
Ultimate Forwarding Resilience in OpenFlow Networks

Christopher Hannon
Illinois Institute of Technology

channon@hawk.iit.edu

Dong Jin
Illinois Institute of Technology

dong.jin@iit.edu

Chen Chen
Argonne National Laboratory

morningchen@anl.gov

Jianhui Wang
Argonne National Laboratory

jianhui.wang@anl.gov

ABSTRACT

Software defined networking is a rapidly expanding network-
ing paradigm that aims to separate the control logic from the
forwarding devices. Through centralized control, network
operators are able to deploy and manage more efficient for-
warding strategies. Traditionally, when the network under-
goes a change through maintenance, failure, or cyber attack,
the centralized controller processes these events and deploys
new forwarding rules reactively. This work provides a strat-
egy that does not require a controller in order to maintain
connectivity while only using features within the existing
OpenFlow protocol version 1.3 or greater. In this paper we
illustrate why forwarding resiliency is desired in OpenFlow
networks and provide an algorithm that computes the flow
entries required to achieve maximal forwarding resiliency in
presence of both multiple link and controller failures on any
arbitrary network.

1. INTRODUCTION
OpenFlow is a standard that defines the communication

and interaction between the forwarding and control layers
of the software-defined networking (SDN) architecture. The
protocol defines the technical specifications required by cur-
rent SDN switches to support the interaction from Open-
Flow controllers to the forwarding switches. SDN provides
many features to improve network operations, including en-
hanced global visibility, greater customizability, and easier
deployment. While historically motivated through data cen-
ter management to optimize performance, minimize cost,
and maximize utilization [11], [8], SDN is being proposed
for various other networks such as industrial control sys-
tems for increased efficiency, enhanced cyber security, and
industry specific applications [5], [17].

Industrial control systems, such as the modern power grid,
require networks that are resilient to cyber attacks as well
as natural disasters that may affect both the communication
network as well as the power network. Fault tolerance is a

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

SDN-NFV Sec’17, March 22-24, 2017, Scottsdale, AZ, USA

c© 2017 ACM. ISBN 978-1-4503-4908-6/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3040992.3041002

Strategy # Edges needed to
remove in order to
disconnect s and t

Recovery
time

This paper |min-cut-st| O(ms)
k-disjoint-backup 1 ≤ k ≤ |min-cut-st| O(ms)
Backup at every in-
termediate switch

2 ≤ k ≤ |min-cut-st| O(ms)

Controller Based |min-cut-st| O(ms)
RSTP / STP |min-cut-st| O(secs)

Table 1: Comparison of the existing failover schemes in event
of link failure. Our approach guarantees the same number
of links as a controller based recovery scheme as well as
traditional decentralized mechanisms. The advantage of our
approach is that we do not require a controller to guarantee
this performance.

well studied problem in computer networks. When a net-
work is said to be fault tolerant, a communication channel
from source to destination can remain established even if an
intermediate link fails. In OpenFlow, a network relies on
the central controller to make decisions for the data plane
and then install the forwarding logic onto the switches with
commands issued from the controller.

One widespread and growing networked industrial control
system, the modern power system, is composed of heteroge-
neous networks, including power line communication (PLC),
Ethernet, cellular, and radio communication media. Redun-
dant links are required to enable backup paths for traffic
to ensure resiliency. In such heterogeneous networks, SDN
is being proposed for resilient communications [2] and as a
design architecture [12] to ensure successful and secure op-
erations of the modern power system in the event of cyber
attacks and cyber errors. Additionally, other applications
have been evaluated utilizing SDN in smart grid communi-
cations such as multi-rate multicast for Phasor Measurement
Unit communications [7] further motivating the need for re-
silient communication in such networks that rely on accurate
and reliable data streams for control purposes.

Communication resilience in the smart grid is important
to the power applications that require high availability and
minimal packet loss in the event of communication disrup-
tion. For example, power protection elements such as relays
require low latency and are highly affected by long recovery
times in the event of link failure during management events.
As communications in the grid evolve to connectionless UDP
traffic as the California ISO reports in [17], high availability
becomes a significant design goal to minimize packet loss.

59

http://dx.doi.org/10.1145/3040992.3041002

In this paper, we present a forwarding framework with
the following objectives: maximal resiliency, high availabil-
ity, fast recovery time, and ease of deployment. Although
fault tolerance is native to SDN, the centralized controller
opens up a new interface for cyber attack or failure. Thus,
in presence of controller failure, SDN is at a disadvantage
compared to traditional decentralized network recovery al-
gorithms such as spanning tree protocols.

Our solution generalizes maximal resiliency for communi-
cation between hosts for mission critical traffic within Open-
Flow networks. We guarantee that the same number of links
may fail as with a controller-based recovery strategy, specif-
ically |min-cut-st|− 1, which is the minimum cut of the net-
work, i.e., fewest number of edges required to fail to create
two disjoint subgraphs with s and t on separate subgraphs.
Therefore, as long as there exists a path from source to des-
tination, our modified depth-first search (DFS) algorithm,
which transforms the network graph to a tree structure,
will enable the correct forwarding independent of network
topology. This work shows that the same resiliency prop-
erties can be established during controller failure as with-
out or compared to decentralized spanning tree solutions.
A controller based approach for recovery is a run-time so-
lution for network link failure recovery. In this work, we
provide a compile-time recovery strategy that predetermines
all backup paths and deploys them proactively. The related
work only guarantees resilience in presence of single link
failure. Therefore, for mission critical traffic in control sys-
tems, our strategy guarentees communication can continue.
In this work, we design the algorithm and data structure to
convert the graph representation of the network into flow ta-
bles and group tables on the OpenFlow switches that enforce
the maximally resilient network property.

Section 2 discusses the related work, Section 3 shows how
our strategy for providing maximal forwarding resiliency
which extends from a single link failure and the challenges
associated with multiple link failure. Section 4 presents our
all-paths algorithm that changes the graph representation
into an N-ary tree representation, which allows us to easily
determine the OpenFlow rules necessary for the network.
Section 5 compares our strategy with related work, while
Section 6 concludes our work and proposes future research
directions for resilient forwarding in OpenFlow networks.

2. RELATED WORK
Many of the current strategies for fault tolerance and link

failure rely on the central controller to calculate the opti-
mal path from source to destination using a global view of
the network topology updated with the failed edge. In [13]
and [9] the authors show how to utilize the controller to up-
date the network in event of link failure. When a link fails,
the event is sent to the controller through the OpenFlow
protocol, the controller then computes new paths for each
flow and modifies the necessary flow rules on the switches
to create new flows. This is the most straightforward ap-
proach using a centralized control architecture. Calculating
the new optimal path however requires time to process the
updated graph and time to install the new forwarding logic
onto the corresponding switches. During this time packets
may be lost.

In [16] the authors utilize a hybrid approach through backup
routes and centralized recomputation by using two steps. In
the first step, the forwarding devices locally detect a fail-

ure and resort to a failure mode where precomputed backup
paths are taken. The second step is for the controller to
compute the optimal paths based on that link failure. This
ensures that a functional while non-optimal path can take
over faster than the controller to recompute a new path.
The authors extend the Open vSwitch to include the Bidi-
rectional Forwarding Detection to report in the fast failover
liveliness check. The design for the fast failover rules is to
provide an alternative path, i.e., backup port to send the
traffic to in the event of a failure. If the switch does not
have a backup bath, then a backtracking method is used to
return the packet to the previous switch, where the process
is repeated recursively. The authors compute backup paths
so that each intermediate hop computes a backup path lo-
cally, implemented using the failover group table entry. If no
backup path exists, the traffic gets sent back one hop until
a backup path is located. They however do not consider the
case of multiple link failures as our work does. The mini-
mum number of link failures to disconnect the source and
destination is two.

Similarly, [1] also implements a hybrid approach that uses
the same mechanisms of [16] and show they can achieve re-
covery in 50 ms. These works share the same limitations of
single link failure.

For the reliability of SDN controllers, ONOS [3], and [4],
illustrate the benefits of distributed controllers. One such
benefit is reliability during controller failure. In our work,
we consider failure from a single SDN controller.

This paper presents a strategy that computes every possi-
ble path from source to destination and creates a flow table
and group tables that provide ultimate resiliency in the face
of multiple link failures. The contributions of the algorithm
in this paper are as follows:

• rules are proactively installed, ensuring that the recov-
ery process does not require a controller

• the approach enables multiple link failure resiliency in
the network

• the approach minimizes packet loss in the event of mul-
tiple link failures

In this paper, we describe an algorithm that enables maxi-
mal resilience to link failures and evaluate the effect it has on
the switches’ forwarding tables, as well as connectivity and
latency in the network. This algorithm requires no changes
to the OpenFlow protocol and is computed offline and proac-
tively installs rules onto the switches.

3. MOTIVATION
This section considers a single path from source to destina-

tion rather than every flow on the network simultaneously.
The s node represents the source while the t node is the
destination node. G represents the network with switches
as nodes and links as edges. This notation will be used
throughout the paper. The following examples provide the
motivation and explain the mechanisms of the maximally
resilient forwarding algorithm described in the next section
which generalizes the process for arbitrary networks.

3.1 Single Link Failure Recovery
During a link failure, the switches with ports connected

to the failed link, detect the failure. Upon detection, fast
failover group tables will allow for a different rule set to
be placed on the packets destined to failed link using the
liveliness monitor feature. Group table actions consist of
sending the packet to a new port, a new group table, or

60

even back to the flow tables [15]. In this work, the group
table for fast failover is used to monitor the outgoing port
and forwards to a backup in case of failure on the main path.

In the network depicted in Figure 1, the main path is
s → s1 → s2 → s3 → s4 → s8 → t. When the edge
from s1 to s2 fails, and switch s1 detects this through its
liveliness monitor for port y in the failover table and resorts
to port x. Therefore the traffic can now be routed through
s → s1 → s5 → s6 → s7 → s8 → t and can do this
without any reactive influence from a centralized controller.
The link failure can be detected using a mechanism such as
bidirectional forwarding detection.

s

s1

s2 s5 s9

s3

s4

s6

s7

s8

s10

s11

t

w

y

y

x

y

x

x

y

x

z

x

y

x

y

x

y

x

y

w

w

z

y

x

y

x

y

x

w

Figure 1: The main path is s → s1 → s2 → s3 → s4 →
s8 → t. Case 1: s1 → s2 failed. In this case, the group table
installed on s1 of type failover will be sent to the next live
port, x, to complete the flow s → s1 → s5 → s6 → s7 →
s8 → t. Case 2: s2 → s3 failed. In this case, the group
table installed on s2 returns the packet to s1 in crankback
style routing. Case 3: Multiple link failure. s4 → s8 and
s7 → s8 failed. In this case, the packet has the ultimate
path s → s1 → s2 → s3 → s4 → s3 → s7 → s3 → s2 →
s1 → s9 → s10 → s11 → s8 → t. Table 2 shows rules
to perform this forwarding. Case 4: Multiple link failure.
If edges s2 → s3, s7 → s8 and s11 → s8 failed, the rules
in Table 2 do not find the successful path. A more general
approach is necessary.

Only relying on failover tables to chose an alternate route
locally may not satisfy every case. For instance, if a different
edge experiences a failure (s2 → s3 on the primary path),
s2 does not have any backup routes locally as it only has a
degree of 2. Therefore a more complex scheme must be used
involving backtracking. This backtracking is inspired from
the crankback algorithm used in MPLS. Crankback [6] al-
lows for sending a message backward when setting up a con-
nection in routing between networks. By sending the mes-

sage backwards, a new path can be established that meets
the requirements of the flow at the cost of latency and band-
width consumption.
In our case, if a path becomes infeasible (i.e., no failover
paths locally) the packet gets forwarded back to the pre-
vious switch and is forwarded from there. The rule for a
returned packet is the same as it would be as if the edge
it just returned on was failed. This process of crankback
can happen recursively if there are no backup links to send
to. If the edge (s2 → s3) fails, s2 requires a group table
to monitor the liveliness of port x and send through y as a
backup. s1 would need a rule in the flow table to match on
incoming port y and send to x.
In this case, the traffic flows from s → s1 → s2 → s1 →
s5 → s6 → s7 → s8 → t. Although s1 must process the
packet twice, the information stream from s to t remains
intact and does this without reactive influence from a con-
troller. Additionally, if the link from s2 → s3 comes back
online, this optimal path would be taken automatically with-
out any configuration changes due to the liveliness status of
group tables. In all the related work, the network resiliency
without controller influence stops here, however the exam-
ples presented only experience a single link failure. Our work
shows how this approach can be extended for link failure in
|min − cut(G, s, t)| − 1 edges regardless of network size or
topology where |min− cut(G, s, t)| is the size of the min-cut
where s and t are on separate disjoint subgraphs of G.

3.2 Multiple Link Failure Recovery
The introduction of loops and more complicated networks
requires additional logic when faced with multiple link fail-
ures. For example, consider if the network in Figure 1
contains multiple link failures, s4 → s8 and s7 → s8
with corresponding flow and group tables defined in the ap-
pendix (https://github.com/annonch/resilientforwarding).
The failover rules returns packets to the previous switch to
support crankback routing.
In this network the main path from s to t is s → s1 →
s2 → s3 → s4 → s8 → t. The path from s4 → s8 is failed,
therefore s4 routes the traffic back according to its failover
group. s3 has a rule to route s3 → s7 → s8 → t. However,
upon reaching s7, port x reports that the edge from s7 → s8
is also down. The fast failover rule routes the frame back to
s3 according to its failover rule. s3 has nowhere to send the
packet so using Flow 3 returns it to s1 via s2. At this point
since the path between s5 and t (without going through
s1) is blocked, the switch s1 should forward the frame to
s9 → s10 → s11 → 8 → t. Therefore, s1 has rule FT2 to
perform this action. In this case, the packet is able to arrive
at t with an ultimate route of s → s1 → s2 → s3 → s7 →
s3 → s2 → s1 → s9 → s10 → s11 → s8 → t. While this is
not the most direct route, this strategy successfully enables
forwarding in the presence of two failed links on the primary
and backup paths.
This strategy is specifically tailored to work with the failed
edges. The previous rule set fails if the following edges (s2 →
s3, s7 → s8, s11 → s8) are down, even though there exists
a path s → s1 → s5 → s6 → s7 → s3 → s4 → s8 → t. s7
can check to see if the route through s3 is a candidate, and
a few additional rules can be added to the current strategy
allowing for this path to be tried.
However a problem quickly emerges. With the additional
rules, specifically the s7 → s3, an infinite loop is easily cre-
ated. A loop can occur if the link from s4 → s8 is down.

61

https://github.com/annonch/resilientforwarding

The usual behavior is to send this packet back to s2 using
the crankback technique. Eventually this packet will return
to s through s3 → s2 or be dropped if that link is down.
This brings motivation for adding a mechanism to remem-
ber the history of the switches that have already processed
the packet to treat the switch differently depending on the
source to ensure a proper crankback. The challenge is that
OpenFlow does not support switch-to-switch communica-
tion for this problem. We utilize the packet header space,
specifically the VLAN id field as a ledger, which we show in
the following section.

4. ALGORITHM
We present a modified depth-first-search algorithm that
finds all paths from source to destination recursively. In
this modified DFS algorithm, the data structure created is
an N-ary tree that represents all paths that can lead to the
destination node. In this N-ary tree, the root node is the
source and each leaf is the destination t. Each intermediate
node has a set of children ≥ 1 that can reach the destination
t. Not every edge from an intermediate node is represented
in the data structure nor necessarily all nodes as some may
not have a path to the destination. Loops in the network
may introduce multiple paths p1, p2 from source to destina-
tion, where p1 ∩ p2 6= ∅. This implies that p1 and p2 are not
disjoint. Such occurrences create duplicate nodes in the tree
that are marked accordingly.

s s1

s2

s3

s4

s8

t

s7

s8’

t

s5

s6

s7’

s8”

t

s3’

s4

s8
t

s9

s0

s11

s8”’

t

Figure 2: The resulting N-ary tree from Algorithm 1 on the
network in Figure 1. The nodes that are depicted with ’
(prime) are backedges. The rule from a node with child and
with prime notation checks the VLAN id field to see if the
switch has processed the packet previously; if not, uses the
VLAN tag to return the packet to the correct parent, thus
preventing forwarding loops.

The first path on node n is from the parent to child 1, if
child 1 port is down, then it goes to child 2 and this process
continues until there are no children remaining of n. If this
is the case, there is no path from n to t so the packet is
sent back to the parent in the style of crankback routing.
Similarly, if there is a downstream link down from n.childk

to t, then the packet returns to n and should be sent to
n.childk+1. However, a different fast failover table must be
used to ensure that if port n.childk+1 is down that the fast
failover sends the packet to n.childk+2 if possible. Therefore,
there exists a flow entry for each port sending it to a fast
failover table. The flow table for intermediate node i follows
the format in Table 2.
As seen in Table 2, each InPort sends the packet to a differ-
ent group Table. Because failover rules can only forward in
case of local link failures, there needs to be a different group
table for fast failover for each port on a switch to prevent
loops. The group table 1 on a node m is the table that is
arrived from the port connected to the parent of m. Sub-
sequent group tables are for each child of m. Each child’s
group table is a subset of group table 1. For example, if a
node m has three children, the first failover rule in group ta-
ble 1 will be child 1 then child 2 then child 3. If downstream
of child 1 there is a link failure and the packet returns to the
node m, the packet should be forwarded to child 2. There-
fore, the group table for m that matches child 1’s incoming
port is group table 1 less the entry for child 1. If this link
is broken, the fast failover should send it to child 3. If the
original fast failover group is used, then the packet would
be sent back down to child 1, where it is known that there
is no path thus causing a loop. Hence, the group table for
child 2 is group table 2 less the entry for child 2. Tables
4-5 illustrate the general case for forwarding with multiple
children of a node with a total degree of n+ 1.
Many networks that enable resiliency contain loops.
The major difficulty for multiple paths routing through
loops is that there are already rules on the switches
making it difficult to keep track of which routes
have been traversed before. In the online Ap-
pendix (https://github.com/annonch/resilientforwarding),
we present the full algorithm and technique to utilize the
VLAN id field as a ledger between switches.

Table 2: Flow Table for intermediate node si

FlowID Match Field(s) Action

FT1 InPort: si.port.parent Group GT1
FT2 InPort: si.port.child1 Group GT2
FTk+1 InPort: si.port.childk Group GTk + 1
FTn+1 InPort:si.port.childn OutPort si.port.parent

Table 3: Group Table 1 for switch sn

Group Table ID: GT1 Type: FF

Bucket ID WatchPort Actions
Bucket 1 sn.port.child1 OutPort: sn.port.child1
Bucket i sn.port.childi OutPort: sn.port.childi
Bucket n sn.port.childn OutPort: sn.port.childn
Bucket n+1 sn.port.parent OutPort: sn.port.parent

Table 4: Group Table k for switch sn

Group Table ID: GT2 Type: FF

Bucket ID WatchPort Actions
Bucket 1 sn.port.childk OutPort: sn.port.childk
Bucket i-k sn.port.childi OutPort: sn.port.childi
Bucket n-k sn.port.childn OutPort: sn.port.childn
Bucket n-k+1 sn.port.parent OutPort: sn.port.parent

5. EVALUATION
We implement three forwarding algorithms using the Ryu
controller [14] in Mininet [10] for comparison. Algorithm 1

62

https://github.com/annonch/resilientforwarding

is the shortest path algorithm that offers no resilience to link
failure in the primary path. Algorithm 2 is the proactive
technique from related work [16] generalized for arbitrary
network sizes. Algorithm 3 is the solution provided in this
paper. To understand the performance under general link
failure, we evaluate the connectivity under every combina-
tion of failed links from 1 to 10.
In this work, we do not consider the transient state of links
failing, we consider the steady state where each link may
be in one of two possible states: working and failed. If
links are reported as failed and later reported as alive again,
then the subsequent packets will be processed as normal
because no rule is ever deleted, i.e., timeout on all rules
set to infinity. The controller proactively installs all flow
entries and group tables onto the switches and then shuts
down. Links are brought offline using the Mininet API and
the connectivity and latency test is measured using the Ping
tool. The experimental results are shown in Table 5 and
Figure 3, and it is clear that our algorithm is most resilient
to link failures. Under two link failures, our algorithm has
an extended ping time but does not lose connectivity. Before
the number of failed links reaches 10 (out of 13 links in total),
our algorithm always results in more working scenarios than
the other two algorithms do.
Given the graph in Figure 1, the size of the minimum cut
of the graph with s and t on disjoint subgraphs is 3, if we
exclude the link s → s1 and s8 → t. This means that the
minimum number of links that can be removed to disconnect
the source and destination is 3 links, i.e., s1 → s2, s5 → s6
and s11 → s8. The maximum number of edges that can be
removed is 9. As long as there exists a path from source
to destination, our forwarding strategy will always find the
path. Compared to a controller based recovery strategy,
our strategy has equal performance in terms of link failures,
and we can guarantee this at compile-time rather than at
run-time since our backup strategy is installed proactively.
In addition to SDN based strategies, the traditional mecha-
nisms for network recovery, namely spanning tree protocols,
can guarantee the same performance, but take much longer
on the order of seconds to re-converge after a link failure. For
mission critical traffic this is too long, our recovery strategy
using OpenFlow meets the objective of high availability and

Fail # Comb- Algo 1 Algo 2 Algo 3
Links inations # % # % # %

1 13 9 69.2 13 100 13 100
2 78 36 46.2 58 74.4 78 100
3 286 84 29.4 139 48.6 253 88.5
4 715 126 17.6 210 29.4 449 62.8
5 1287 126 9.8 213 16.6 486 37.8
6 1716 84 4.9 146 8.4 334 19.5
7 1716 36 2.1 65 3.8 144 8.4
8 1287 9 0.7 17 1.3 36 2.8
9 715 1 0.1 2 0.3 4 1
10 286 0 0 0 0 0 0

Table 5: Given # Failed Links, # Combination is the total
number of possible network scenarios. Below each Algo, #
indicates the number of scenarios with a working forwarding
path, and % indicates the percentage of working scenarios.
Comparison of the algorithms show that our technique has
the greatest resilience to link failures, i.e., outperforms the
other two algorithms when the number of failed links ∈ [2, 9].

fast recovery time. Comparing our strategy in this exam-
ple with the related work, the backup paths approach [16]
s1 → s8 only finds three paths, while our scheme provides
all 5 backup paths.
On the other hand, because no rules are ever added or
deleted (unless administratively), there will be greater over-
head in the number of rules needed to be installed on a given
switch. For each switch v in the network, there will be deg v

flow table entries and group tables required for a single flow
s → t. Crossedges will require additional deg v group tables
and flow entries to enable correct forwarding.
The total number of group tables and flow entries is at
most 2E, which is at maximum O(n2) flow entries and
group tables for highly connected networks. Additionally,
due to the crankback style of routing, there will be addi-
tional traffic within the network, because a packet never
returns to the same switch except during crankback. If
flow(s, t) represents the quantity of traffic sent from s to
t, then at maximum each link can experience 2 ∗ flow(s, t)
traffic. Finally, due to the crankback routing and sub-
optimal path selection, if there remains a path between s

and t, then the latency is at most O(
∑

e∈E
2 ∗ prop(e) +∑

v∈V
deg(v) ∗ process(v)) prop is the propagation delay in

the links, process is the processing delay at the switch in-
cluding the queue delay. The maximum number of rules in
our approach is on s3 with 6 group tables and 6 flow ta-
ble entries for one host-to-host flow, algorithm 2 requiring
4 group tables and 4 flow table entries, and algorithm 1 re-
quiring only 2 flow entries.

6. CONCLUSION
We have presented a general scheme to implement resilient
forwarding in OpenFlow networks with minimal packet loss.
Our scheme works without reactive influence from a con-
troller, enabling greater resilience than traditional SDN ap-
proaches. Our algorithm provides the OpenFlow rules for
multiple link failures equivalent to a centralized controller
approach enabling the hosts to remain connected. We show
with an example that our approach has greater resilience
for all link failures. Due to the overhead incurred by this
method of forwarding in presence of multiple link failures, it
is designed for mission critical communication applications
as to prevent congestion within the network. Our future
work includes researching techniques to reduce the overhead
in terms of number of tables on the switches for multiple
source-destination pairs through rule compression, increas-
ing the scalability of the VLAN ledger mechanisms, and
evaluating the trade-offs between overhead and resiliency by
formulating this problem as an optimization problem.

7. ACKNOWLEDGMENTS
This work is partly sponsored by the Maryland Procure-
ment Office under Contract No. H98230-14-C-0141, the Air
Force Office of Scientific Research (AFOSR) under grant
FA9550-15-1-0190, the U.S. Department of Energy (DOE)’s
Office of Electricity Delivery and Energy Reliability, and a
cooperative agreement between IIT and National Security
Research Institute (NSRI) of Korea. Any opinions, find-
ings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessar-
ily reflect the views of the Maryland Procurement Office,
AFOSR, DOE and NSRI. The authors also thank Xu Yang
for his technical assistance.

63

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Ping RTT Time in (MilliSeconds)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac
tio
n
of
 T
ria
ls

1 failed link(s) : ultimate-forwarding
2 failed link(s) : ultimate-forwarding
3 failed link(s) : ultimate-forwarding
4 failed link(s) : ultimate-forwarding
5 failed link(s) : ultimate-forwarding
1 failed link(s) : all-backup-paths
2 failed link(s) : all-backup-paths
3 failed link(s) : all-backup-paths
4 failed link(s) : all-backup-paths
5 failed link(s) : all-backup-paths
1 failed link(s) : shortest-path
2 failed link(s) : shortest-path
3 failed link(s) : shortest-path
4 failed link(s) : shortest-path
5 failed link(s) : shortest-path

Figure 3: Comparison of latency under link failure of the three implemented algorithms

8. REFERENCES
[1] R. Ahmed, E. Alfaki, and M. Nawari. Fast failure

detection and recovery mechanism for dynamic
networks using software-defined networking. In 2016
Conference of Basic Sciences and Engineering Studies
(SGCAC), pages 167–170, Feb 2016.

[2] A. Aydeger, K. Akkaya, M. H. Cintuglu, A. S.
Uluagac, and O. Mohammed. Software defined
networking for resilient communications in smart grid
active distribution networks. In 2016 IEEE
International Conference on Communications (ICC),
pages 1–6, May 2016.

[3] P. Berde, M. Gerola, J. Hart, Y. Higuchi,
M. Kobayashi, T. Koide, B. Lantz, B. O’Connor,
P. Radoslavov, W. Snow, et al. Onos: towards an
open, distributed sdn os. In Proceedings of the third
workshop on Hot topics in software defined
networking, pages 1–6. ACM, 2014.

[4] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and
R. Kompella. Towards an elastic distributed sdn
controller. In ACM SIGCOMM Computer
Communication Review, volume 43, pages 7–12. ACM,
2013.

[5] X. Dong, H. Lin, R. Tan, R. K. Iyer, and
Z. Kalbarczyk. Software-defined networking for smart
grid resilience: Opportunities and challenges. In
Proceedings of the 1st ACM Workshop on
Cyber-Physical System Security, CPSS ’15, pages
61–68, New York, NY, USA, 2015. ACM.

[6] A. Farrel, A. Satyanarayana, A. Iwata, N. Fujita, and
G. Ash. Crankback signaling extensions for mpls and
gmpls rsvp-te. Network Working Group, RFC 4920,
2007.

[7] A. Goodney, S. Kumar, A. Ravi, and Y. H. Cho.
Efficient PMU networking with software defined
networks. In 2013 IEEE International Conference on
Smart Grid Communications (SmartGridComm),
pages 378–383, Oct 2013.

[8] B. Heller, S. Seetharaman, P. Mahadevan,
Y. Yiakoumis, P. Sharma, S. Banerjee, and
N. McKeown. Elastictree: Saving energy in data
center networks. In Proceedings of the 7th USENIX

Conference on Networked Systems Design and
Implementation, NSDI’10, pages 17–17, Berkeley, CA,
USA, 2010. USENIX Association.

[9] H. Kim, M. Schlansker, J. R. Santos, J. Tourrilhes,
Y. Turner, and N. Feamster. Coronet: Fault tolerance
for software defined networks. In 2012 20th IEEE
International Conference on Network Protocols
(ICNP), pages 1–2, Oct 2012.

[10] B. Lantz, B. Heller, and N. McKeown. A Network in a
Laptop: Rapid Prototyping for Software-defined
Networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, Hotnets-IX,
pages 19:1–19:6, New York, NY, USA, 2010. ACM.

[11] H. H. Liu, X. Wu, M. Zhang, L. Yuan,
R. Wattenhofer, and D. Maltz. zupdate: Updating
data center networks with zero loss. In ACM
SIGCOMM Computer Communication Review,
volume 43, pages 411–422. ACM, 2013.

[12] S. Rinaldi, P. Ferrari, D. Brandão, and S. Sulis.
Software defined networking applied to the
heterogeneous infrastructure of smart grid. In 2015
IEEE World Conference on Factory Communication
Systems (WFCS), pages 1–4, May 2015.

[13] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and
P. Demeester. Enabling fast failure recovery in
openflow networks. In the 8th International Workshop
on the Design of Reliable Communication Networks
(DRCN), pages 164–171, Oct 2011.

[14] R. P. Team. Component-Based Software Defined
Networking Framework. https://osrg.github.io/ryu/,
2017. Online; accessed 23-Jan-2017.

[15] The Open Networking Foundation. OpenFlow Switch
Specification, Jun. 2016.

[16] N. L. Van Adrichem, B. J. Van Asten, and F. A.
Kuipers. Fast recovery in software-defined networks.
In the Third European Workshop on Software Defined
Networks, pages 61–66, Sept 2014.

[17] T. Williams. The role of software-defined networking
and wan virtualization in securing scada systems.
https://www.youtube.com/watch?v=5w9eL3asTrQ.

Online; accessed 23-Jan-2017.

64

https://osrg.github.io/ryu/
https://www.youtube.com/watch?v=5w9eL3asTrQ

	Introduction
	Related Work
	Motivation
	Single Link Failure Recovery
	Multiple Link Failure Recovery

	Algorithm
	Evaluation
	Conclusion
	Acknowledgments
	References

