
only through the VNRM Explorer so as to preserve the
consistency of the VNDB data and the tools’ views of those
data. The VNRM Explorer notifies any tools that have a
need-to-know when data is updated.

Four tools that support creating and documenting CAML
argument maps currently reside in the VNRM Tool Library.
VNRM Designer uses the Visio extensible drawing package
to create, analyze, and hyperlink CAML maps. These maps
can be integrated (as OLE links) into textual documents
using the VNRM Documenter, which is implemented using
Microsoft Word. Both the Visio and Word environments
were extended using Visual Basic (VB) to support VNRM-
specific function. The VNRM Dictionary permits defining a
standard terminology for consistent application across or
within VNRM projects. Terms so defined are highlighted in
the textual parts of the map and its documentation. Finally,
VNRM Desktops provide a virtual desktop (which provides
collections of pages that are developed, analyzed, and/or
presented as a group) function to associate different
segments of an assurance argument map for simultaneous
elaboration or examination.

VNRM helps manage the complexity of composition of
diverse enterprise assurance arguments by mapping out the
assurance evidence, tracing meaningful threads of
reasoning, and highlighting significant results. Taking an
enterprise view of assurance gives us many places from
which to derive confidence that information security is not

compromised. It clearly shows how each piece of evidence
in the map contributes to the overall argument.
Furthermore, it supports traversing the hyperlinked
argument and analyzing its security weaknesses.
Documenting this rationale is important for understanding
why key decisions were made and the impact of modifying
the enterprise design has on information assurance.

Another purpose of this tool is to help users identify
residual vulnerabilities and experiment with moving them
around not only among the system components, but around
the whole enterprise. This helps improve security, by
keeping the vulnerability away from the threat agent6, and
permits the development of affordable solutions to
information security. By making tradeoffs between
responsibilities of different security disciplines, we can
exchange costs and risks as appropriate for the system
under construction.

VNRM can be used for a risk analysis process, an
engineering process, and a security evaluation process to
develop a secure enterprise. Early risk analysis involves
identifying both natural and man-made threats to enterprise
assets, and the corresponding consequence to the enterprise
if those assets are compromised. This analysis results in a
set of protection needs that provide a starting point for
assurance mapping analysis. We translate these protection
needs into a set of high-level claims to which the enterprise
must conform by considering the role that the enterprise
plays in meeting the protection needs. A primary goal of an
assurance map is to show how and why these claims are
satisfied. Assumptions on which this argument is based
indicate potential enterprise vulnerabilities, to the extent

6 The person, organization, or circumstance that implements a threat.



that if not properly validated they indicate a hole in the
enterprise assurance argument. The strength of the
reasoning and evidence on which the argument is based
indicates the confidence that we have identified existing
vulnerabilities in the map. Such vulnerability analysis is a
critical component of the risk analysis process. Of course,
the engineering process must consider other factors in
addition to information security during enterprise design.
Security protection must be balanced within the overall
mission of the enterprise, such as with the associated
developmental and operational costs. The way that the user
allocates security responsibilities to different disciplines
emphasizes certain factors over others.

To prove the feasibility of our work, we released VNRM
to evaluate real applications. The DARPA IA Program’s
Assurance Working Group (AWG) has used VNRM to
characterize the strength and effectiveness of two different
security technologies: the Object-Oriented Domain-Type
Enforcement (OO-DTE, [STM99]) and the Advanced
Research Guard for Experimentation (ARGuE, [Eps99]).
These efforts have largely been successful, as seen by the
growing appreciation of the techniques on which VNRM is
based. VNRM is currently being applied to the integration
of DARPA IA technologies to implement a Virtual Private
Network (VPN) in an enterprise context.

5. Security Assurance Navigation and
Environment (SANE)

VNRM was developed using Visual Basic, and is
dependent on external programs, such as Visio, MS Access,
and MS Word. This requires a specific environment in
order to use VNRM. Therefore, to provide higher
portability and compatibility, we currently are developing a
successor to VNRM, SANE (Security Assurance
Navigation and Environment), purely in JAVA. It will
provide all the drawing and documenting services without
requiring external programs. It will also present new
features to designers and assessors, associated with the
reusability of assurance arguments, access control to
CAML maps, and argument patterns.

Figure 4 shows how SANE helps users build CAML
maps in conjunction with the Information Security
Assurance Repository (ISAR) on the Web. ISAR contains
common assurance objectives, arguments, problems,
solutions, patterns, and some other information, which can
help users build their CAML maps in SANE. When a user
is developing a CAML map, SANE allows the user to
browse the information in ISAR via HTTP. If she finds
some useful information (e.g., problems and solutions), she
can apply it to her map. If not, she is welcome to contribute
her work to SANE for building more knowledge in it. The
collaboration between SANE and ISAR increases the

reusability of previous work by others, saving time, work,
and money.

Generally, SANE users are allowed to access the whole
portion of CAML maps. In some cases, however, parts of a
CAML map should be available only to authorized users.
For instance, if a set of arguments includes very sensitive
information about the target system, such as threats and
vulnerabilities of the key components in the system, only
authorized users should be allowed to read the argument
set. Probably, a system assessor should be able to access the
whole map, but an external consultant should not access the
confidential argument set. SANE can satisfy this
requirement based on users’ roles. When a user logs in to
SANE, she is authenticated and assigned to a role (e.g.,
Assessor, Consultant, etc.). In Figure 4, if the user has the
Assessor role, she is allowed to access the whole CAML
map, but if she has the Consultant role, she is not allowed
to access the confidential information, depicted “Hidden” in
the figure.

We implement this access control mechanism using a
popular technology, XML (Extensible Markup Language).
When a SANE user develops a CAML map, she specifies
the required roles (if any) for some parts of the map and
saves it in a file. At that time, SANE converts the visual
CAML map to XML, including the required roles for some
parts of the map. Later, when a user tries to access the map,
SANE compares the required roles for some parts in the
XML file and the user’s current role. If the user has the
required role (or has a role that subsumes the required role),
SANE shows the corresponding part of the map to the user.
However, if she does not have the required role, SANE
shows the map to the user, hiding the unauthorized parts.

Without reading a whole portion of the CAML map, it
may be hard to make a correct decision. Therefore, we
claim that a limited number of users (e.g., final decision
makers or senior administrators) should be able to access
the whole CAML map and make a final decision, reflecting
other SANE users’ (whose access privileges may be limited
to the same map) comments on the partial maps they are
authorized to see.

Our future work will specify reusable assurance
argument patterns; abstractions from a concrete recurring
solution that solves a problem in a certain context. We will
investigate ways to define a notation and theory for
specifying and composing argument patterns and will
provide them to users through ISAR. Currently, we catalog
the sets of assurance arguments from different components
and try to extract patterns from them. These patterns will be
populated in ISAR with other reusable information for
assembling different combinations of mechanisms and their
composite assurance arguments. Users will be able to
construct and share argument patterns and instantiate and
compose them into full-fledged assurance arguments for
composite systems.



Figure 4. Information Sharing and Hiding by SANE and ISAR

6. Discussion

In this section, we compare our work to the existing
information assurance approaches, including formal
methods, Common Criteria (CC), and the Systems Security
Engineering Capability Maturity Model (SSE-CMM).

Formal methods are extremely useful for proving that
high assurance components satisfy their security
requirements [KHA99]. However, using formal methods
for enterprise assurance is far more challenging for several
reasons. First, assurance components are integrated at
different levels of abstraction in the enterprise. Secondly,
enterprise security depends not only on technical security
countermeasures but also on physical protection,
administrative procedures, and on user trustworthiness.
Using formal methods for specifying these types of
countermeasures would prove to be quite difficult. Finally,
all of these countermeasures at different levels of
abstraction and from different disciplines must be combined
to provide the security posture of the whole enterprise.
Combining assurance for all countermeasures and
specifying and deriving confidence about interdependencies
within the enterprise would confound most attempts to
formally model enterprise security.

The International Systems Security Engineering
Association (ISSEA) has been promoting the use and

adoption of the Systems Security Engineering Capability
Maturity Model (SSE-CMM, [SSE00]) to measure an
organization’s capability to provide security products,
services, or operations. The SSE-CMM describes an
organization’s security engineering process and categorizes
security practices into base practices and generic practices.
The base practices, grouped into process areas, collectively
define specific aspects of security engineering. The generic
practices, grouped by capability level, represent activities
that should be performed as part of doing base practices,
indicating process management and institutionalization
capability. An SSE-CMM appraisal determines the
capability levels for each of the process areas. An
organization’s capability to perform a particular activity is
checked by combining the base practices and generic
practices together. The SSE-CMM focuses on how to
measure high-level characteristics of an organization’s
security engineering, but does not prescribe how to evaluate
security critical components in the system. On the contrary,
our tools (VNRM and SANE) provide a representation
scheme for reasoning about enterprise security objectives as
well as about security critical components.

The International Organization for Standardization (ISO)
has developed a set of international standard security
evaluation criteria, Common Criteria (CC, [CC99]), for IT
systems and products. It opens the way to worldwide
mutual recognition of evaluation results. The CC provides
distinct categories for functional requirements (which



define desired security behavior) and assurance
requirements (which are the basis for gaining confidence
that the claimed security measures are correct). The security
properties of the Target of Evaluation (TOE) are captured
in the Protection Profile (PP) and Security Target (ST). A
PP is intended to be reusable and allows prospective
customers and developers to state standardized sets of
implementation-independent security requirements and
objectives to meet their needs in a category of products or
systems. An ST is used by developers to identify the
specific security requirements that their specific identified
TOE satisfies. An ST is also used by evaluators as the basis
for evaluation to determine what the security requirements
are and to what extent they are satisfied for the TOE. The
CC defines seven Evaluation Assurance Levels (EALs) for
ranking the criteria. Evaluators use the Common Evaluation
Methodology (CEM, [CEM99]) to evaluate a TOE by the
CC. The usefulness of CC depends on the quality of PP and
ST. However, the process for writing a good PP and ST has
not been thoroughly described. The CC provides only
limited guidance on how to write PPs and STs.
Furthermore, it is not easy to understanding the CC
document in one reading. Consumers, developers and
assessors may have a lot of questions about CC evaluations
because of the lack of concise information about using the
CC.

It is always possible for our tools to integrate with the
existing technologies, including the aforementioned
approaches. For instance, when a user (of VNRM or
SANE) needs to apply some formal proofs, classes in CC,
or practices in SSE-CMM to her CAML map, she can
easily provide the information via hyperlinks. Our tools can
be used to describe the security arguments not only for IT
products and systems but also components in the same
language (CAML) based on the same methodology (ECM).

7. Conclusions

We have developed VNRM (Visual Network Rating
Methodology) to help users develop a map of assurance
arguments and document it with related descriptions in a
common environment. This map depicts the claim trees for
the assurance arguments related to the enterprise security
objective. VNRM supports ECM (Enterprise Certification
Methodology) for deriving and organizing the related
assurance arguments effectively and uses CAML
(Composite Assurance Mapping Language) for describing
the assurance arguments in the map. After a successful
development of a prototype tool, VNRM, we have been
building a more robust tool, SANE (Security Assurance
Navigation and Environment), providing more features,
reusability of assurance arguments, and access control to
CAML maps.

8. References

[BGB97] R. Bailey, B. George. C. Bowers, et al.The Network
Rating Methodology: a Framework for Assessing Network
Security. http://chacs.nrl.navy.mil/projects/VisualNRM
/nrm_3rd_draft.html, National Security Agency, 1997.

[CC99] Common Criteria for Information Technology Security
Evaluation. http://www.commoncriteria.org/cc/cc.html, CC
Version 2.1, August 1999.

[CEM99] Common Evaluation Methodology.
http://www.commoncriteria.org/cem/cem.html, CEM Version 1.0,
August 1999.

[Eps99] J. Epstein.Architecture and Concepts of the ARGuE
Guard. Proceedings of 15th Annual Computer Security
Applications Conference (ACSAC), Phoenix, Arizona, December
1999.

[FNH94] J. Freeman, R. Neely, and M. Heckard.A Valid Security
Policy Modeling Approach. Proceedings of 10th Annual Computer
Security Applications Conference (ACSAC), Orlando, Florida,
December 1994.

[KAH99] J. Kirby, M. Archer, and C. Heitmeyer.Applying
Formal Methods to an Information Security Devices: An
Experience Report. Proceedings of 4th IEEE International
Symposium on High Assurance Systems Engineering (HASE),
Washington, DC, November 1999.

[KW96] W. Wulf, C. Wang, and D. Kienzle.A New Model of
Security for Distributed Systems. Proceedings of the New
Paradigms in Security Workshop, Lake Arrowhead, California,
1996.

[LBB96] O. Lambros, R. Bailey, C. Bowers, et al.Network Rating
Model: An Approach for Assessing Network Security,
http://www.radium.ncsc.mil/nrm/rev961031.html, National
Security Agency, 1996.

[MMS00] A. Moore, Bruce Montrose, and Beth Strohmayer.A
Tool for Mapping Enterprise Security Assurance. Technical
Report 5540-051a:apm, Naval Research Laboratory, September
2000.

[MS00] A. Moore and B. Strohmayer.Visual NRM User’s
Mannual. Technical Report NRL/FR/5540--00-9950, Naval
Research Laboratory, May 2000.

[PFL93] C.N. Payne, J.N Froscher, and C.E. Landwehr.Toward a
Comprehensive INFOSEC Certification Methodology.
Proceedings of 16th National Computer Security Conference
(NCSC), pages 165-172, Baltimore, MD, September 1993.

[RVH81] N. Roberts, W. Vesely, and D. Haasl.Fault Tree
Handbook. NUREG-0492, Office of Nuclear Regulatory
Research, 1981.



[SSE00]Systems Security Engineering Capability Maturity Model
(SSE-CMM). http://www.sse-cmm.org/model.htm, SSE-CMM
Model Description Document, Version 2.0, April 1999.

[STM99] D. Sterne, G. Tally, C. McDonell, et al.Scalable Access
Control for Distributed Object Systems. Proceedings of 8th

USENIX Security Symposium, Washington, D.C., August 1999.

[VNRM00] VNRM (Visual Network Rating Methodology): Tools
for Mapping Assurance Arguments.
http://chacs.nrl.navy.mil/projects/VisualNRM/, Naval Research
Laboratory, 2000.

[WKC97] S. Wilson, P. Kirkham, and M. Cassano.SAM 4 User
Manual. University of York, 1997.

[WMKF96] S. Wilson, J. McDermid, P. Kirkham, and P. Fenelon.
The Safety Argument Manager: An Integrated Approach to the
Engineering and Safety Assessment of Computer Based Systems.
Proceedings of IEEE Symposium and Workshop on Engineering
of Computer-Based Systems, page(s): 198 –205, 1996.


