Toward the model-based development
of a GPCA reference implementation

Insup Lee

PRECISE Center

School of Engineering and Applied Science
University of Pennsylvania

SCC meeting, Annapolis

Penn
Engineering

May 2, 2011

PRECISE

Collaborators

+ PRECISE members
— Oleg Sokolsky
— BaekGyu Kim
— Anaheed Zaki
— Dave Arney (CIMIT)
- FDA
— Paul Jones

— Raoul Jetley
— Yi Zhang

Penn

‘ PRECISE

5/15/11

5/15/11

Infusion Pump Safety

« From 2005 through 2009, FDA
received approximately 56,000 reports
of adverse events associated with the
use of infusion pumps, including
serious injuries and deaths [1].

— During this period, 87 infusion pump recalls
were conducted by firms to address
identified safety problems.

* The most common types of
problems

— Software Defect

— User Interface Issues

— Mechanical or Electrical Failure

[1] U.S. Food and Drug Administration, Center for Devices and Radiological Health. White
Paper: Infusion Pump Improvement Initiative, April 2010.

P 3 y
Ei b PRECISE

Generic Infusion Pump (GIP) Project

* The Goal of GIP Project

— To develop a set of generic infusion
pump (safety) models and

reference specification that can be T
used as a reference standard to Tl e
verify safety properties in different opthaimic
classes of infusion pumps / Sxtoma) - analla'sampind
enteral
PCA
. GlP Web S|te Generic Infusion Pump analgesic j_epidural
» provide a repository of medical
device artifacts for use in projects orspoe | chamoeray
that advance the science and Himene PoA
practice of developing high- et o
confidence medical devices, GIP Class Diagram

software, and systems, and

 establish infusion pump safety
reference models

P ~
Ei b PRECISE

5/15/11

Generic PCA (GPCA)

* Generic PCA (Patient Controlled
Analgesic) Infusion pump
— GPCA hazard analysis
— GPCA safety requirements
— GPCA reference model

* Motivation

— Demonstrate the use of model-based
development techniques for
engineering medical device software

— Provide a base open-source
reference model that can be extended
and modified to develop specific
implementations of PCA pump
software

— Provide a reasonably complex
medical design for researchers to use
in developing, refining, and improving
theories and methods needed to
develop certifiably dependable
medical devices

NN
o G
300 "B PRECISE

gallstone dissolution
insulin

therapeutic -{ chemotherapy

optaimic. . SPCA

—{ External |-{ analytical sampling
|_anesthesia

enteral

analgesic -epnura\

insulin

=

Generic Infusion Pump

\

—{implanted

therapeutic | chemotherapy

analgesic

epidural

GIP Class Diagram

W |
@ . ‘ PCA Pump
o
s |l

5
=y

GPCA reference implementation

+ Given
— GPCA Safety Requirements

— GPCA Model (Simulink/
Stateflow)

* Develop a GPCA
reference implementation

— Provide evidence that the
implementation satisfies the
safety requirements

Penn 6
Enginecring

1
i [Safety
1
1

1 1
! Formal Modeling & H
! Verification H
1

i A 4 :
! Automated H
! Implementation H
1

i A 4 :
1 1
1 1
1 1

GPCA Reference
Implementation
Model-Based Development of
GPCA Reference Implementation

PRECISE

GPCA Hazard Analysis

+ System Domain
— Infusion pump, drug infusion set, networks, patient, environment, user/medic
* Pump Components
— Infusion (pump) module, user-interface module, error handling module,
power module, does error reduction module, communication module
* Hazards
— Operational, Environmental, Electrical, Hardware, Software, Mechanical,
Biological and Chemical, Use
— For each hazard
» Pump type, Cause, action, mitigation, safety requirement
— Example Hazard : Overinfusion
» Cause : Dose limit exceeded due to too many bolus requests.
+ Action : Alarm(), Log()
» Mitigated by : Flow sensors.
— Example Hazard : Underinfusion
+ Cause : Reservoir empty
» Action : Alarm(), Log()
» Mitigated by : Flow sensors and Drug library.

Penn 7 PRECISE

Engineering

GPCA Safety Requirements

+ Aset of requirements that should be guaranteed in
general PCA pumps for patient safety.

A minimum set of generic safety requirements that can be used

to evaluate and verify software implementations for specific

infusion pumps. [3]

— No normal bolus doses should be administered when the pump is

alarming (in an error state).

Developed based on the hazard analysis (e.g., underinfusion

caused by empty reservoir.)

Contains symbolic parameters so that requirements can be

instantiated on a range of PCA pump systems

« If the calculated volume of the reservoir is y ml/, and an infusion is in
progress, an Empty Reservoir alarm shall be issued.

Informal

[3] Raoul Jetley and Paul Jones. Safety Requirements based Analysis of Infusion Pump Software.|
Proceedings of the Workshop on Software and Systems for Medical Devices and Services,
December 2007.

Penn 8 PRECISE

Engineering

5/15/11

5/15/11

GPCA Model

» An abstract representation of software used in a typical PCA
infusion pump.
» The model is built in Simulink and Stateflow.

+ State Controller
— Describes a drug administration process such
as parameter setting and bolus request.
+ Alarm Detecting Component

— Check hardware conditions and process alarrr}
on any hardware failure.

|
* GPCA Environment }
User Interface ‘L 1

System model PP

* The GPCA model interacts with pump i
hardware such as motor and sensors
through the System Model.

State
Controller

The System Architecture of GPCA Model

P 9 :
En%nnfgmg PRECISE

GPCA reference implementation

« Given
— GPCA Safety Requirements [e]

— GPCA Model (Simulink/ B

Stateflow) f"'-_'E;;;TKAL;;.},;X

! Verification H
i A 4 |
* Model-based development ; ;
| 3 |

of a GPCA reference
implementation

GPCA Reference
Implementation

Model-Based Development of
GPCA Reference Implementation

P 10 :
Foghearing PRECISE

&

Overall Plan

| GPCA Safety Requir

>

- -~

| Test sequen
| i

~
(Manual translatlon,

e

| UPPAAL Queries |

’4— - \ -

(_Formal Verification }
2

S -

Verification Result (YesIN(+

—"_--‘!-"~~

-
| Validation Result |<—--(\ Validation

S~a -

Penn
Enginecring

Model Trace

.
s

Test sequences

GPCA Model
(Simulink/Stateflow)

PO ~

l Manual translation))

S
S mmep—=——T

I

UPPAAL Model

| External Channels|

Clock Source J

L
- Code-Synthesis‘*\ - Manual
(TIMES tool) _ Implementatlon ’

- ~
- ~

latform-Independent Cod
r (C code) 1 | Glue-Code

("Eode-lnterfaciﬁg ~
Seo Compilatiorl_/

-

of the target platform

t PRECISE

E Image
—

&

Part 1. Formal Mode

ling and Verification

| GPCA Safety Requirement

>

- =~

~
(Manual translatlon n,

| UPPAAL Queries |

GPCA Model
(Simulink/Stateflow)

PO
l Manual translatlon\

S
S ——

L

—-——

(_ Formal Verification } n}
2

b — T
- S,

]
ARG | [External Channels|
lock Source J
S Sr—— ==
”Code-Synthesif\‘ ~~" Manual ~»
(TIMES tool) _ Implementatlon ’

Verification Result (YesIN4+

Model Trace
~_~Compilatiorl_/
———q---
——""!"~~
— Pid o ~, E Image | ___________]
| Validation Result |<—--(\\~ Validation /)4‘“' of the target platform |<-

Penn

Test sequences

latform-Independent Cod
r (C code) 1 | Glue-Code

("Eode-lnterfaciﬁg ~

12 PRECISE

5/15/11

5/15/11

UPPAAL (UPPsala + AALborg = UPPAAL)

» UPPAAL is a tool for Modeling,
Validation, and Verification |
» Major functionalities: -

A description language: network of timed
automata extended with variables.

f name: [rran Parameters: [corstid tid

A Simulator : validation tool which enables
examination of possible executions of a
system.

A Model-checker: for automatic verification of
safety properties by reachability analysis of
the symbolic state-space.

System Description
Timed Automata A
Yes!

k*- Model Checker J

UPPAAL —
A sat F *
No!

Diagnostic Infomation

Requirement
Specification F

P 13 -
Ei b PRECISE

Formalization of the GPCA model

* Transform the GPCA model into a network of UPPAAL
automata
— Aims to retain as much of the syntactic structure of the GPCA
model as possible following a rigorous manual process
— Maintain one-to-one mapping between states, conditions, user
actions, and transitions in the two models
+ State : Alarm-Empty-Reservoir
» Condition : Cond-6-2 (An infusion error Empty Reservoir is detected
during the ongoing infusion process.)
» Action : E-RequestBolus (Request for a bolus dose by pressing a
button)
— Currently the UPPAAL model consists of approximately 50
states, 100 transitions, and 50 user actions and conditions

P 14 -
Engineering PRECISE

5/15/11

Formalization of the GPCA model

- o Poweronr | ! ConfirmPoweronm
E 1 | Contirm |
H :
2 E _Power] -
H =| 2
£ o £
< a
“ || Alrm_POSTFailure Cond_1_1 o 5
3 2
]
POSTDone
Infusion Session
F_CheckAdminSet
Sub Machine
Check Drug
Routine _ I I Cond 2
M F_Newlnfusion

Infusion Configuration
E_ConfigurelnfusionProgram Routine

|Al LevelO N I Level One_Alarm
rm_Level

The GPCA State Controller

P 15 :
Foghearing PRECISE

Formalization of the GPCA model,

——] roveronr e cninmameror | . 0
F_Con irm Vi
J— Y | . f—
Py Q@ F_PowerBution g T
~] o POST g 1
= POSTFailure Cond_1_1 E) 5 \ 4
! 3
T <
| S
TOSTDone —y | S S M
I Infusion Session
F_CheckAdminSet - —
Sub Machine

CDR N

Check Drug

Routine

l—
le—

[P

1. LeelOneAlrm 7
J | oS
G The GPCA State Controller =

Penn

Example : Infusion Configuration Routine (ICR)

Aim_LongWait_ChangeDoseRate

X1 > MAX_WAIT_INPUT_T
x1=0
DisplayDoseRate

E_Cancel?

E_ConfirmVTBI?

E_ChangeDose
oseRate
ITNPUTT £ _GhangeDoseRate?
x1=0

ConfirmDoseRate?

/ CheckDoseRate

E_ConfirmDoseRal
x1=

E_ChangeVTBI?
x1=0

E_ConfirmVTBI?
> MAX_WAIT_INPUT_T

ChangeVTBI @

E_Confin{
Airm_LongWait_ChangeVTBI

iolation

Win_DoseRateSoftLim
E_ChangeVTBI?

x1=0

E_ConfigurelnfusionProgram?

Airm_LongWait_Startinfusion
Cond_5_1? o
tartinfusion?

Cond_5_2
M_ICR_State = mE.

5/15/11

17

Penn
Engincering

PRECISE

Infusion Session Submachine (ISSM)

Arm_TooLongInfusionPause

Example :

x1> MAX_ALRM_T

InfusionPaused
x1 <MAX_PAUSED_T (@)

ConfimPause

E_Pauselnfusion?

E_Req
E_Reque

BolusRequest M
MCond_

Wm_LowReservior

Arm_EmptyRg
E_StopInfusign?

_WrongDrug

M_ICR_State =false, MCDR_In_Progress = trus
E_Newinfusion?

Engincering

PRECISE

Environment : User Action

E_ConfimDoseRatg! ¢1\,ngeposeRate!

angeVTBI!
E_Startinfusion! E_ChangeVTBI

E_ConfimVTBI!

E_ConfimConcentration!
E_Prime!

E_CheckAdminSet!

S0e

E Cur‘u,~-pm.sv"“

E_ClearAlarm!

©

E_Re stBolus!

E_Cancel!

E_Stoplnfusion! ©
E_ConfigurelnfusionProgram!

E_ConfimStoplnfusion!

Penn 19

E_CheckAdminSet_1!
\ Newinfusion!
S Faussirusion! ¥ ‘;/
EkDrLg‘

E_PowerButton!

PRECISE

Environment : Hardware Conditions

Cond-6-3 implies “An infusion error Empty Reservoir is
detected during the ongoing infusion process”

Penn 20

PRECISE

5/15/11

10

Formalization of the Safety Requirements

» Safety requirements are translated into temporal logic formula using the
UPPAAL query language.
« Example of Safety requirement formalization
— No bolus dose shall be possible during the POST
* A[] (! (POST.Post-In-Progress && ISSM.BolusRequest))
— No normal bolus doses should be administered when the pump is alarming (in an
error state).
» A[](! (ISSM.BolusRequest && CDR.Alrm-UnknownDrug))
— The pump shall issue an alarm if paused for more than t minutes
* (ISSM.InfusionPaused && x1 > MAX-PAUSED-T)
-> [ISSM.Alrm-TooLonglInfusionPause
— If the calculated volume of the reservoir is y ml, and an infusion is in progress, an
Empty Reservoir alarm shall be issued.
* (ISSM.Infusion-NormalOperation && Cond-6-3== true)
-> |[SSM.AlIrm-EmptyReservior

P 21 -
Ei b PRECISE

Formalization of the Safety Requirements

* Not all safety requirements can be translated into temporal logic formula
+ Categorization of the safety requirements:
Category 1) A safety requirement can be formalized and verified in the UPPAAL
model. (~20 out of 97 requirements)
No bolus dose shall be possible during the POST
. The pump shall issue an alert if paused for more than t minutes

P 22 -
Engineering PRECISE

5/15/11

11

Formalization of the Safety Requirements

* Not all safety requirements can be translated into temporal logic formula.
+ Categorization of the safety requirements.
Category 1) A safety requirement can be formalized and verified in the UPPAAL
model. (~20 out of 97 requirements)
No bolus dose shall be possible during the POST
. The pump shall issue an alert if paused for more than t minutes
Category 2) A safety requirement can be formalized, but the GPCA model needs
additional information to verify it. (~23 out of 97 requirements)

If the suspend occurs due to a fault condition, the pump shall be stopped immediately
without completing the current pump stroke.

Penn e PRECISE

Engineering

Formalization of the Safety Requirements

* Not all safety requirements can be translated into temporal logic formula.
+ Categorization of the safety requirements.
Category 1) A safety requirement can be formalized and verified in the UPPAAL
model. (~20 out of 97 requirements)
No bolus dose shall be possible during the POST
. The pump shall issue an alert if paused for more than t minutes
Category 2) A safety requirement can be formalized, but the GPCA model needs
additional information to verify it. (~23 out of 97 requirements)
If the suspend occurs due to a fault condition, the pump shall be stopped immediately
without completing the current pump stroke.
Category 3) A safety requirement cannot be formalized, but can be validated at the
implementation level. (~31 out of 97 requirements)
. The flow rate for the bolus dose shall be programmable.

Penn 2 PREEZISE

Engineering

5/15/11

12

Formalization of the Safety Requirements

* Not all safety requirements can be translated into temporal logic formula
+ Categorization of the safety requirements
Category 1) A safety requirement can be formalized and verified in the UPPAAL
model. (~20 out of 97 requirements)
. No bolus dose shall be possible during the POST
. The pump shall issue an alert if paused for more than t minutes
Category 2) A safety requirement can be formalized, but the GPCA model needs
additional information to verify it. (~23 out of 97 requirements)
. If the suspend occurs due to a fault condition, the pump shall be stopped immediately
without completing the current pump stroke
Category 3) A safety requirement cannot be formalized, but can be validated at the
implementation level. (~31 out of 97 requirements)
. The flow rate for the bolus dose shall be programmable
Category 4) A safety requirement cannot be formalized because the statement is too
vague or related to the environment of the GPCA model. (~23 out of 97
requirements)
. Flow discontinuity at low flows should be minimal (“minimal” not defined)

. A key that is depressed shall not be identified as a distinct key press for a period of t
seconds (related to Ul)

P 25 -
Ei b PRECISE

Part 2. Implementation

T
! Test sequences

H
o | Test sequen GPCA Model
| GPCA Safety Requirement (Simulink/Stateflow)

>

- -~

~, - TSN
(\ Manual translation } (_ Manual translation }
~ - -
~ - -

Il T
| UPPAAL Queries | """"" UAA Lt | External Channels|

/ Clock Source J
(i Ny ¢~ Code-Synthesis™, ~~" Manual ~>»
\fgr.mal Verlflcailgg, ‘~~.(T.'E“_ES_“_"1')_—" \JTBI_emeft_a:igg/
Verification Result (YesIN(+ r'a'f°'"‘"('éd§g:2;’°"t °°d1 | Glue-Code |
Model Trace « 'Et;de-lnterfa;i;i\
~_~Compilatiorl‘/
-
— _(,—"-__-“_--"~\ tation| E Image P
| Validation Result |<-' SN Validation /K"'TFa'c'""'I of the target platform

Pori 7 PRECISE
Engineering LS el

5/15/11

13

TIMES

(Tool for Modeling and Implementation of Embedded Systems)

« TIMES is a tool set for modeling, schedulability analysis, synthesis of
executable code.
* The tool is divided in three parts:
o A system specification part :
Designing timed automata extended with tasks.
o A system analysis part :
For validation using the simulator and verification using UPPAAL verifier.
o The Code Generation:

Synthesize the timed automata model into executable C-code either for
Brick OS or platform-independent.

= System Specification System Analysis

Editor Analyser
s

— ST) |y ven e
—>

oy
(e)

XML
(simuiator }H—
Execution Tr
Scheduler] | | | (" Contoler \ | _
generator | Synthesizer ; et
,,,,,,, Optimai Schedule

Ge(:\::':lor e D S E

Code

|
i
1
[T Nomotsohecuvie |
|
i
i
|

Automated Implementation

* Reasons for adopting automated implementation.
— Preservation of verified properties (including timing properties®)
— Manual implementation is error prone due to the large number of
control states and variety of events that the code needs to react
to
» Practical consideration of automated implementation.

— The overall code structure is constrained by the code structure of
the automatically generated code.

— Abstracted functionalities need to be manually implemented.
— Generated code needs to be customized for the target platform.

P 28 -
Engineering PRECISE

5/15/11

14

Our Implementation Platform

» Used or recalled commercial PCA pumps are available from E-Bay
» Remove the microcontroller provided by the pump manufacturer

* Interface the pump hardware (stepper motor, switches, buzzer...) to
our microcontroller (Beagleboard and Atmega128 microcontroller)

* Add more hardware peripherals (e.g., sensors....)

ehY M%?O/

CATEGORES v | FASHON | MOTORS | DEALS | CLASSFIEDS

4@) 836k to Search Result | Lsted in cateory: Business & Industrial > Healthcars, Lab & Life Scisnce > Medical Equipment > IV & Fluid Administration

’ Abbott Lifecare 4100 PCA Plus Il Infusion Pump

n Used

34 05h (Apr 28, 2011 13:32:35 PDT)
Y Obids

Stating bid: US $65.00

Your max bid: US § Place bid
(enter Us 565,00 o mere)

.y back, buyer pays return shipping | Read details

Buyer Protection
ur purchase

price plus original shipping.

P 29 :
Egnlfgmg PRECISE

() GPCA Contralier W R i
Network Setting | GPCA Control | Logging

GPCA Implementation Platform

GPCA Implementatioh

(Beagleboard-OMAP 3530 | User Interface

TCP/IP Connection
(to Tester)

Sensor/Actuatol
Controller
(Atmega1281)

RS232 Connectid
\ (to Controller)

Penn %0 PREEZISE

Engineering

5/15/11

15

Types of the GPCA Source Code

* GPCA model code (Platform-independent)
— GPCA model is synthesized into C-code using TIMES tool
— This code implements control-flow of the GPCA model depending on
user-action and hardware conditions
* Glue code to interface to the target platform (Platform-dependent)
— Clock implementation using the target platform APIs
— Environmental interface (for user and GPCA hardware)
» Code for abstracted functionalities
— Pump-motor driving code on transition to Infusion-Normal-Operation to
inject drug to patient (e.g., providing electrical signal to the pump motor)
— Code for updating dose rate on ChangeDoseRate state (e.g.,
maintaining variables for dose rate that is updated by user request)

&, Penn o PRECISE
@Engjnccring LB Sy
Validation of the GPCA Implementation
* Reason for requiring validation in automated implementation
— Still exists many factors that cannot be formalized.
« manually-written glue code, abstracted functionalities.
— Gain higher confidence of the final implementation with the
hardware peripherals
* Online conformance testing using a tester
— Atester that consists of a monitor and input generator is additionally
implemented for online conformance testing
» The monitor observes the runtime behavior of the GPCA implementation
» The input generator provides environmental stimulus (e.g., user input
and hardware condition)
— Safety requirements are used to generate test scenarios
» The runtime trace of the implementation is compared to the verified
UPPAAL model trace under the same test scenario
o Penn 82 PRECISE
@Engjnccring LY Sy

5/15/11

16

Part 3. Validation

« Safety Requirement : The pump shall issue an alarm if paused for more then t minutes

<Model Trace> <Implementation Trace>
(ot e T

Network Setting | GPCA Control | Logging | |

ool Doseran | e] SroAsiate Jieast | |1 <Injecting drugs>
forsrer :

0758 127

75004
103093
s 1107
102108
085103

Pause button!

Yes, Pause!

Alarm?

108:13.103
10814101
108:15.100
1081698
108:17.07
1081895
108:1.108
10820139
108:21.106
108:22 198
0823118
10824132

y <Stop infusion
Session>

LI

e Clear

The UPPAAL model
(Infusion Session Submachine)

The Tester screenshot
i - PRECISE

Current and Future Work

+ Refine and complete the development...
— Extend requirements to include security & privacy requirements

+ ldentify generic-platform dependent & specific-platform
dependent glue code
— How much need to be redone with a different pump hardware
» Assurance/safety cases for the GPCA reference
implementation
— Mock FDA submission

» Open source/testbed

* Related work

— Network controllable medical device for MDPnP/MDCF, John
Hatcliff

— Test generation, Mats Heimdahl, Mike Whelan

Penn a4 PREEZISE

Engincering

5/15/11

17

5/15/11

Thank Youl!
Questions?

18

