
1 

Title Goes Here 

Understanding Authentication and 

Access Control in Distributed Systems 

 
Mike Reiter 

 

University of North Carolina at Chapel Hill 

 

 

 



2 

Background Reading 

 B. Lampson, M. Abadi, M. Burrows and T. Wobber. 

Authentication in distributed systems: Theory and 

practice.  ACM TOCS 10(4), Nov 1992. 
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Access Control 

 Principal makes a request for an object 

 Reference monitor grants or denies the request 

Principal Request 
Reference 

Monitor 
Yes/No 

 Authentication: Determining who made request 

 Authorization: Determining whether requestor is trusted to 

access an object 

 The “decision” the reference monitor must make 

Editor Send file File server Ex: 

Host Forward packet Firewall Ex: 
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Authenticating a Channel 

 Each request arrives on some channel, e.g., 

 Kernel call from a user process 

 Network connection 

 A channel defined by a cryptographic key 

 Reference monitor must authenticate the channel, i.e., 

determine whom the request is from 

 Easy in a centralized system 

 OS implements all channels and knows the principal responsible for 

each process 

 Harder in a distributed system 

 Request may have traversed different, not-equally-trusted machines 

 Different types of channels 

 Some parts of the system may be faulty or broken 



5 

The Challenge 

Workstation 

O/S 

Application NFS Server 

O/S 

Server 
Network 

channel 

Request I wonder 

what Mike’s 

SSN is … 

Keyboard/display 

channel 

 Who is the request “from”? 

 The user?  The workstation?  The application? 

 All of the above? 
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Our Approach to Studying the Problem 

 Explain authentication and access control using a logic 

 The logic forces us to make assumptions explicit and teaches 
us how to think about access control 

 

 Logic helps us to reason about principals and the statements 
they make 

 Principals can be 
 Keys 

 People 

 Machines 

 Principals in roles 

 Groups 

 … 
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Trusted Computing Base (TCB) 

 Logic will help us identify the “trusted computing base”, i.e., the 

collection of hardware and software that security depends on 

 Compromise or failure of a TCB element may result in an incorrect 

“Yes” access-control decision 

 Thus, TCB should be as small as possible 

 Must be carefully tested, analyzed and protected 

 

 Benign failure of an untrusted (non-TCB) element may produce 

more “No” answers, not more “Yes” ones 

 This is called “fail secure” or “fail safe” 

 Ex: An untrusted server holding a digitally signed credential 

 Failure prevents credential from being retrieved (more “Nos”) 

 Cannot undetectably modify the credential (due to the signature) 
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The Logic 

 The logic is inhabited by 

 Terms that denote principals and strings 

 Formulas that are either “true” or “false” 

 Terms:  

  t   ::=  s | p 

  p  ::=  key(s) | p.s 

 where s ranges over strings and p over principals 

 Formulas: 

    ::=  s signed   |  p says  

   ::=  action(s)  |  p speaksfor p | delegate(p, p, s) 

 where s ranges over strings and p over principals 
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A Logic of Authorization (cont.) 

 Inference rules 

keystr signed F 

key(keystr) says F 

(says-I) 

A says (A.S says F) 

A.S says F 

(says-LN) 
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A Logic of Authorization (cont.) 

A says (F  G)      A says F 

A says G 

(impl-E) 

F 

A says F 

(says-I2) 

 Inference rules 
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A Logic of Authorization (cont.) 

 Inference rules 

A says (B speaksfor A.S)      B says F 

A.S says F 

(speaksfor-E2) 

A says (B speaksfor A)      B says F 

A says F 

(speaksfor-E) 

A says delegates(A, B, U)      B says action(U) 

A says action(U) 
(delegate-E) 



12 

Digital Signatures (Informal Definition) 

 A digital signature scheme is a triple <G, S, V> of efficiently 

computable algorithms 

 G outputs a “public key” K and a “private key” K-1 

< K, K-1>  G() 

 S takes a “message” m and K-1 as input and outputs a “signature”  

  SK-1(m) 

 V takes a message m, signature  and public key K as input, and outputs 

a bit b 

b  VK(m, ) 

 If   SK-1(m) then VK(m, ) outputs 1 (“valid”) 

 Given only K and message/signature pairs {<mi, SK-1(mi)>}i, it is 

computationally infeasible to compute <m,  > such that 

VK(m, ) = 1 

 any new m  mi 
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Cryptographic Keys as Channels 

 Let   be a digital signature on x such that VK(x, ) = 1  

 

 Interpret t or  as “K signed x” (for respective K) 
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Authenticating a Channel 

 Reference monitor receives a request C says action(s) 

 An access-control list usually specifies named principals 

 Thus, reference monitor must collect certificates to prove that 

A says action(s) for some A on the access control list 

 

 Two general methods 

 Push: The sender on the channel C collects A’s credentials and 

presents them to authenticate the channel to the receiver. 

 Pull: The receiver looks up A in some database to get credentials for 

A when it needs to authenticate the sender. 
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Certification Authorities 

 Credentials typically come from “certification authorities” 

 A certification authority is a named principal CA 

 CA issues statements of the form 

 

KCA signed (key(KA) speaksfor key(KCA).A) 

  

 If KCA is a public key, this statement is called a certificate 

 But KCA can be a symmetric key, too 
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An Example Proof 

1. KCA signed (key(KA) speaksfor key(KCA).A) 

2. KA signed action(resource) 

 

3. key(KCA) says (key(KA) speaksfor key(KCA).A) says-I(1) 

4. key(KA) says action(resource)   says-I(2) 

5. key(KCA).A says action(resource)  speaksfor-E2(3, 4) 
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A Certification Authority 
CA 

Infers key(KCA ).A says action(resource)  

KA signed action(resource) 
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Groups 

 A group is a principal whose members speak for it 

 

 Simplest way to define a group G is for a defining CA to 

issue certificates 

 

key(KCA) says P1 speaksfor key(KCA).G 

key(KCA) says P2 speaksfor key(KCA).G 

… 

for group members P1, P2, … 
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Mike.Students says  

  action(D208) 

Example Proof 

Mike says action(D208) 

Mike says delegate(Mike,  

  Mike.Students, D208) 

Scott says action(D208) Mike says (Scott  

  speaksfor Mike.Students) 

? 

? ? 

? ? 

? 

? 

? 

? ? 

Stored in the reference monitor. 

Part of the TCB. 
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Traditional Access Control Lists 

Mike.Students says  

  action(D208) 

delegate(Mike,  

  Mike.Students, D208) 

Scott says action(D208) Scott speaksfor Mike.Students 

? 

? ? 

? ? 

? 

? 

? 

? ? 

Implicitly known to the reference 

monitor. 
Received in the request. 

Mike says action(D208) 

Stored in the reference monitor. 

Part of the TCB. 

Note: not signed 
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A “Pull” Approach 

Mike.Students says  

  action(D208) 

Mike says delegate(Mike,  

  Mike.Students, D208) 

Scott says action(D208) Mike says (Scott  

  speaksfor Mike.Students) 

? 

? ? 

? ? 

? 

? 

? 

? ? 

Received in the request. 

Mike says action(D208) 

Stored in the reference monitor. 

Part of the TCB. 

Retrieved by reference monitor. 
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A “Push” Approach 

Mike.Students says  

  action(D208) 

Mike says delegate(Mike,  

  Mike.Students, D208) 

Scott says action(D208) Mike says (Scott  

  speaksfor Mike.Students) 

? 

? ? 

? ? 

? 

? 

? 

? ? 

Received in the request. 

Mike says action(D208) 

Stored in the reference monitor. 

Part of the TCB. 
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A “Proof Carrying” Approach 

Mike.Students says  

  action(D208) 

Mike says delegate(Mike,  

  Mike.Students, D208) 

Scott says action(D208) Mike says (Scott  

  speaksfor Mike.Students) 

? 

? ? 

? ? 

? 

? 

? 

? ? 

Received in the request. 

Mike says action(D208) 

Stored in the reference monitor. 

Part of the TCB. 



24 

Roles 

 Suppose a principal wants to limit its authority 

 Reiter “as” GamePlayer 

 Reiter “as” SysAdmin 

 

 Intuition: A “as” R should be weaker than A 

 A can accomplish this by enabling statements of the form  

 

A.R says F 

 

 to be created 
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Programs as an Application of Roles 

 Acting in a role is like acting according to some program 

 Instead of using the whole program I, N can instead make 

N.D says F 

 where D = h(I) for h a collision-resistant and 2nd preimage 

resistant hash function, and using 

D speaksfor P 

 where P is the program name 

 If node N is running program with text I, then N can make 

N.I says F 

 for a statement F made by the process running I 
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Loading Programs 

 To load program named P, node N 

 Creates a process pr 

 Reads text I of file P from the file system 

 Finds credentials for D speaksfor P and checks h(I) = D 

 Copies I into pr 

 Gives pr ability to write to channel C 

 Emit: N says C speaksfor N.P 

 

 Now pr can issue requests on channel C 

 Will be granted if N.P is on ACL 
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Virus Control 

 Certification authority CA can issue certificates 

KCA signed P speaksfor key(KCA).trustedSW 

KCA signed N speaksfor key(KCA).trustedNodes 

KCA signed (P speaksfor key(KCA).trustedSW  

   (N speaksfor key(KCA).trustedNodes  

     N.P speaksfor key(KCA).trustedNodeAndSW)) 

 where trustedSW, trustedNodes, and 

trustedNodeAndSW are group names, P is a program 

name, and N is a node name 

 Some viruses alter texts of programs in the file system 

 If I is the infected program text, then D = h(I) will be different 

from D = h(I), and so D speaksfor P will not apply 
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Secure Booting 

 Private key for KW must be protected in secure hardware 

 Otherwise, O/S can read it 

 

 ‘trustedNodes’ should be computers that 

 run operating systems validated before booting 

 validate other software before loading it 

 Validating O/S during boot is like validating other software 

 Machine W holds h(I) in boot ROM, where I is O/S image 

 i.e., h(I) speaksfor P 

 
 To create a channel C such that C speaksfor W.P, W can 

 Generate a new signature key pair                   , and  

 Give          to P, along with KW signed key(KW.P) speaksfor key(KW).P 

 

 

1

.. , 

PWPW KK

1

.



PWK
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Example: TCG 

 Historically, PC manufacturers have chosen flexibility over 

security 

 User can modify the PC in any way she likes 

 PC does not have hardware protection for boot procedure, does not 

validate O/S before loading it, does not validate other programs 

 Today this is changing with efforts like the Trusted Computing 

Group (TCG; www.trustedcomputinggroup.org) 

 Alliance formed in Jan 1999 by Compaq, HP, IBM, Intel & Microsoft 

 More than 150 companies by 2002 

 Developing a standard for a “trusted platform” (TP), based on 

principles similar to those we’ve discussed 

 Scope of specs is at hardware, O/S and BIOS levels 

 Main spec released in Aug 2000 (v1.0) and Feb 2001 (v1.1) 

 PC-specific spec released in Sep 2001 
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Example: TCG 

 Some goals of TP 

 Enable local and remote users to obtain reliable information about 

the software running on the platform 

 Provide a basis for secure key storage 

 Enable conditional release of secret information to the TP based on 

the software running 

 TP enabled by a “trusted processing module” (TPM) 

 A hardware processing component that is isolated from software 

attacks and at least partially resistant to hardware tampering 

1

TPM

K Each TPM is equipped with a different private key            and a 

certificate 

    KTPME says key(KTPM) speaksfor key(KTPME).TrustedProcessingModules 

 signed by a “trusted platform module entity” (TPME) 

 TrustedProcessingModules is a group 
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TCG “Roots of Trust” 

The standard specifies two logical “roots of trust” 

 Root of trust for measurement (RTM):  A platform-dependent 

component that starts “measurement” of software running 

 In a PC, the RTM is the platform itself, which is acceptable only if 

the RTM cannot be subverted before or during its operation 

 In practice, this means that the RTM must run first (or everything 

that is run before it is trusted) 

 e.g., BIOS boot block, called the “core root of trust for 

measurement” (CRTM) 

 Root of trust for reporting (RTR): A platform-independent 

component that stores “measurements” as they happen, in 

such a way that measurements cannot be “undone” 

 RTR is implemented by the TPM 
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TPM Platform Configuration Registers 

 TPM (version 1.1) contains sixteen 20-byte “platform 

configuration registers” (PCRs) 

 20 bytes in order to store a SHA-1 hash value 

 Each PCR records the last in a sequence of hashes of the 

software that has been loaded and run 

001011 
101101 

h(   ) 

software 

PCR 

001011 
101101 

software 
load 

h(      ) 

 PCR is updated before newly 

loaded software gets control 

 PCR cannot be erased except by 

reboot (or protected processor 

instruction in v1.2 TPMs) 

 In this way, PCR contains record 

of software running 
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TCG Authenticated Boot 

BIOS boot 

block (CRTM) 001011 
101101 

h(   ) 

BIOS 

PCR 0 

001011 
101101 

ROMS 

h(   ) 

PCR 1 
001011 
101101 

OS loader 

h(   ) 

PCR 2 

001011 
101101 

OS 

h(   ) 

PCR 3 

001011 
101101 

OS  

components 

h(   ) 

PCR 4 

001011 
101101 

h(      ) 
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TCG Secure Boot 

 Non-volatile “data integrity registers” (DIRs) are loaded with 

expected PCR values 

 DIRs are contained within TPM and require owner authorization to 

write 

 

 If a PCR value, when computed, doesn’t match corresponding 

DIR value, then boot is canceled 
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TCG Integrity Challenge and Response 

 Remote machine can query TPM for contents of PCRs 

 TPM responds with signed PCR values 

 Think of it as signed with KTPM 

KTPM signed PCRvals = …  

 (In reality, is not signed with KTPM but another “identity key” is 

used to enhance privacy) 

 

 TP additionally responds with records (hints) of what is 

“summarized” in the PCR values 

 Records could contain software itself, but more likely contains 

name, supplier, version, and URL for software 

 Enables remote machine to reconstruct and check PCR values 

 Records not trusted and so are stored outside TPM 
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Example 

Workstation W 

O/S 

Application A 
NFS Server 

O/S 

Server 
Network 

channel 

I wonder 

what Mike’s 

SSN  is … 

KW.OS signed 

 (key(KW.OS).U  

  says A says F) 

1

UK

1

WK

KCA signed  

key(KU) speaksfor key(KCA).U 

KCA signed 

key(KW) speaksfor key(KCA).W 

1

.OS



WK

W.OS 
W.OS.U 

KW signed key(KW.OS) speaksfor key(KCA).W.OS 

KU signed key(KCA).W.OS.U speaksfor key(KCA).U 
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Example (cont.) 

1. KCA signed key(KW) speaksfor key(KCA).W 

2. KCA signed key(KU) speaksfor key(KCA).U 

3. KW signed key(KW.OS) speaksfor key(KCA).W.OS 

4. KU signed key(KCA).W.OS.U speaksfor key(KCA).U 

5. KW.OS signed (key(KW.OS).U speaksfor key(KCA).W.OS.U) 

6. KW.OS signed (key(KW.OS).U says A says F) 

7. key(KCA) says key(KW) speaksfor key(KCA).W  says-I(1) 

8. key(KCA) says key(KU) speaksfor key(KCA).U  says-I(2) 

9. key(KW) says key(KW.OS) speaksfor key(KCA).W.OS says-I(3) 

10. key(KU) says key(KCA).W.OS.U speaksfor key(KCA).U says-I(4) 

11. key(KW.OS) says (key(KW.OS).U speaksfor key(KCA).W.OS.U) 

        says-I(5) 

12. key(KW.OS) says (key(KW.OS).U says A says F)  says-I(6) 
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Example (cont.) 

 

13. key(KCA).W says key(KW.OS) speaksfor key(KCA).W.OS 

      speaksfor-E2(7, 9) 

14. key(KCA).U says (key(KCA).W.OS.U speaksfor key(KCA).U) 

       speaksfor-E2(8, 10) 

15. key(KCA).W.OS says (key(KW.OS).U speaksfor key(KCA).W.OS.U) 

       speaksfor-E2(13, 11) 

16. key(KW.OS).U says A says F   says-LN(12) 

17. key(KCA).W.OS.U says A says F  speaksfor-E2(15, 16) 

18. key(KCA).U says A says F   speaksfor-E(14, 17) 

 



39 

Example: Web Server Authentication (1) 

 What happens when you access https://www.foo.com? 

 A protocol called Secure Sockets Layer (SSL) or Transport 

Layer Security (TLS) is used to authenticate the web server 

 Also performs other functions that are not important for the moment 

SSL or TLS 

TCP 

IP 

HTTP FTP SMTP 
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Example: Web Server Authentication (2) 

 As part of SSL/TLS, web server sends a certificate 
 

KCA signed (key(Kwww.foo.com) speaksfor key(KCA).'www.foo.com') 

 to browser 

 Browser is shipped with public keys for numerous CAs: 
 

KCA1 , KCA2  , KCA3  , … 

 

 Mozilla Firefox 23.0.1 ships with ~200 CA keys loaded 

 Reportedly these represent organizations from over 30 countries: AT, 

BE, BM, CH, CN, CO, DE, DK, EE, ES, EU, FI, FR, GB, GR, HK, 

HU, IE, IL, IT, JP, NL, NO, PL, RO, SE, SK, TR, TW, US, VE, ZA 

 Should we really trust that key(KCA).'www.foo.com' is the 

“right” www.foo.com for all of these CAs? 
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Revisiting Trust of CA 

 Trusting that for all CAs, key(KCA).A is the “correct” A is too 

strong 

 Remember that Firefox comes shipped with ~200 of them! 

 

 A better approach would reduce this trust 

 

 If principal names are hierarchical, then this is natural 

 Many naming schemes are hierarchical, but the most well known 

one is the Domain Name System (“DNS”) 
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Example: DNS Security 

 DNS translates between human-readable hostnames and IP 

addresses 

 Ex: translates www.foo.com to 208.228.229.218 

 Originally specified in RFC 1034 and RFC 1035, and revised by 

many since 

 

 DNS Security (“DNSSEC”) specifies extensions to DNS to 

make DNS more secure 

 “Owned” by the DNSEXT working group in IETF 

 Specified in RFC 2065 (January 1997), revised since 
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Each zone (usually a 

contiguous chunk of tree) 

has name servers that 

answer queries about 

names it represents 

.unc 

DNS Name Hierarchy 
Root 

.com .net .edu .org … Top level 

domains 

… .ibm .microsoft … .cornell Domains 

www .research … 

www 

.cs … .math 

www … .lcs 
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DNS Name Resolution 

.cs.unc.edu 

(resolver) 

(stub resolver) 

“www.foo.com?” 

(1) 

(2) 

(3) 

root server 

(4) 

(5) 

(7) 
(6) 

.com server 

.foo.com server 

(8) 

“208.228.229.218” 
www.foo.com 

(9) 
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DNSSEC 

(3) 

root server 

(5) 

(7) 

.com server 

.foo.com server 

(8) 

www.foo.com 

(3), (5), (7) 

What does the client conclude? 

 Each DNS record is digitally signed 

 Certificates are appended to responses 
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Example Proof 

1. Kroot signed (key(K.com) speaksfor key(Kroot).com) 

2. K.com signed (key(K.foo.com) speaksfor key(Kroot).com.foo) 

3. K.foo.com signed (key(Kwww.foo.com) speaksfor key(Kroot).com.foo.www) 

4. Kwww.foo.com signed F 

5. key(Kroot) says (key(K.com) speaksfor key(Kroot).com)          says-I(1) 

6. key(K.com) says (key(K.foo.com) speaksfor key(Kroot).com.foo)     says-I(2) 

7. key(K.foo.com) says (key(Kwww.foo.com) speaksfor key(Kroot).com.foo.www) 

                 says-I(3) 

8. key(Kwww.foo.com) says F             says-I(4) 

9. key(Kroot).com says (key(K.foo.com) speaksfor key(Kroot).com.foo) 

              speaksfor-E2(5, 6) 

10. key(Kroot).com.foo says (key(Kwww.foo.com) speaksfor   

   key(Kroot).com.foo.www)        speaksfor-E2(9, 7) 

11. key(Kroot).com.foo.www says F       speaksfor-E2(10, 8) 



47 

What Went Wrong? 

 We didn’t reduce the trust on the root 

 But that’s real life: DNSSEC root is in TCB for every DNS name 

 Is this bad? … The answer depends on your perspective 

 

 Optimist: DNS already requires a trusted root, at least 

DNSSEC is better (but not in this sense) 

 Pessimist: Could have done better 

 But probably not without changing how DNS works 

 So, let’s try changing how DNS works 
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Eliminating a Globally Trusted Authority 

.cs.unc.edu 

(1) 
(2) 

(3) 

(4) 

(5) 

(6) 
(8) 

(7) 

(9) 

(10) 

.unc.edu 

.edu 

.cornell.edu 

.cs.cornell.edu 

www.cs.cornell.edu (11) 

This part not in TCB for deducing 

Kwww.cs.cornell.edu  www.cs.cornell.edu  
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Conclusion 

 Presented a simple framework for reasoning about 

authentication and access control in distributed systems 

 Showed how it can be used to model the propagation of 

authority in various settings 

 Web security, secure booting, DNSSEC, … 

 Can also be used to implement authentication and access 

control in systems 

 L. Bauer, S. Garriss, J. M. McCune, M. K. Reiter, J. Rouse and P. 

Rutenbar. Device-enabled authorization in the Grey system. ISC 2005. 

 L. Bauer, S. Garriss and M. K. Reiter. Efficient proving for practical 

distributed access-control systems. ESORICS 2007. 

 M. L. Mazurek, Y. Liang, W. Melicher, M. Sleeper, L. Bauer, G. R. 

Ganger, N. Gupta, and M. K. Reiter. Toward strong, usable access 

control for shared distributed data. In FAST 2014. 


