

This is the author version published as:

This is the accepted version of this article. To be published as :
This is the author version published as:

QUT Digital Repository:
http://eprints.qut.edu.au/

Khan, Roheena Q. and Corney, Malcolm W. and Clark, Andrew J. and Mohay,
George M. (2010) Transaction mining for fraud detection in ERP Systems.
Industrial Engineering and Management Systems, 9(2).

�����������
Copyright 2010 [please consult the authors]

�

""����
†�Ø�Corresponding Author�

Transaction Mining for Fraud Detection
in ERP Systems

Roheena Khan†, Malcolm Corney, Andrew Clark, George Mohay
Information Security Institute

Queensland University of Technology, Brisbane 4001, AUSTRALIA
+61-07-313-89386, Email: {r.khan, m.corney, a.clark, g.mohay}@qut.edu.au

Abstract. Despite all attempts to prevent fraud, it continues to be a major threat to industry and government.
Traditionally, organizations have focused on fraud prevention rather than detection, to combat fraud. In this
paper we present a role mining inspired approach to represent user behaviour in Enterprise Resource Planning
(ERP) systems, primarily aimed at detecting opportunities to commit fraud or potentially suspicious activities.
We have adapted an approach which uses set theory to create transaction profiles based on analysis of user
activity records. Based on these transaction profiles, we propose a set of (1) anomaly types to detect
potentially suspicious user behaviour, and (2) scenarios to identify inadequate segregation of duties in an ERP
environment. In addition, we present two algorithms to construct a directed acyclic graph to represent
relationships between transaction profiles. Experiments were conducted using a real dataset obtained from a
teaching environment and a demonstration dataset, both using SAP R/3, presently the predominant ERP
system. The results of this empirical research demonstrate the effectiveness of the proposed approach.

Keywords: Fraud Detection, Audit Trail Analysis, Security, Role Mining, Anomaly Detection, Enterprise
Resource Planning Systems.

1. INTRODUCTION

Fraud costs the Australian economy up to 3 billion

dollars each year (Standards Australia 2008). Not only is
the financial loss a great concern, fraud also means reduced
macroeconomic outcomes. Yet, many businesses today are
ill-prepared to detect and prevent fraud, with many having
made little or no progress in developing any form of
effective fraud control strategy (Standards Australia 2008).
Although numerous high-end data mining tools
incorporating fraud detection capabilities are available
(Mohay et al. 2003), they only detect certain types of
frauds; their capabilities are usually limited since the
detection relies on simple, built-in rules defined by domain
experts. Fraud examiners and auditors require scripting
skills and an understanding of the underlying data mining
functions to conduct effective audits.

As significant advances in technology emerge, more
and more organizations are now adopting ERP systems,
with most of the Fortune 1000 firms having installed ERP
systems to run their businesses (Bingi et al. 1999). An ERP
system is a packaged software solution that aims to
automate and integrate the core business processes of an

organization. Whilst ERP systems provide numerous
benefits to organizations, due to their nature they are
vulnerable to many internal and external threats (Little and
Best 2003).

Since the advent of ERP systems in the 1990s,
researchers have primarily focused on fraud prevention
rather than fraud detection. Many recent publications have
discussed fraud prevention approaches such as role-based
access control, segregation of duties, encryption, username
and passwords, etc. (Huang et al. 2008; Vaidya et al. 2008;
Albrecht et al. 2009). Although many organizations employ
fraud prevention techniques, these only prevent simple
kinds of fraud from occurring and are not enough on their
own (Bolton and Hand 2002). Complex instances of fraud
built over time, involving various applications, are difficult
to prevent. Nevertheless only a few publications deal with
fraud detection approaches in ERP systems (Cahill et al.
2002; Best et al. 2009). Another driver for better fraud
detection particularly in ERP systems, is the shift towards
service oriented architectures. These architectures allow a
higher degree of automation of business processes, which
may lead to more cases of fraud as the number of human
checks are reduced and the number of entry points into the

�

����

system are increased.
Typically, auditors and fraud examiners review audit

logs to detect fraud in ERP systems, a labor-intensive task
requiring time, effort and resources (Wells 2008). In order
to conduct effective audits, they need to have a good
understanding of the business, ERP software and its
features. According to the ACFE report to the nation (2006),
most frauds are detected by tip or by accident. Generally
fraudsters start by stealing smaller amounts, but if not
detected early, they continue to steal larger and larger
amounts. Also fraud detection is a continuously evolving
discipline; as detection strategies are learned and therefore
circumvented more easily by fraudsters, early detection is
extremely critical. While regular audits are conducted
generally once every financial year, fraud will only be
detected towards the end of the year. In fact, according to
the KPMG fraud survey (2006), the average time to detect
fraud is 18 months.

The cost of financial fraud and its pervasive long-term
impact is enormous. Organizations that have suffered fraud
not only bear the direct cost of the fraud itself but also the
indirect costs of investigating and preventing fraud from
reoccurring. Victim organizations lose investor and
consumer confidence and in many cases are unable to
recover the losses. The typical organization loses 7% of its
annual revenue to fraud (ACFE 2008) and according to a
recent survey, as many as 42% of organizations recover
none of their losses after discovering fraud (ACFE 2006). If
a cost benefit analysis is done, the cost of not employing
any fraud detection measures potentially outweighs the cost
of the fraud detection system. Therefore it is not only
prudent but critical that fraud detection measures form an
essential component of both the risk mitigation strategy and
the overall business strategy of the organization. The
proposed system assists in mitigating the risk of financial
fraud and aims to protect stakeholders such as shareholders,
customers, suppliers and banks from the implications of
fraud.

ERP systems typically use a form of role based access
control which can assist in the segregation of duties to
reduce the opportunities to commit fraud. Many researchers
have discussed the use of role mining techniques to
automatically identify roles from existing permissions
assigned to users within an organization (Sandhu et al.
1996; Kuhlmann et al. 2003; Schlegelmilch and Steffens
2005; Vaidya et al. 2006; Zhang et al. 2007). Our current
work has been motivated by role mining techniques,
adapted to identify transaction profiles and so detect
suspicious activities or anomalies and violations in
segregation of duties with respect to the activities actually
performed by users. We have also developed a graphical
representation depicting the relationships between
transaction profiles. The intention is to identify activity

which may be indicative of financial fraud. The key
contributions of this article are:

(i) A novel and simple fraud detection approach:
Many current fraud detection approaches employ
techniques and algorithms that are complex and difficult to
comprehend such as neural networks and support vector
machines. In this article, we propose a new and simple
approach which focuses on the set of all transaction types
performed by an individual user to detect potentially
fraudulent activities. Each unique set of activities used to
profile a user, over a period of time is called a transaction
profile. Our approach is inspired by role mining approaches
and so far, to our knowledge has never been used to detect
fraud.

(ii) An automated and efficient fraud detection
approach: Auditors and fraud examiners generally review
audit logs to identify fraudulent transactions. With
potentially billions of records especially in large
organizations, reviewing audit records manually is a labor
intensive and tedious task requiring time, effort and
resources. Generally the legitimate transactions far
outnumber the fraudulent ones; making them more difficult
to identify, for example: in a dataset consisting of some 12
billion transactions per year, approximately 10 million or
one in every 1,200 transactions turn out to be fraudulent
(Hassibi 2000). On the other hand, whilst commercial fraud
detection packages are automated and efficient, auditors
require scripting capabilities and an understanding of the
data mining functions to conduct effective audits.

In this work, we propose an automated and efficient
fraud detection approach which automatically generates a
list of the most interesting or potentially suspicious
activities to help focus the auditor’s attention on a relatively
small number of significant records. Automated fraud
detection approaches provide a possibility of real time
fraud detection which can be conducted continuously
therefore identifying frauds as soon as they are perpetrated
and reducing the overall financial losses and time to detect
fraud.

(iii) Potentially detect previously unforeseen
fraudulent activities: Most current approaches detect
certain types of frauds that are known or specific to a
particular field. Typically these frauds or activities are
defined using built-in rules developed by domain experts.
We propose a novel unsupervised approach which flags
both known and unknown types of activities that represent
anomalies or potentially suspicious behavior and are of
interest to auditors. Our proposed approach does not rely on
classification or identification of fraudulent and/or non-
fraudulent transactions in historical datasets.

(iv) Fraud detection context or application area:
Most fraud detection research has been applied to and
classified into three main areas: health care, including

�

����

medical insurance, credit card and telecommunications. In
this work, we present a fraud detection approach for ERP
systems. Fraud detection research has virtually never been
applied to the context of ERP systems and in particular, to
detect anomalies.

This article extends our work discussed in Khan et al.
(2009). The next section articulates the related work in the
area of fraud detection, role mining and anomaly detection.
The article follows with a discussion of the proposed
approach, using transaction profiles, in Section 3. An
illustration of the proposed scenarios for identifying
inadequate segregation of duties and of anomaly types for
detecting anomalous behavior are presented in Sections 3.1
and 3.2 respectively. Next, the generation and
implementation of a directed acyclic graph, showing
relationships between transaction profiles is explained with
the help of an example in Section 3.2.1. The experiments
and a discussion of the results are presented in Section 4.
The article concludes with a brief description on the current
work and future directions.

2. RELATED WORK

Role mining approaches generate roles from existing

permissions assigned to users. We have adapted a role
mining approach for generating transaction profiles from
the user activities recorded in an ERP system. We have
derived a set of anomaly types that flag potentially
suspicious activities from these transaction profiles. We
also detect scenarios that identify violations in proper
segregation of duties from the transaction profiles, based on
the principles presented in Little and Best (2003). The next
subsections discuss the related work in the literature.

2.1 Fraud Detection

Since financial frauds involving Enron, HIH and

WorldCom, there is increasing legislative pressure on
organizations of all sizes to adopt proactive fraud detection
techniques. Fraud detection refers to the activity of
proactively searching for or finding the indicators (also
called symptoms or red flags) that suggest that fraud may
be occurring (Albrecht et al. 2006).

Many organizations choose not to publicize their
losses from financial fraud or even the fact that they have
suffered some kind of fraud. This is mainly because they
might lose the trust and confidence of their customers,
investors and suppliers. Even if organizations do publicize
their losses from financial frauds, they may not choose to
share their detection strategies - as fraudsters might use this
knowledge to develop fraud techniques which avoid
detection. Although literature on major financial frauds and

yearly facts and figures on the total losses from financial
frauds are available, detailed descriptions of detection
techniques are not available.

Essentially, fraud detection approaches have been
categorized into supervised, unsupervised or hybrid (that is,
a combination of both the supervised and unsupervised
approaches) (Bolton and Hand 2002). Supervised methods
can only detect previously known or existing fraud cases
and are unable to detect novel fraud attacks. Samples of
both fraudulent and non-fraudulent patterns are required to
construct models in order to assign observations into one of
the two classes. Supervised methods have the problem of
unbalanced class sizes, that is, the legitimate transactions
far outnumber the fraudulent ones and this imbalance can
cause misspecification of models (Bolton and Hand 2002).
Examples of rule-based algorithms that use supervised
methods include RIPPER (Cohen 1995) and C4.5 (Quinlan
1993).

Unsupervised methods do not require prior knowledge
of fraud cases, they try to establish profiles of normal
behaviour and any deviations from the profile are
considered to indicate possibly fraudulent behavior.
Observations most dissimilar to the norm are more likely to
be fraudulent and anomalous, and can then be examined
more closely. Unsupervised fraud detection methods have
been researched in the detection of computer intrusion
(typically employing profiling and anomaly detection
techniques – discussed further in Section 2.3). In this paper,
we propose an unsupervised fraud detection approach (see
Section 3).

Link analysis and visualization techniques have gained
popularity among fraud investigators (Cox et al. 1997).
Link analysis explores the inherent relationships between a
principal and other data represented within the dataset,
using visualization, record linkage and social network
methods. With the aid of powerful visualization tools such
as i2 and Netmap, analyzing patterns and relationships in
large datasets, with potentially billions of records, have also
become more effective.

After reviewing over 50 published papers on fraud
detection, over a period of ten years, Phua et al. conclude
that only seven studies claim the implementation of a fraud
detection system (Phua et al. 2005). Table 1 shows a
summary of the seven studies including their application
area, classification method, technique employed and a brief
description of the approach. Our approach is most similar
to Cortes et al. (2003) and Cox et al. (1997) as they have
used graph structures to represent data, in order to detect
potentially suspicious behavior.

Most fraud detection research has been applied in the
context of health care, credit card or telecommunications
fraud. Only a few studies have discussed fraud detection
approaches in the context of ERP systems. Best et al.(2009)

�

����

Table 1: Summary of the 7 studies which have implemented a fraud detection system

propose a supervised methodology in which ERP security
logs are extracted and analyzed to flag users who have
performed a critical combination of transaction codes. The
flagged records are then further examined by checking
additional information from other system tables to
determine whether a fraud has actually occurred (Best et al.
2009).

2.2 Role Mining and Segregation of Duties

Segregation of duty policies reduce the opportunities

for fraud by ensuring that the separate transactions making
up a sensitive combination of transactions, must be invoked
by separate people (Kuhn 1997; Sandhu et al. 1999). If, for
example, an individual has privileges to both authorize and
execute transactions, it is possible for them to commit and
cover fraud in their normal course of duties. Effective
internal control structures require such privileges to be
segregated at various levels within an organization.
Weaknesses in segregation controls are common and often
provide opportunities for fraud (KPMG 2006). Numerous
guidelines and principles for the separation of duties have
been proposed in the literature to prevent fraud (Srinidhi
1994; Haelst and Jansen 1997; Arens and Loebbecke 2000;
Little and Best 2003).

In an ERP system, where hundreds or thousands of
users may be performing activities, the only way to
segregate duties is to assign roles and authorizations to

users which would prevent any one of them from
performing incompatible combinations of transactions
(Little and Best 2003). When so many ERP system users
must be assigned their own individual access permissions,
role engineering saves significant time and money while
protecting data and systems (Coyne and Davis 2007). Role
engineering is the process of identifying a set of roles that
is complete and correct and to do so in an efficient manner
(Coyne 1996). Synonyms of role engineering include role
discovery, role finding and role characterization.
Essentially there are two main approaches to role
engineering: (i) the top-down approach and (ii) the bottom-
up approach. Some authors have also discussed a
combination of the two approaches, called a hybrid
approach (Schaad et al. 2001).

In the top-down approach, business processes are
carefully examined to identify job functions and their
associated roles. Top-down approaches are mainly adopted
by small enterprises where there are no existing roles or
permissions assigned to individuals (Martin et al. 2003).
Though the approach identifies groups of users who
perform similar activities accurately, it is a costly, time
consuming and tedious process to understand the semantics
of the business processes especially in large organizations
with millions of authorizations and thousands of users
(Vaidya et al. 2008). Detecting financial fraud is a labor-
intensive task requiring time, effort and resources for
internal and external auditors, and having to perform role

Study Area Classification Technique Approach
(Major and
Riedinger

1992)

Medical
insurance Supervised Expert

systems

A five-layer knowledge/statistical based system which
compares each observation with other similar
observations.

(Cox 1995) Medical
insurance Hybrid

Neural
network,

fuzzy logic

A fuzzy system which derives clusters and then
identifies patterns using a classification approach.

(Dorronsoro
et al. 1997) Credit card Unsupervised Neural

network

Use the nonlinear discriminant analysis neural model to
separate fraudulent operations away from other similar
to normal traffic.

(Ghosh and
Reilly 1994) Credit card Supervised Neural

network

A three-layer feed forward Radial Basis Function
(RBF)-based neural network is used to create a fraud
score for each new observation.

(Cortes et al.
2003)

Telecomm-
unications Unsupervised

Dynamic
graph

structures

Use graph theory to visually determine communities of
interest to detect call patterns among groups of
customers.

(Cahill et al.
2002)

Telecomm-
unications Hybrid Event driven

Each call is given an average suspicion score according
to the extent to which it deviates from the normal
signature and resembles the fraudulent signature.

(Cox et al.
1997)

Telecomm-
unications Unsupervised Visualization

Graphical displays (showing relevance by color, size
and position) of calls between subscribers in different
geographical locations.

�

�

mining using this approach would further extend the
manual audit processes.

On the other hand, the bottom-up approaches derive
roles from existing permissions assigned to users, with
minimal human intervention. Most studies in the literature
have proposed bottom-up role mining techniques as they
automate the process of role discovery and are therefore
more cost effective (Zhang et al. 2007). This approach is
not likely to consider the business functions within an
organization (Shin et al. 2003).

Schlegelmilch and Steffens (2005) present a bottom-
up approach which uses hierarchical clustering to create a
hierarchical tree of permissions and users which can be
used to derive roles. Their algorithm first computes for
each permission the number of users who have that
permission and groups these users together in a cluster. In
this initial step, each different permission is in its own
cluster, meaning that each user may be a member of
multiple clusters. Pairs of clusters are combined based on
the maximal overlap of their user sets. Newly formed
clusters contain the permissions of their child clusters and
the set of users from the child clusters who have all
permissions in this new cluster. The algorithm stops when
no more clusters can be combined or when all permissions
are combined into one root node. The algorithm does not
derive roles, but a tree with users and permissions, although
is the authors include a discussion on manually deriving
roles from the tree.

Another bottom up approach, proposed by Vaidya et al.
(2006) uses subset enumeration to derive roles from
existing permissions. The algorithm intersects all possible
combinations of permissions to derive roles. It starts by
considering existing permissions assigned to users as roles,
called initial roles. The intersections of these roles are then
used to generate more roles, called generated roles. Further
intersections of generated and initial roles are carried out
until no new roles are generated (Vaidya et al. 2006). Our
implementation of this algorithm discovered that an
enormous number of roles are generated, and not
surprisingly, that some of these were not allocated to any
users. We believe that this approach would be impractical
and time consuming for an auditor to use to detect
anomalous activities.

Compared to Vaidya et al. (2006) and Schlegelmilch
and Steffens (2005) work, our approach is more similar to
Schlegelmilch and Steffens (2005). In their study they have
suggested roles that are derived from existing permissions
assigned to users. While in our approach we use subset-
superset relationships to derive transaction profiles from
the activities actually performed by users (see Section 3 for
details).

2.3 Anomaly Detection and User Profiling

There has been a vast amount of literature published in

the past 20 years on intrusion detection, a field of computer
security that deals with computer and network attacks.
Misuse or signature detection tries to identify known or
encoded attacks in the form of a pattern and constantly
monitors the system for the occurrence of these patterns,
for example, frequent changes to a payroll file or attempts
to read a password file. Examples of misuse detection in
audit trails include state transition analysis (Ilgun et al.
1995) and Coloured Petri Nets (Kumar et al. 1994).

Typical anomaly detection systems profile the regular
(also called standard or normal) behavior of a user,
generally referred to as the profiling phase, and any
deviation from this standard behavior, known as the
detection phase, is indicated as a possible intrusion or
anomaly (Lu et al. 2006). Once the deviations or anomalies
are identified, the system generates an alert. Anomaly
detection models can be capable of adjusting their detectors
to keep up with the changes in user behavior to accurately
detect suspicious behaviour (McCue 2007). They are also
capable of detecting novel attacks but are expensive in
terms of overhead, as they keep track of profiles and
updates (Kruegel and Vigna 2003) and sometimes identify
unusual but legitimate behavior as malicious, therefore
generating a high rate of false alarms. Anomaly-based
intrusion detection systems are derived from Denning’s
(1987) original model. Denning developed an intrusion-
detection system that gathered information from various
audit logs/records to create historical profiles for users.
These profiles are then compared with normal user activity
and anomaly records are generated for deviations found.
Activity logs were maintained to track actions if particular
conditions were met and could also be used for updating
profiles and generating reports (Denning 1987).

Statistical techniques have been commonly used for
anomaly detection, for example, the Next-generation
Intrusion Detection Expert System (NIDES) which
monitors real-time activities of users by calculating various
statistics. New observations are then correlated with the
calculated profiles to flag any deviations (Valdes and
Anderson 1994). Classification techniques along with
association rules and frequent episode programs have been
used by Lee and Stolfo (1998) to automatically detect
anomalies in audit data. These data mining techniques are
used to find patterns of system features that describe
program and user behavior and a set of relevant system
features are used to compute classifiers that identify
anomalies (Lee and Stolfo 1998).

The use of neural networks for anomaly detection has
also been popular. Ryan et al. (1997) used back propagation
neural networks in a Unix environment, to construct user

�

�

profiles based on the type and frequency of commands
performed. The system detects anomalies offline on daily
logs, based on previously observed behavior (Ryan et al.
1998). Ju and Vardi (2001) used a Markov model to profile
command sequences of each user. Their approach compares
a user's command sequence to the users and others'
estimated signature behaviors in real time, to detect
anomalies (Ju and Vardi 2001). Some investigators have
used clustering (k-means or other) approaches for
preprocessing or reducing the data before applying Hidden
Markov models for anomaly detection (Lane and Brodley
2003). Often clustering algorithms are applied on their own
to detect anomalous behavior. Oh and Lee (2003) detect
anomalies in audit trail data by profiling the transactions
executed by the users. They propose a method of clustering
the activities of transactions generated by a user and detect
anomalies based on each users’ profiles (Oh and Lee 2003).

More recently, graph based approaches to detect
anomalous activities have also been discussed. Graphical
methods have been used to detect insider threats in business
processes or scenarios such as document control and
management systems (Eberle and Holder 2009). Likewise,
our approach detects anomalous transaction types from
audit data by generating a collection of directed acyclic
graphs.

In the next section, we propose an approach which
builds user profiles based on the types of transactions
performed by the user recorded in the audit log. Similar to
(Ryan et al. 1998), our approach operates offline and does
not consider the sequence of commands performed.

3. TRANSACTION PROFILES

In this section we discuss our three main contributions.

We have adapted a role mining approach for deriving
transaction profiles. We use the term transaction profile
(TP) to denote a set of distinct transaction types that one or
more users have performed. A transaction profile may be
associated with one or many users and each user is
associated with exactly one transaction profile. Our work
uses information recorded in security audit logs which
record the transactions performed by the users of the
system. ERP systems generally have role based control
over which transactions a user is allowed to perform. Users
are assigned one or many roles and they are allowed to
perform any transactions in those roles, but different
policies may mandate only one role at a time.

Problems can occur when a user changes their job
function or is promoted, meaning that they are assigned a
new role or set of roles. Often their previous roles are not
revoked (Schlegelmilch and Steffens 2005). This
accumulation of roles cannot be avoided in some cases

when an organization has only a small number of
employees and these employees must take on many roles.
Often in small organizations role segregation is difficult
and users have more permissions than they require (Little
and Best 2003). These situations can provide the
opportunity for fraudulent activities when a user has access
to roles that allow them to carry out all transactions
required for those fraudulent activities. As an example, a
user may have the necessary role permissions to create a
vendor and to create orders and invoices for that vendor.

Even though a user has access to all transactions in
their assigned roles, they may not use all of them.
Therefore, two users who have the same roles assigned in
the system may have quite different transaction profiles
based on the transactions that they actually use. In our work,
we ignore roles and focus on the actual transactions that
users perform as recorded in the ERP security audit logs.

We now describe our approach to detecting transaction
profiles which represent potential fraud situations;
situations which represent inadequate segregation of duties
or user activity which is anomalous.

3.1 Detecting Inadequate Segregation of Duties

We aim to detect users whose transaction profile

contains conflicting or incompatible transactions that
violate the principles of segregation of duties. We
implement and test our approach using the theoretical
framework for separation of duties presented by Little and
Best (2003). They propose the following set of seven
principles for General Ledger (GL), Accounts Receivable
(AR) and Accounts Payable (AP) applications of an ERP
system:
(i) Users who are given the authorizations to create and edit
master records should not be able to enter transactions.
(ii) Credit management activities and master record
maintenance should be separate in AR.
(iii) Credit management and dunning (i.e. the process of
collecting overdue receivables from customers) functions
must be segregated from invoice and receipt data entry.
(iv) Receipt data entry should be separate from credit
memo and invoice data entry.
(v) In AP, cheques and payments must be performed by
someone who is not entering vendor invoices.
(vi) Writing off AR as a bad debt must be segregated from
receipt data entry.
(vii) User activities between GL, AP and AR should not
cross boundaries.

We detect scenarios based on these principles to
identify inadequate segregation of duties from transaction
profiles discovered by processing the security audit log.
The idea is to identify users whose transaction profiles have
provided the opportunity to commit fraud.

�

�

3.2 Detecting Anomalous Activities

We also aim to detect users whose transaction profiles

are anomalous when compared to other users, based on
differences in transaction profiles discovered from
processing the security audit log. We use the following
types and notation:

u : a user identifier
t : a transaction type
tp : a user transaction profile – a set of transaction
types
ug : the set of users associated with a particular tp
UG : the set of all ugs
U : the user set - the set of all user identifiers
TP : the set of all unique tps

We now describe three of the anomaly types which we

aim to identify.
Anomaly Type 1. The idea behind this anomaly type is to
detect a small group of users who behave slightly
differently to a large group of users by performing some
small number of additional transaction types. The number
of additional transaction types used to detect this anomaly
type is set as a threshold value, Δtrans, e.g. three extra
transaction types, and the difference in the number of users
with the two transaction profiles is likewise set as some
threshold, Δusers, e.g., the small group could be one-tenth
of the number of users in the large group. The detection of
transaction profiles of interest tpi can be expressed as
follows:

Find tpi ∈ TP, st ∀ tpj ∈ TP,

tpi ≠ tpj ∧

tpj ⊆ tpi ∧

|ugi| < |ugj|/Δusers ∧

|tpi| - |tpj| < Δtrans (1)

Anomaly Type 2. We aim to detect transaction profiles
which have a large number of transactions that are being
performed by a small number of users. For example: users
may have accumulated many roles over the course of their
employment in an organization. The number of users can
be set with some threshold value, Δusers and the number of
transactions can be set with another threshold value, Δtrans.
These transaction profiles may represent the administrators
of the system which would mean that the transaction
profiles are not anomalous. The user threshold value could
be set based on the known number of system administrators
to reduce the number of false positives. This can be
expressed as follows (note that the thresholds Δusers and

Δtrans have a different significance here than in Anomaly
Type 1):

Find tpi ∈ TP st

|ugi| < Δusers ∧

|tpi| > Δtrans (2)

Anomaly Type 3. A third type of anomaly is proposed
which will detect transaction profiles that are completely
separate from all other transaction profiles i.e. transaction
profiles where none of the transaction types in the
transaction profile can be found in any other transaction
profile. Users having these transaction profiles could be
interesting to locate, simply because they share no
transaction types with other users. The number of users
with such a transaction profile is expected to be low.

Find tpi ∈ TP, st ∀ tpk ∈ TP,

tpi ≠ tpk ∧

tpi ∩ tpk = { } (3)

Discussion. It may be noticed that detection of these

anomaly types relies on set relations between transaction
profiles. The transaction profiles of interest in Anomaly
Type 1 have a transaction set which is a slight superset of a
transaction profile which is used by a large number of users.
Anomaly Type 2 may arise because the set of transactions
in the transaction profile of interest is the superset of
transaction sets of multiple other transaction profiles.
Anomaly Type 3 may occur when the transaction profile
has a unique transaction set i.e. the transaction profile has
no transaction supersets or subsets.

We propose to use a directed acyclic graph of
transaction profiles to represent the subset – superset
relationships. Directed edges connect transaction profiles
from a parent vertex to a child vertex where the transaction
type set in the parent is a proper subset of those in the child.
A graph built from transaction profiles may have multiple
roots. These root vertices will be transaction profiles with
unique transaction sets, probably with a small number of
transactions. Internal and leaf vertices in the graph may
have one or many parent vertices. There may be vertices in
the graph which are not connected at all and these will
relate to Anomaly Type 3 above.

When the graph has been built, it can be traversed to
detect the anomaly types discussed above and flag possibly
fraudulent transaction profiles and their users. We suggest
that it is necessary to have security log data from a system
for a long period of time in order to reduce the number of
false positives that the anomaly types may generate.

�

�

3.2.1 Generating the Transaction Profile Graph

Our approach uses set theory to profile user activities

recorded in ERP security audit log files. Given a set of
users and transaction types, in an ERP security log, our
algorithm progresses in three phases as follows:
(1) User-transaction mapping: We firstly traverse the ERP
security audit log, to map users to a set of transaction types
that they have performed. For each user, a user-to-
transaction type set mapping is generated.

Algorithm 1. Transaction profile generation� �
1. TP ← { }
2. UG ←{ }
3. for each ui ∈ U do
4. tpi ← get_tp(ui)
5. if tpi ∈ TP then
6. ugi ← get_ug(tpi)
7. ugi ← ugi ∪ ui
8. else
9. TP ← TP ∪ tpi
10. ugi ← {ui}
11. end if
12. end for

(2) Transaction profile generation: We next generate a set,
TP, of unique transaction profiles from the user-to-
transaction type set mappings, ui → tpi. Each distinct set of
transaction types represents a transaction profile, tpi. Users
who have the same transaction profile are grouped into a
set ugi, associated with that transaction profile. We have a
mapping from users to their transaction profiles:

get_tp : u → tp
and a mapping from transaction profiles to the set of users
associated with that transaction profile:

get_ug : tp → ug.
The process of generating transaction profiles is presented
in Algorithm 1.
(3) Deriving the transaction profile graph: A directed
acyclic graph, G, is generated by this phase of the
algorithm which has a set of directed edges, E, and a set of
vertices, V, which represent the transaction profiles
generated in Phase 2. A directed edge is connected from
one transaction profile to another if the transaction set of
the former is a proper subset of the transaction set of the
latter. The final graph has a further restriction that a
transaction profile will not have direct edges to a vertex
which is a descendant of one of its children as these are
redundant. The process of deriving the directed acyclic
graph is presented in Algorithm 2.

The graph is initialized with a special null transaction
profile, tpØ, which has an empty transaction set (Steps 1 to
3 of Algorithm 2). This root vertex therefore acts as a

parent for all transaction profile vertices that are added to
the graph because it is a proper subset of all other
transaction profiles and is present only for simplifying
graph generation. This root vertex is ignored in all further
calculations once the graph has been generated.

The remainder of the transaction profiles are added to
the graph in order of the cardinality of the transaction set,
|tpi|, in the transaction profile. Each transaction profile is
tested to determine if transaction profiles currently in the
graph have transaction sets that are proper subsets of the
current transaction profile’s transaction set. If the subset
relationship is discovered, an edge from the parent
transaction profile in the graph to the current child
transaction profile is added to the set of edges (Steps 4 to
13 of Algorithm 2). Once a full pass of transaction profiles
has been made, redundant edges as mentioned above are
removed. This is achieved by starting at the leaves of the
graph and moving back to the root vertex of the graph
checking for such edges (Steps 14 to 24 of Algorithm 2).
There are more efficient algorithms in the literature for
determining subset enumeration (Haixun et al. 2006) but
our approach runs in polynomial time, O(n3).

Algorithm 2. Deriving the transaction profile graph
Require: TP from Algorithm 1
1. G = (V, E)
2. V ← {tpØ}
3. E ← { }
4. for x = 1 to max(|tpi|) do
5. for each tpi ∈ TP| |tpi| = x
6. for each tpg ∈ V
7. if tpg ⊆ tpi then
8. E ← E ∪ (tpg, tpi)
9. end if
10. end for
11. V ← V ∪ tpi
12. end for
13. end for
14. for x = max (|tpi|) to 1 do
15. for each tpi ∈ V| |tpi| = x
16. for each tpj ∈ V| tpi ⊆ tpj
17. for each tpg ∈ V| tpg ≠ tpi ∧ tpg ≠ tpj
18. if tpg ⊆ tpj ∧ tpg ⊆ tpi then
19. E ← E - (tpg, tpj)
20. end if
21. end for
22. end for
23. end for
24. end for

An example. Suppose the ERP security audit log of an
organization consists of six users (u1…u6) each of whom
have executed a subset of five transactions (t1…t5) during a

�

�

certain period of time. In Phase 1 of our approach, a user-
to-transaction type set mapping is generated for each user
(see Table 2). Each distinct set of transaction types
represents a transaction profile. It can be observed from
Table 2 that users u1 and u4 perform the exact same set of
transactions, meaning that they will belong to the same
transaction profile. Table 3 shows the transaction profiles,
tp and ug generated by Phase 2 of our approach. We then
add transaction profiles as vertices in the graph based on
the relationship between the sets of transaction types in the
transaction profiles.

Table 2: User transaction mapping.

U T
t1 t2 t3 t4 t5

u1 0 0 1 0 0
u2 0 0 0 1 0
u3 0 0 1 1 0
u4 0 0 1 0 0
u5 1 0 1 0 0
u6 0 1 0 0 1

Table 3: Transaction profiles and user sets.

Transaction
profiles tp ug

tp1 {t3} {u1, u4}
tp2 {t4} {u2}
tp3 {t3, t4} {u3}
tp4 {t1, t3} {u5}
tp5 {t2, t5} {u6}

As tp1 and tp2 have the lowest number of transaction

types in this example, they become the root vertices
(depicted in Figure 1). We then continue to work through
the remaining transaction profiles. Transaction profile tp3
has transactions t3 and t4, making tp3 a child vertex of tp1
and tp2. As transaction profile tp5 does not have any
transaction types that have subset-superset relationships
with transaction types in other profiles, it is represented as
an isolated vertex. The remainder of the vertex
relationships can be seen in the final graph generated by
our approach as shown in Figure 1.

Figure 1: An example of a directed acyclic graph and an
isolated vertex.

4. EVALUATION

This section describes the experiments conducted to

validate the proposed approach. Two different datasets have
been extracted from ERP systems to detect anomalies and
inadequate segregation of duties. In the following
subsections we describe the datasets, implementation and
experimental results.

4.1 Dataset

Data from ERP systems, more specifically SAP R/3

systems was extracted for evaluating the approach. SAP
R/3 is an integrated ERP system which offers modules for
the various business functions in an organization. It has its
own set of master records and configuration tables. Each
user needs to enter a client number, a username and a
password while logging on to the SAP system. After
successfully logging in, each user accesses the same main
menu for accounting, logistics, human resources as well as
the security administration and configuration functions.

User roles and authorizations restrict user access to
individual functions (which are identified using transaction
codes) (Best 2006). Typically a transaction code comprises
four or more alphanumeric characters that uniquely identify
an activity. For example the transaction code to create a
vendor invoice is represented as FB601. A user can only log
on if a user master record with a password for that user has
been created in the system. The scope of activity of each
user in the system is defined in the user master record by
one or many roles. The user authorizations, roles, type and
personal data such as the address are recorded in the user
master record (SAP 2007).

The security audit logs are stored in a binary format
and can most easily be extracted using the reporting facility.
Filters are used to define which events may be recorded in
the logs. Information is only recorded in the audit files if
the audit logs are turned on. An extract from the SAP R/3
security audit log is depicted in Table 4. It contains fields
for the date and time of the user activity, client identifier,
user identifier, transaction code, terminal name, message
number and message text. The message number and
message text fields of the log provide more details about
the transaction performed.

Some activities in the SAP system do not have specific
transaction codes, such as logon and logoff. These activities
are represented by ‘session_manager’ or the absence of a
transaction code. These particular transaction codes on their
own do not add any value to a transaction profile and
therefore have been excluded from our experiments. Their

��
1 Note that this transaction code is not always unique.�

 (tp2 = {t4}) (tp1 = {t3})

(tp3 = {t3, t4}) (tp4= {t1, t3}) (tp5 = {t2, t5}) �

�

�

Table 4: Extract from SAP R/3 security audit log.

inclusion to build richer transaction profiles with other
information stored in system tables and/or the security audit
logs, such as in (Best et al. 2009), is currently being studied
and will be addressed in the future work, discussed in
Section 5. Table 5 shows a summary of the datasets,
excluding transactions ‘session_manager’ and those with
no transaction code, and the users associated with only
these two transaction types.

The two different datasets that have been extracted
from the SAP system for evaluating our approach are: (i) a
dataset hosted by our university for teaching purposes and
(ii) a demonstration or training dataset used for testing the
different business functions within an organization. Dataset
1 consists of 60,988 records of real activities performed by
administrators, instructors and students over a period of 12
months. Student activities are based on tutorial exercises
conducted during two semesters. Amongst the 490 users in
Dataset 1, only 202 users had transaction codes recorded
against their names. These 202 users have executed 584
different types of transactions (shown in Table 5). On the
other hand, Dataset 2 is a demonstration environment that
is accessible to SAP customers from different organizations
for learning and training on the SAP system. It consists of
304,126 records performed by 106 users. Only 39 users had
transaction codes recorded against their names. Data was
extracted over a period of 6 days in which users performed
183 different types of transactions.

Table 5: Summary of the experimental datasets.

N
o Datasets Total

records

Period
of

extraction

Total
users

Total
transa
-ction
types

1 University
dataset 60,988 12

months 202 584

2 Demonstrat
-ion dataset 304,126 6 days 39 183

As Datasets 1 and 2 are extracted from student and

demonstration systems, any anomaly types or inadequate
segregation of duties scenarios identified do not represent
fraudulent behavior. However, we consider these datasets
appropriate for demonstrating the effectiveness of the
proposed approach.

4.2 Implementation

Algorithms 1 and 2 have been implemented in Java
and the results of the experiments are stored in a MySQL
database. Figure 2 describes the implementation process of
the proposed approach. The security audit log, user master
record and the transaction types table are exported to text
files from the options available in the SAP R/3 system’s
user interface. All user activities are recorded in the
security audit log, even when a user fails to logon to the
system due to a mistyped username. A user can only log on
successfully if a user master record for that particular user
is present in the system. Mistyped transaction types are also

Figure 2: Implementation of the approach.

recorded in the log. A list of all valid transaction types in
the system is stored in an SAP table and can be used to
cleanse the transactions recorded in data set to ensure only
meaningful information is being analyzed. In the first step,
the audit log file is filtered to exclude invalid user ids and
transaction types by checking if the user name exists in the
user master record and the transaction type exists in the
table. This filtration does not exclude: (1) users who have
attempted to logon with a valid user id and an invalid
password and (2) users who have attempted to perform a
legitimate transaction that they do not have access to.

To protect the confidentiality of the users, the
username and the terminal identifier fields of the log are
anonymized. The filtered and anonymized text file is then
used as input to Algorithm 1. For each user in the text file,
a user-to-transaction type set mapping is generated to create

Date Time Cl. User Transaction code Terminal MNo Text
17.03.2008 11:54:32 600 233-063 EC01 fitgp-s623-206 AU3 Transaction EC01 Started
17.03.2008 11:54:32 600 233-063 EC01 fitgp-s623-206 AUW Report RSECOP01 Started
17.03.2008 11:54:32 600 233-002 FB50 fitgp-s527-017 AU3 Transaction FB50 Started

�

�

�

transaction profiles, which are required as input for
Algorithm 2. Algorithm 2 then builds a directed acyclic
graph based on the subset relationships between these
transaction profiles. The parent-child vertex information
from the directed acyclic graph is then stored in the
database (depicted in Figure 2). Alerts or red flags are
identified by running a set of SQL queries constructed for
the various anomaly types and scenarios. The queries
produce standard reports providing details of the red flags
such as the transaction profiles, day and time of the activity,
the anonymized users assigned to that transaction profile
and the transaction codes executed.

Figure 3: Timings for generating the user transaction
mapping.

We conducted some analysis to determine the

experimental time complexity of Algorithm 1 and 2. In
order to compute the time complexity of the two main
pieces of software, we generated synthetic log data with
different combinations of the number of users and
transaction types. The time required to produce the user-
transaction mapping from the synthetic log was measured
for various combinations of the number of users (between
10 and 300, (b) transaction types (between 20 and 200) and
records in the log (between 1 000 and 1 000 000). The
timings were recorded on a Pentium 4 computer with 4GB
RAM, running Windows XP using Java 6 and MySQL
Server 5.1.

Figure 4: Timings for generating the directed acyclic graph.

Figure 3 presents a graph of the time taken to generate
the user-transaction mapping for the different
configurations. It appears evident from the graph that the
number of users (U) and the number of transaction types
(TT) has only a minor impact on the time taken to produce
the eventual mapping. The main impact on processing time
is the total number of records in the log file. It can also be
seen that the relationship between time and total number of
transactions is almost linear, O(n).

Figure 4 depicts the time taken to generate the directed
acyclic graph where the number of users (U), number of
transaction types (TT) and total number of records in the
synthetic log were varied. This step was undertaken after
first generating the relevant user transaction mappings for
the data set. While the total number of transactions
provided the main impact on the time take for generating
the user transaction mappings, it can be seen that this is not
the case for generating the directed acyclic graphs. It
appears that the main impact on the generation of the graph
is the total number of transaction types in the transaction
log.

4.3 Experimental Results

Once the datasets have been filtered and anonymized

the algorithms generate a collection of directed acyclic
graphs which would assist an auditor in visualizing the
different groupings of transaction profiles in the dataset.
Each visually disaggregated graph or grouping of
transaction profiles contains related activities. In Dataset 1,
the processing generated 9 disaggregated graphs with a
total of 200 distinct transaction profiles. Table 6 shows the
9 disaggregated graphs or clusters, the depth of each graph
and the number of transaction profiles and users in each
graph. In order to give the reader an idea of the visual depth
of each grouping or cluster of transaction profiles, we have
included in Table 6 values for the number of levels in the
graph. It can be observed that in Dataset 1 there are 4
graphs that have one or more levels and 5 graphs with no

Table 6: Groupings of disaggregated graphs in Dataset 1.

Number of
disaggregat
-ed graphs

Depth of
each graph
(in levels)

Number
of tp’s in

graph

Number
of users in

graph
1 4 178 179
1 1 2 3
1 1 10 10
1 1 5 5
5 0 1 1

levels i.e. these 5 graphs consist of single vertices. As a
user can only belong to one transaction profile, there is no

�

�

�

�

overlap between users in different transaction profiles. It
can be observed from Table 6, row one, that most users,
that is 179 out of 202 in Dataset 1 belong to related
transaction profiles. Also, all transaction profiles have one
user each except two transaction profiles (in row one and
two) which have two users each.

Table 7: Groupings of disaggregated graphs in Dataset 2.

Number of
disaggregat-

ed graphs

Depth of
each graph
(in levels)

Number
of tp’s in

graph

Number
of users in

graph
1 1 3 3
1 1 2 2
1 3 11 11

23 0 1 1

In Dataset 2 the processing generated 4 disjoint graphs
with a total of 39 distinct transaction profiles. Table 7
shows a summary of the number of transaction profiles and
users in each disaggregated graph. It can be observed that
each transaction profile has only one user. As this dataset
has fewer users and transaction types compared to Dataset
1, there are small groupings of transaction profiles. In Table
7, row four, it can be observed that there are 23 transaction
profiles that do not have any connecting edges and are
relatively different from the transaction profiles present in
other directed acyclic graphs in Dataset 2.

The next subsections discuss the anomaly types and
inadequate segregation of duties scenarios detected from
these transaction profiles. The detailed discussion and
implication of the results are presented in Section 4.4.

4.3.1 Detecting Inadequate Segregation of Duties

This section describes the results of the inadequate
segregation of duties scenarios discussed in Section 3.1.
Segregation violations are detected using SQL queries and
reports are generated for any matches found. Table 8 shows
the principle number, the exact number of matches found,
the number of transaction profiles that contain incompatible
transaction types and the number of users assigned to those
transaction profiles in Dataset 1.

Principle 1 is split into (a), (b) and (c) for separation of
transaction entry and master record maintenance for GL,
AP and AR respectively. For Dataset 1, Table 8 shows that
for principle 1(a) two transaction profiles, with one user
each, have entered and posted GL transactions, and created,
changed or deleted GL master records in the system. Most
users (15 of them) have violated scenario 1(c), which
detects users who have the authorizations to both maintain
master records and post transactions in AR. From Table 8,
(row 3) it can be observed that six users were flagged for

Table 8: Results of detecting inadequate segregation of
duties in Dataset 1

Principle
number

Number
of

matches

Number of
transaction

profiles

Number
of

users
1(a) 3 2 2
1(c) 30 15 15

4 12 6 6
5 1 1 1
7 69 11 11

violating scenario 4, that is, these users have entered
receipts, and posted credit memos and/or invoices. It might
be interesting for an auditor to investigate these users as
they could for example substitute a credit memo for a
receipt in order to cover a theft of cash. The processing
detected only one user breaching scenario 5. This particular
user had performed transactions to post an invoice and
process payments. These transactions must be segregated
because an employee could for example: post a fictitious
invoice and then pay it. Most matches (69 in total) were
generated for scenario 7 which is segregation of transaction
types across the GL, AP and AR activities.

Principles 1 (b), 2, 3 and 6 are not present in Table 8
as no students have performed the incompatible set of
transaction types present in these scenarios. For Dataset 2,
the queries did not detect any transaction profiles which
contain conflicting or incompatible transaction types that
violate the principles of segregation of duties.

4.3.2 Detecting Anomalies

In this section, we present the results of the three

anomaly types described in Section 3.2. The results of
Anomaly Type 1 are dependent upon the user and
transaction threshold values. To see the effects of the
variable transaction threshold values, we analyze the results
by keeping the user threshold value steady. Anomaly Type
1 aims to detect a small group of users who have performed

Table 9: Results for different transaction threshold values

of Anomaly Type 1 in Dataset 1.

Transaction
threshold value

User threshold
value

Number
of alerts

5 1 2
15 1 5
25 1 11
35 1 20
45 1 27
55 1 30

�

�

some additional transaction types compared to a large
group of users. Table 9 shows the number of alerts
generated for Anomaly type 1 in Dataset 1, for 6 different
transaction threshold values and a steady user threshold
value of 1. If the user threshold value is set to a value
higher than 1, no alerts are generated because all 202
transaction profiles are assigned to one user each, except
two transaction profiles which include two users. No alerts
are generated if the transaction threshold value is higher
than 55 (shown in the last row of Table 9). For an auditor or
fraud examiner, these 30 alerts are perhaps the most
interesting or potentially suspicious due to the large
difference in the number of transaction types performed.

Table 10: A sample of results for Anomaly type 1 in Dataset

1 if the transaction threshold value is set to 55.

No. of
users

assigned
to parent

vertex

No. of
transaction

types in
parent
vertex

No. of
users

assigned
to child
vertex

No. of
transacti
on types
in child
vertex

2 4 1 57
2 4 1 54
2 4 1 55
2 4 1 50

Table 10 presents a sample of the results (i.e. 4 out of

30 alerts) when the transaction threshold value is set to 55.
It shows the number of users and the transaction types in
the parent and child vertex. The four transaction profiles or
child vertices shown in Table 10 have the same transaction
profile as their parent vertex. As this anomaly type depends
on the number of users in each transaction profile, for
Dataset 2, no alerts were generated as each of the 39
transaction profiles have one user assigned to them.

Anomaly Type 2 aims to detect transaction profiles
which have a large number of transactions that are assigned
to a very small number of users. Table 11 shows the
number of alerts generated for the different transaction
threshold values for a steady user threshold value. For Dat-

Table 11: Results for different transaction threshold values

of Anomaly Type 2 in Dataset 1.

Transaction
threshold value

User threshold
value

Number
of alerts

100 2 2
120 2 2
140 2 2
160 2 1
180 2 1

aset 1, the user threshold value was set to a value of 2 or
less as each transaction profile consists of one or two users.
When the transaction threshold value was set to 100, 120 or
140, the processing generated the same two alerts, which
include: (1) one user who has performed 194 transaction
types and (2) a user who has performed 142 transaction
types (shown in Table 11). When the transaction threshold
value was set to a higher value, i.e. 160 or 180, the
processing flagged the transaction profile with one user
who has performed 194 transaction types.

Table 12: Results of Anomaly Type 2 in Dataset 2 with a

fixed user threshold value.

Transaction
threshold value

User threshold
value

Number
of alerts

20 1 4
30 1 1
40 1 1

In Dataset 2, the user threshold value was set to a

steady value of 1 as all transaction profiles have one user
each. As Dataset 2 (see Table 12 for results) has less users
and transaction types when compared to Dataset 1, if the
transaction threshold value was set to a value higher than
40, no alerts were generated. The query generated the same
alert when the transaction threshold value was set to 30 or
40. This alert may represent an anomaly as no users have
performed more than 27 transaction types, except one user
who has performed 48 different transaction types.

Table 13: Results of Anomaly Type 3 in Datasets 1 and 2.

Dataset
Number

of isolated
vertices

Lowest
number of

transactions/
profile

Highest
number of

transactions/
profile

Dataset 1 5 2 37
Dataset 2 23 1 25

Anomaly Type 3 detects cases where the set of

transaction types in the profile are not present in any other
transaction profile. Table 13 shows the number of isolated
vertices (i.e. the transaction profiles that do not have any
edges connecting them) and the highest and lowest number
of transaction types in a transaction profile, for both
Datasets 1 and 2. It can be observed from Table 13 that in
Dataset 1, the cardinality of transaction types for the 5
isolated vertices is between 2 and 37. Similarly, in Dataset
2 the highest number of transaction types in a profile is 25
and these are not performed by any other user in the system.
For both datasets, the lowest number of transaction types in
a profile is values of 1 or 2. It might be interesting for an

�

�

auditor to investigate these users as they have only
executed one or two transaction types in the system during
the period for which the data has been extracted.

4.4 Discussion

In this section we discuss the results of our processing,

presented in Section 4.3. The inadequate segregation of
duties framework was presented by Little and Best (2003),
but was not implemented or tested. We implement the
seven principles as scenarios to detect transaction profiles
that contain incompatible transactions and thus find the
users who are assigned these transaction profiles. Table 8 in
Section 4.3.1, presents the results of detecting inadequate
segregation of duties in Dataset 1.

It can be observed that most users performed
incompatible transactions violating scenario 1(c). Scenario
1(c) detects users who can create and modify master
records and also post transactions in AR. On analyzing the
flagged transaction profiles, we found that the 15 users had
created and/or changed AR master records and also
performed either one or combinations of invoice, receipt
data entry and credit management transactions. It might be
interesting for an auditor to investigate these users as they
could for example: create a fictitious vendor master record
and post a fake invoice to that vendor and have the system
pay into their our personal bank account. Most matches
were found for scenario 7, for which 11 users in the dataset
were flagged. These users had performed transactions in all
three functions: GL, AR and AP. The separation of duties in
this scenario is necessary to provide a check against AR
and AP through GL control accounts and to properly
authorize the offsetting transactions between AR and AP.

The scenarios focus on detecting potentially fraudulent
activities within the financial module of the SAP system
and therefore the transaction types included in the scenarios
are all related to financial activities such as changing bank
details, creating invoices and making payments. No
transaction profiles were flagged for violating the
principles of segregation of duties in Dataset 2. This has
been verified by manually checking the types of
transactions present in the dataset. Most users in Dataset 2
have conducted activities related to the sales and
manufacturing module.

For the anomaly types, the user and transaction
threshold values depend on a number of factors such as the
size of the organization, the size of the dataset and the
period for which the data has been extracted. For Anomaly
Type 1, the queries generate different number of alerts
based on the transaction threshold value. It can be observed
that the higher the threshold value the higher the number of
alerts. No further alerts are generated if the transaction
threshold value is greater than 55 (shown in the last row of

Table 9). This implies that the maximum difference in
number of transaction types between two transaction
profiles is less than or equal to 55 (more details presented
in Table 10). It might be interesting for an auditor to
investigate why the users in the child vertices have
performed many more transactions than the users in parent
vertex. The 4 alerts presented in Table 10 are the extremes,
the other 26 alerts generated from the processing are
interesting too but the difference in the cardinality of the
transaction profiles is less i.e. between 8 and 40 transaction
types. Our results for Anomaly Type 1 are restricted as
Dataset 1 has only one user in each transaction profile,
except two transaction profiles which have two users each.

For Anomaly Type 2, the processing generated 2
alerts: a user who has performed 194 transaction types and
another user who has performed 142 transaction types
(shown in Table 11). These alerts indicate potentially
fraudulent user behavior and have been successfully
identified by the anomaly definition. After manual analysis
of the dataset, we found that both these transaction profiles
with 194 and 142 transaction types are assigned to an
instructor and a system administrator at our university. For
Dataset 2, Anomaly Type 2 generated an alert for a user
who had performed 48 different transaction types. As this
user has been flagged from the anonymized demonstration
dataset, we were unable to manually verify the anomaly.
Perhaps, this user might be an administrator or an instructor
who may have tested all the training activities before the
trainees performed them.

For Anomaly Type 3, the results are interesting for
both datasets. For example: for an auditor, it is interesting
to investigate a user who has performed 37 different
transaction types which no other user in the system has
performed (shown in Table 13). Also, users who have
performed only 1 or 2 transactions for the entire period are
interesting to investigate as these users might be valid users
who have left the organization, been on leave or perhaps
changed their user id in the system. Or they might be
synthetic user ids created by valid users to perform
fraudulent activities.

As our fraud detection approach has been tested on a
university and demonstration dataset, any anomaly types or
inadequate segregation of duties scenarios identified do not
represent fraudulent behaviour, but demonstrate the
effectiveness of the approach. The datasets do not consist
of a real company’s operational data, but they consist of
real users, who behave differently and perform various
transaction types. The results and the contributions of our
work can also be verified in practice with access to real-
operational data from an organization. Generally, in fraud
detection research, datasets are unavailable and results are
often confidential, making them difficult to assess (Bolton
and Hand 2002).

�

�

The current approach depends on using data from the
ERP security audit log for detection of anomalies and
inadequate segregation of duties. Though our approach is
able to detect fraud performed by all types of internal users,
it may be unable to detect frauds by administrators or
‘super-users’. Within the SAP system, super-users have
roles with unlimited privileges and can even edit or remove,
audit log entries. For example, these users have the
capability to perform fraudulent transactions and then
remove any evidence or red flags associated with their
activities.

5. CONCLUSION AND FUTURE WORK

In this paper we have presented three main

contributions:
(1) we have adapted a role mining approach for generating
transaction profiles from the user activities recorded in the
security log of an ERP system, and for identifying subset
relationships amongst such transaction profiles,
(2) we have postulated a number of anomalous, possibly
fraudulent, activity scenarios which can be detected using
the transaction profiles, and we have identified such
anomalies in our non-synthetic datasets, and
(3) we have implemented scenarios that identify violations
in proper segregation of duties and have detected such
violations using the transaction profiles generated in (1).

Our future work will focus on the detailed analysis of
transactions involving ‘session_manager’ and transactions
where no transaction code is listed. This may in fact be a
rich source of further information as it provides - in the
case of the SAP software - detailed text message
information qualifying the transaction in some fashion.
Furthermore we intend to incorporate frequency analysis
into the anomaly detection. At the moment, our transaction
profiles are based on transaction types only without regard
for the number of times a particular type of transaction has
been executed. This will naturally affect both the nature of
transaction profiles and also the processing involved. It will
provide the benefit of being able to detect much more
subtle differences - possibly anomalies - amongst users.

ACKNOWLEDGMENT

We gratefully acknowledge the support of SAP and the

contributions of the following colleagues from SAP
Research, past and present, at various stages of the work
described in this paper: Julien Vayssiere, Sarath Indrakanti,
Shane Bracher, and Tobias Raub. The research is supported
in part by an ARC Linkage grant.

REFERENCES

ACFE. (2006) ACFE report to the nation.

http://www.acfe.com/documents/2006-rttn.pdf.
ACFE. (2008) ACFE report to the nation.

http://www.acfe.com/documents/2008-rttn.pdf.
Albrecht, W. S., Albrecht, C. C., Albrecht, C. O. and

Zimbelman, M. F. (2009) Fraud Examination, South-
Western Cengage Learning, Mason, OH.

Albrecht, W. S., Albrecht, C. O. and Albrecht, C. C. (2006)
Fraud Examination, Thomson, Mason.

Arens, A. A. and Loebbecke, J. K. (2000) Auditing: An
Integrated Approach, Prentice-Hall, Upper Saddle
River, N.J.

Best, P. J., Rikhardsson, P. and Toleman, M. (2009)
Continuous fraud detection in enterprise systems
through audit trail analysis, The Journal of Digital
Forensics, Security and Law 4(1), 39-60.

Bingi, P., Sharma, M. K. and Godla, J. K. (1999) Critical
issues affecting an ERP implementation, Information
Systems Management, 16(3), 7-14.

Bolton, R. and Hand, D. (2002) Statistical fraud detection:
A review, Statistical Science, 17(3), 235-249.

Cahill, M., Lambert, D., Pinheiro, J. and Sun, D. (2002)
Detecting fraud in the real world. In J. Abello , P.
Pardalos and M. Resende (ed), Handbook of
Massive Datasets (Netherlands: Kluwer Academic
Publishers), chapter 26, 911-929

Cohen, W. (1995) Fast effective rule induction.
Proceedings of 12th International Conference on
Machine Learning, San Francisco, CA, 115-123.

Cortes, C., Pregibon, D. and Volinsky, C. (2003)
Computational methods for dynamic graphs, Journal
of Computational & Graphical Statistics, 12(4), 950-
970.

Cox, E. (1995) A fuzzy system for detecting anomalous
behaviour in healthcare provider claims. In S.
Goonatilake and P.Treleaven (ed), Intelligent Systems
for Finance and Business (New York: John Wiley &
Sons Ltd), chapter 7, 111-134.

Cox, K. C., Eick, S. G. and Wills, G. J. (1997) Visual data
mining: recognizing telephone calling fraud, Data
Mining and Knowledge Discovery, 1(2), 225-31.

Coyne, E. J. (1996) Role-engineering. Proceedings of the
1st ACM Workshop on Role-based Access Control,
New York, NY, 4-5.

Coyne, E. J. and Davis, J. M. (2007) Role Engineering for
Enterprise Security Management, Artech House, USA.

Denning, D. E. (1987) An intrusion-detection model, IEEE
Transactions on Software Engineering, 13(2), 222-232.

Dorronsoro, J. R., Ginel, F., Sgnchez, C. and Cruz, C. S.
(1997) Neural fraud detection in credit card operations,
IEEE Transactions on Neural Networks, 8(4), 827-34.

�

�

Eberle, W. and Holder, L. (2009) Graph-based approaches
to insider threat detection. Proceedings of the 5th
Annual Workshop on Cyber Security and Information
Intelligence Research, Washington, DC, 237-241.

Ghosh, S. and Reilly, D. L. (1994) Credit card fraud
detection with a neural-network. Proceedings of the
Twenty-Seventh Hawaii International Conference on
System Sciences, Wailea, HI, 621-630.

Haelst, W. and Jansen, K. (1997) Control and audit of SAP
R/3 logical access security, Information Systems Audit
and Control Journal, 3(1), 37-44.

Haixun, W., Hao, H., Jun, Y., Philip, S. Y. and Jeffrey Xu,
Y. (2006) Dual labeling: Answering graph reachability
queries in constant time. Proceedings of the 22nd
IEEE International Conference on Data Engineering,
Atlanta, Georgia, 75-87.

Hassibi, K. (2000) Detecting payment card fraud with
neural networks. In P. J. G. Lisboa, A.Vellido and
B.Edisbury (ed), Business Applications of Neural
Networks

 (Singapore: World Scientific), chapter 9, 141-157.
Huang, S.-M., Hsieh, P.-G., Tsao, H.-H. and Hsu, P.-Y.

(2008) A structural study of internal control for ERP
system environments: A perspective from the
Sarbanes-Oxley Act, International Journal of
Management and Enterprise Development, 5(1), 102-
121.

Ilgun, K., Kemmerer, R. A. and Porras, P. A. (1995) State
transition analysis: a rule-based intrusion detection
approach, IEEE Transactions on Software
Engineering, 21(3), 181-99.

Ju, W.-H. and Vardi, Y. (2001) A hybrid high-order
markov chain model for computer intrusion detection,
Journal of Computational & Graphical Statistics,
10(2), 277-295.

Khan, R. Q., Corney, M. W., Clark, A. J. and Mohay, G. M.
(2009) A role mining inspired approach to
representing user behaviour in ERP systems.
Proceedings of the 10th Asia Pacific Industrial
Engineering and Management Systems Conference,
Kitakyushu, Fukuoka, 2541-2552.

KPMG. (2006) KPMG 2006 fraud survey.
www.kpmg.com.au.

Kruegel, C. and Vigna, G. (2003) Anomaly detection of
web-based attacks. Proceedings of the 10th ACM
Conference on Computer and Communications
Security, Washington, DC, 251-261.

Kuhlmann, M., Shohat, D. and Schimpf, G. (2003) Role
mining - revealing business roles for security
administration using data mining technology.
Proceedings of the 8th ACM Symposium on Access
Control Models and Technologies, Villa Gallia, Como,
179-186.

Kuhn, D. R. (1997) Mutual exclusion of roles as a means of
implementing separation of duty in role-based access
control systems. Proceedings of the 2nd ACM
workshop on Role Based Access Control, Fairfax, VA,
23-30.

Kumar, S., Spafford, E. and (1994) A pattern matching
model for misuse intrusion detection. Proceedings of
the Seventeenth National Computer Security
Conference, New Orleans, LA, 11-21.

Lane, T. and Brodley, C. E. (2003) An empirical study of
two approaches to sequence learning for anomaly
detection, Machine Learning, 51(1), 73-107.

Lee, W. and Stolfo, S. J. (1998) Data mining approaches
for intrusion detection. Proceedings of the Seventh
USENIX Security Symposium, San Antonio, TX, 79-93.

Little, A. G. and Best, P. J. (2003) A framework for
separation of duties in an SAP R/3 environment,
Managerial Auditing Journal, 18(5), 419-430.

Lu, F., Boritz, J. and Covvey, D. (2006) Adaptive fraud
detection using Benford’s law. In (ed), Advances in
Artificial Intelligence: Proceedings of the 19th
Conference of the Canadian Society for
Computational Studies of Intelligence, chapter 30,
347-358.

Major, J. A. and Riedinger, D. R. (1992) EFD: a hybrid
knowledge/statistical-based system for the detection of
fraud, International Journal of Intelligent Systems,
7(7), 687-703.

Martin, K., Dalia, S. and Gerhard, S. (2003) Role mining -
revealing business roles for security administration
using data mining technology. Proceedings of the 8th
ACM symposium on Access control models and
technologies, Como, Italy.

McCue, C. (2007) Data Mining and Predictive Analysis:
Intelligence Gathering and Crime Analysis,
Butterworth-Heinemann, Boston.

Mohay, G. M., Anderson, A., Collie, B. and Vel, O. d.
(2003) Computer and Intrusion Forensics, Artech
House, Massachusetts, USA.

Oh, S. H. and Lee, W. (2003) An anomaly intrusion
detection method by clustering normal user behavior,
Computers & Security, 22(7), 596-612.

Phua, C., Lee, V., Smith, K. and Gayler, R. (2005) A
comprehensive survey of data mining-based fraud
detection research.
http://search.informit.com.au.ezp01.library.qut.edu.au
/search;res=CINCH;search=DN=56589.

Quinlan, J. R. (1993) C4.5: Programs for Machine
Learning Morgan Kaufmann Publishers, San mateo,
CA.

Ryan, J., Lin, M. and Miikkulainen, R. (1998) Intrusion
detection with neural networks. Proceedings of the

�

�

1997 conference on Advances in neural information
processing systems Denver, Colorado, 72-79.

Sandhu, R., Bhamidipati, V. and Munawer, Q. (1999) The
ARBAC97 model for role-based administration of
roles, ACM Transactions on Information and System
Security, 2(1), 105-135.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L. and Youman,
C. E. (1996) Role-based access control models,
Computer, 29(2), 38-47.

SAP. (2007) Course ADM940. ABAP AS Authorization
Concept - SAP NetWeaver, SAP AG.

Schaad, A., Moffett, J. and Jacob, J. (2001) The role-based
access control system of a European bank: a case
study and discussion. Proceedings of the 6th ACM
Symposium on Access Control Models and
Technologies, Chantilly, VA, 3-9.

Schlegelmilch, J. and Steffens, U. (2005) Role mining with
ORCA. Proceedings of the 10th ACM Symposium on
Access Control Models and Technologies, Stockholm,
Sweden, 168-176.

Shin, D., Ahn, G.-J., Cho, S. and Jin, S. (2003) On
modeling system-centric information for role
engineering. Proceedings of the 8th ACM Symposium
on Access Control Models and Technologies, Villa
Gallia, Como, 169-178.

Srinidhi, B. (1994) The influence of segregation of duties
on internal control judgments, Journal of Accounting,
Auditing and Finance, 9(3), 423-444.

Standards Australia. (2008) Australian Standard AS 8001-
2008 Fraud and Corruption Control.
http://www.saiglobal.com/PDFTemp/Previews/OSH/A
S/AS8000/8000/8001-2008.pdf.

Vaidya, J., Atluri, V., Guo, Q. and Adam, N. (2008)
Migrating to optimal RBAC with minimal
perturbation. Proceedings of the 13th ACM
Symposium on Access Control Models and
Technologies, Estes Park, CO, 11-20.

Vaidya, J., Atluri, V. and Warner, J. (2006) RoleMiner:
Mining roles using subset enumeration. Proceedings
of the 13th ACM Conference on Computer and
Communications Security, Alexandria, VA, 144-153.

Valdes, A. and Anderson, D. (1994) Statistical methods for
computer usage anomaly detection using NIDES
(Next-Generation Intrusion Detection Expert System).
Proceedings of RSSC'94. 3rd International Workshop
on Rough Sets and Soft Computing, San Jose, CA,
104-111.

Wells, J. T. (2008) Principles of Fraud Examination, John
Wiley, Hoboken, N.J.

Zhang, D., Ramamohanarao, K. and Ebringer, T. (2007)
Role engineering using graph optimization.
Proceedings of the 12th ACM Symposium on Access

Control Models and Technologies, Sophia Antipolis,
France, 139-144.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(ACFE 2006; Khan et al. 2009)

