Triceratops

Privacy-protecting Mobile Apps

Edwa rd Wu University of Washington *
Sai Zhang, Ravi Bhoraskar, Rene Just, Mike Ernst >

Motivation

e Mobile security is becoming increasingly
important

o In 2013, there are over 1 billion smartphone users
around the globe another billion users by 2015

o F-Secure identified 275 new mobile threat families in
Q1 2014, up from 149 last year

e Mobile privacy is a leading concern

o Over 50% of the Android malware has some private
information collection capabilities

Threat Model

e Mobile privacy: Leakage of personal or

sensitive information
o GPS coordinates

o Audio recordings

o Contacts list

o SMS messages

e Not focusing on:
o Attacks that tries to take over the device

o Phishing, social engineering attacks
o Denial of Service

App permissions

Android Permission | resemmees sces o

Storage

Modify or delete the contents of your SD card

e (Coarse-grained Microphone
permission system

o Possible to hide
. . Camera
mallCIOUS behaV|Or Take pictures and videos

e \Neak enforcement Your appications informaion
o All or nothing

Your location
Precise location (GPS and network-based)

Your personal information
Read your own contact card

Network communication
Full network access

Your social information
Read your contacts

Malware Example

Kittey Kittey

e A real Android malware, designed to evade
detection tools

READ_FILESYSTEM INTERNET_ACCESS

Approach

An enforcement tool that allows users to
enforce fine-grained privacy policies on a
given mobile app

Design challenges:

e \What is a easy-to-write and expressive
syntax for privacy policies?

e How to build a tool that precisely and
effectively enforce these policies?

Outline

e Privacy policy

e Enforcement tool
o Survey of existing techniques
o Static optimized dynamic enforcement

e Implementation
e Demo
e Preliminary Evaluations

What is Privacy Policy

A specification determining how sensitive
information is allowed or not allowed to be used
within the app.

Components:

® Information Flow: how sensitive data can be

exfiltrated
o Filesystem -> Internet
o Call logs -> SMS
e Control Flow: specific code paths or preconditions

o Not allowed to upload GPS coordinate till a button is
pressed

Privacy Policy Example

RECORD.Click()
AUDIO —> FILESYSTEM] [AUDIO —> FILESYSTEM]
STOP.Click()

Audio recording is only allowed after RECORD is clicked and before STOP is pressed

A FSM that describes both the information flow
and the control flow specifications

e State: a list of allowed or disallowed
iInformation flows

e Edge: a specific program instruction that
causes the state change

Who will write the privacy policy

e App developer

o Specifies how sensitive data are used in more detalil
o “Enhanced permission system”

e Sysadmins
o Apply set of default “not-allowed” policies based on
app’s permission
e User

o All sensitive data flow is not-allowed by default
o Ask user’s permission when a flow first occurs

o Next time this specific flow occurs, it will be
automatically allowed or blocked

Survey of existing enforcement
techniques

Metrics:

e Precision

o No false positive
e Usability

o Small runtime overhead
e Practicality

o Automated
o Does not require modification to the runtime system

Static Analysis
I .

I Potential
Violations

Privacy
Policies

Manual
Analysis

XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX

4

Before

INPUT | Runtime

Inlined Dynamic Enforcement

I Dynamically
Enforced App

Privacy
Policies

XXXXXXXXXXX

XXXXXXXXXXX

Execution

Z

XXXXXXXXXXX

|XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX

oo High
—~ / Overhead

XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX

4

Before
Runtime

INPUT

Runtime Dynamic Enforcement

AN
"~

Privacy |
Policies

N~

Unsafe App

XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX

4

INPUT

I
Next
I Instruction

5 XXXXXXXXXXX

During
I Runtime

Virtual
Machine
Interpreter

Execute

XXXXXXXXXXX

) \—

Not
Portable

Comparison

Techniques Runtime | Portable False
Overhead Positives
) Static Analysis (Conservative) N/A N/A YES
Runtime Dynamic Enforcement Low NO NO
E> lined Dynamic Enforcement High YES NO
Triceratops Low YES NO

Key idea: Combine static analysis and

inlined dynamic enforcement

Intuition

Unverified Dynamically
I Region Enforced Region

Privacy
Policies

XXXXXXXXXXX I XXXXXXXXXXX I

XXXXXXXXXXX Ixxxxxxxxxxx I
Unsafe App
XXXXXXXXXXX Verified
XXXXXXXXXXX Region Safe
XXXXXXXXXXX App M
XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXX
XXXXXXXXXXX '\>Ixxxxxxxxxxx I
XXXXXXXXXXX I XXXXXXXXXXX —
XXXXXXXXXXX XXXXXXXXXXX
4 XXXXXXXXXXX XXXXXXXXXXX
I XXXXXXXXXXX
Ixxxxxxxxxxx I
INPUT I TRICERATOPS 4

Static Optimized Dynamic Enforcement

e Minimizes the instrumentation needed to
enforce a set of policies by using static

analysis to:

o Apply APl summaries

o ldentify unsafe code regions
o Optimize enforcement code

APl Summary

e Allows static analysis to reason about API's
effect without executing the app
e Remove the need to instrument APl bodys

File f=sensitiveFile
String x= Long.toString(f.lastModified()) == String x= f
uploadTolnternet(x)

If (parameter.isSensitive)
Long.toString(long) return Sensitive

File.lastModified() else
return NotSensitive

Identify Unsafe Code Regions

e Because the tool knows exactly what data

flow it needs to track
e Conservatively identify code regions that
help compute or propagate data from the

source

Example

Filesystem -> Internet

n" "

c=getFile() c=null b="a b="b"

T~ ~

fieldA=c fieldA=null fieldA=b

\M’

x="¢” x=fieldA

\/’

uploadTolnternet(x)

Example

Filesystem -> Internet

n" "

c=getFile() c=null b="a b="b"

T~ ™~

fieldA=c fieldA=null fieldA=b

W

x="¢” x=fieldA

\/’

uploadTolnternet(x)

Backward Slicing

Enforcement Code Optimization

Static taint propagation
Constant folding

Copy propagation
Dead code elimination

Static Taint Propagation Example

Filesystem -> Internet

c=getFile() c=null b="a” b="b”

—~ ™~

fieldA=c fieldA=null fieldA=b

W

x="¢” x=fieldA

\/

uploadTolnternet(x)

Static Taint Propagation Example

Filesystem -> Internet

c=getFile() c=null

\/

fieldA=c fieldA=null fieldA=NotSensitive

\M’

x="¢” x=fieldA

\/

uploadTolnternet(x)

Implementation

e Mainly built on top of Wala analysis
framework

e Directly perform analysis on Dalvik bytecode
(no need for source code)

e Use smali assembler and disassembler
toolchain for instrumentation

e Existing APl summary from SPARTA project

Triceratops Demo

Untrusted

App —

Triceratops

Privacy Policy :>

(&

®

J

Preliminary Evaluations

o Kittey Kittey
o No Filesystem -> Internet

e SMS replicator
o No SMS -> SMS before a button is clicked

Enforcement Overhead (# of additional instructions)

App No Optimization APl Summary | Full Optimization
Relevant Code
Kittey Kittey 2757 75/61 6/4
SMS replicator 886 20/13 4/3

Very low runtime overhead!

Preliminary Evaluations

Tools

Kittey SMS
Kittey Replicator

Root Cause

Android Permission System

No IF, CF

Pegasus [Chen'13]

Multiple code path to potential
violation

TaintDroid [Enck’10]

No CF

Aurasium [Xu'12]

No IF

Triceratops

OXOO X
OOV X

Finer-grained privacy policy
IF+CF

Supports more types of malware

Limitations

e Classical Java static analysis challenges
o Reflection
o Precision of points-to analysis

e Static modeling of Android runtime behavior
o Dynamically register a callback function to a button

e Completeness of the APl summary
e Native code

e Can be addressed by other research

Future Work

e Implicit Flow
o Static analysis assisted dynamic analysis can be

used to track implicit flow while achieving high
precision
e Data tracking mechanisms for persistent
storage mediums and side channels
o Databases and file systems

o Displaying sensitive information on screen, then take
a screenshot

Conclusion

A powerful enforcement tool that allows users
to enforce fine-grained privacy policies on a
given mobile app

e Finer-grained privacy policy (IF+CF)
o Defend against more types of malicious apps
e Static optimized dynamic enforcement

o Portable, low runtime overhead, and no false
positives

