
1

Title Goes Here

Understanding Authentication and

Access Control in Distributed Systems

Mike Reiter

University of North Carolina at Chapel Hill

2

Background Reading

 B. Lampson, M. Abadi, M. Burrows and T. Wobber.

Authentication in distributed systems: Theory and

practice. ACM TOCS 10(4), Nov 1992.

http://dx.doi.org/10.1145/138873.138874
http://dx.doi.org/10.1145/138873.138874

3

Access Control

 Principal makes a request for an object

 Reference monitor grants or denies the request

Principal Request
Reference

Monitor
Yes/No

 Authentication: Determining who made request

 Authorization: Determining whether requestor is trusted to

access an object

 The “decision” the reference monitor must make

Editor Send file File server Ex:

Host Forward packet Firewall Ex:

4

Authenticating a Channel

 Each request arrives on some channel, e.g.,

 Kernel call from a user process

 Network connection

 A channel defined by a cryptographic key

 Reference monitor must authenticate the channel, i.e.,

determine whom the request is from

 Easy in a centralized system

 OS implements all channels and knows the principal responsible for

each process

 Harder in a distributed system

 Request may have traversed different, not-equally-trusted machines

 Different types of channels

 Some parts of the system may be faulty or broken

5

The Challenge

Workstation

O/S

Application NFS Server

O/S

Server
Network

channel

Request I wonder

what Mike’s

SSN is …

Keyboard/display

channel

 Who is the request “from”?

 The user? The workstation? The application?

 All of the above?

6

Our Approach to Studying the Problem

 Explain authentication and access control using a logic

 The logic forces us to make assumptions explicit and teaches
us how to think about access control

 Logic helps us to reason about principals and the statements
they make

 Principals can be
 Keys

 People

 Machines

 Principals in roles

 Groups

 …

7

Trusted Computing Base (TCB)

 Logic will help us identify the “trusted computing base”, i.e., the

collection of hardware and software that security depends on

 Compromise or failure of a TCB element may result in an incorrect

“Yes” access-control decision

 Thus, TCB should be as small as possible

 Must be carefully tested, analyzed and protected

 Benign failure of an untrusted (non-TCB) element may produce

more “No” answers, not more “Yes” ones

 This is called “fail secure” or “fail safe”

 Ex: An untrusted server holding a digitally signed credential

 Failure prevents credential from being retrieved (more “Nos”)

 Cannot undetectably modify the credential (due to the signature)

8

The Logic

 The logic is inhabited by

 Terms that denote principals and strings

 Formulas that are either “true” or “false”

 Terms:

 t ::= s | p

 p ::= key(s) | p.s

 where s ranges over strings and p over principals

 Formulas:

  ::= s signed  | p says 

  ::= action(s) | p speaksfor p | delegate(p, p, s)

 where s ranges over strings and p over principals

9

A Logic of Authorization (cont.)

 Inference rules

keystr signed F

key(keystr) says F

(says-I)

A says (A.S says F)

A.S says F

(says-LN)

10

A Logic of Authorization (cont.)

A says (F  G) A says F

A says G

(impl-E)

F

A says F

(says-I2)

 Inference rules

11

A Logic of Authorization (cont.)

 Inference rules

A says (B speaksfor A.S) B says F

A.S says F

(speaksfor-E2)

A says (B speaksfor A) B says F

A says F

(speaksfor-E)

A says delegates(A, B, U) B says action(U)

A says action(U)
(delegate-E)

12

Digital Signatures (Informal Definition)

 A digital signature scheme is a triple <G, S, V> of efficiently

computable algorithms

 G outputs a “public key” K and a “private key” K-1

< K, K-1>  G()

 S takes a “message” m and K-1 as input and outputs a “signature” 

  SK-1(m)

 V takes a message m, signature  and public key K as input, and outputs

a bit b

b  VK(m, )

 If   SK-1(m) then VK(m, ) outputs 1 (“valid”)

 Given only K and message/signature pairs {<mi, SK-1(mi)>}i, it is

computationally infeasible to compute <m,  > such that

VK(m, ) = 1

 any new m  mi

13

Cryptographic Keys as Channels

 Let  be a digital signature on x such that VK(x, ) = 1

 Interpret t or  as “K signed x” (for respective K)

14

Authenticating a Channel

 Reference monitor receives a request C says action(s)

 An access-control list usually specifies named principals

 Thus, reference monitor must collect certificates to prove that

A says action(s) for some A on the access control list

 Two general methods

 Push: The sender on the channel C collects A’s credentials and

presents them to authenticate the channel to the receiver.

 Pull: The receiver looks up A in some database to get credentials for

A when it needs to authenticate the sender.

15

Certification Authorities

 Credentials typically come from “certification authorities”

 A certification authority is a named principal CA

 CA issues statements of the form

KCA signed (key(KA) speaksfor key(KCA).A)

 If KCA is a public key, this statement is called a certificate

 But KCA can be a symmetric key, too

16

An Example Proof

1. KCA signed (key(KA) speaksfor key(KCA).A)

2. KA signed action(resource)

3. key(KCA) says (key(KA) speaksfor key(KCA).A) says-I(1)

4. key(KA) says action(resource) says-I(2)

5. key(KCA).A says action(resource) speaksfor-E2(3, 4)

17

A Certification Authority
CA

Infers key(KCA).A says action(resource)

KA signed action(resource)

18

Groups

 A group is a principal whose members speak for it

 Simplest way to define a group G is for a defining CA to

issue certificates

key(KCA) says P1 speaksfor key(KCA).G

key(KCA) says P2 speaksfor key(KCA).G

…

for group members P1, P2, …

19

Mike.Students says

 action(D208)

Example Proof

Mike says action(D208)

Mike says delegate(Mike,

 Mike.Students, D208)

Scott says action(D208) Mike says (Scott

 speaksfor Mike.Students)

?

? ?

? ?

?

?

?

? ?

Stored in the reference monitor.

Part of the TCB.

20

Traditional Access Control Lists

Mike.Students says

 action(D208)

delegate(Mike,

 Mike.Students, D208)

Scott says action(D208) Scott speaksfor Mike.Students

?

? ?

? ?

?

?

?

? ?

Implicitly known to the reference

monitor.
Received in the request.

Mike says action(D208)

Stored in the reference monitor.

Part of the TCB.

Note: not signed

21

A “Pull” Approach

Mike.Students says

 action(D208)

Mike says delegate(Mike,

 Mike.Students, D208)

Scott says action(D208) Mike says (Scott

 speaksfor Mike.Students)

?

? ?

? ?

?

?

?

? ?

Received in the request.

Mike says action(D208)

Stored in the reference monitor.

Part of the TCB.

Retrieved by reference monitor.

22

A “Push” Approach

Mike.Students says

 action(D208)

Mike says delegate(Mike,

 Mike.Students, D208)

Scott says action(D208) Mike says (Scott

 speaksfor Mike.Students)

?

? ?

? ?

?

?

?

? ?

Received in the request.

Mike says action(D208)

Stored in the reference monitor.

Part of the TCB.

23

A “Proof Carrying” Approach

Mike.Students says

 action(D208)

Mike says delegate(Mike,

 Mike.Students, D208)

Scott says action(D208) Mike says (Scott

 speaksfor Mike.Students)

?

? ?

? ?

?

?

?

? ?

Received in the request.

Mike says action(D208)

Stored in the reference monitor.

Part of the TCB.

24

Roles

 Suppose a principal wants to limit its authority

 Reiter “as” GamePlayer

 Reiter “as” SysAdmin

 Intuition: A “as” R should be weaker than A

 A can accomplish this by enabling statements of the form

A.R says F

 to be created

25

Programs as an Application of Roles

 Acting in a role is like acting according to some program

 Instead of using the whole program I, N can instead make

N.D says F

 where D = h(I) for h a collision-resistant and 2nd preimage

resistant hash function, and using

D speaksfor P

 where P is the program name

 If node N is running program with text I, then N can make

N.I says F

 for a statement F made by the process running I

26

Loading Programs

 To load program named P, node N

 Creates a process pr

 Reads text I of file P from the file system

 Finds credentials for D speaksfor P and checks h(I) = D

 Copies I into pr

 Gives pr ability to write to channel C

 Emit: N says C speaksfor N.P

 Now pr can issue requests on channel C

 Will be granted if N.P is on ACL

27

Virus Control

 Certification authority CA can issue certificates

KCA signed P speaksfor key(KCA).trustedSW

KCA signed N speaksfor key(KCA).trustedNodes

KCA signed (P speaksfor key(KCA).trustedSW 

 (N speaksfor key(KCA).trustedNodes 

 N.P speaksfor key(KCA).trustedNodeAndSW))

 where trustedSW, trustedNodes, and

trustedNodeAndSW are group names, P is a program

name, and N is a node name

 Some viruses alter texts of programs in the file system

 If I is the infected program text, then D = h(I) will be different

from D = h(I), and so D speaksfor P will not apply

28

Secure Booting

 Private key for KW must be protected in secure hardware

 Otherwise, O/S can read it

 ‘trustedNodes’ should be computers that

 run operating systems validated before booting

 validate other software before loading it

 Validating O/S during boot is like validating other software

 Machine W holds h(I) in boot ROM, where I is O/S image

 i.e., h(I) speaksfor P

 To create a channel C such that C speaksfor W.P, W can

 Generate a new signature key pair , and

 Give to P, along with KW signed key(KW.P) speaksfor key(KW).P

1

.. , 

PWPW KK

1

.



PWK

29

Example: TCG

 Historically, PC manufacturers have chosen flexibility over

security

 User can modify the PC in any way she likes

 PC does not have hardware protection for boot procedure, does not

validate O/S before loading it, does not validate other programs

 Today this is changing with efforts like the Trusted Computing

Group (TCG; www.trustedcomputinggroup.org)

 Alliance formed in Jan 1999 by Compaq, HP, IBM, Intel & Microsoft

 More than 150 companies by 2002

 Developing a standard for a “trusted platform” (TP), based on

principles similar to those we’ve discussed

 Scope of specs is at hardware, O/S and BIOS levels

 Main spec released in Aug 2000 (v1.0) and Feb 2001 (v1.1)

 PC-specific spec released in Sep 2001

30

Example: TCG

 Some goals of TP

 Enable local and remote users to obtain reliable information about

the software running on the platform

 Provide a basis for secure key storage

 Enable conditional release of secret information to the TP based on

the software running

 TP enabled by a “trusted processing module” (TPM)

 A hardware processing component that is isolated from software

attacks and at least partially resistant to hardware tampering

1

TPM

K Each TPM is equipped with a different private key and a

certificate

 KTPME says key(KTPM) speaksfor key(KTPME).TrustedProcessingModules

 signed by a “trusted platform module entity” (TPME)

 TrustedProcessingModules is a group

31

TCG “Roots of Trust”

The standard specifies two logical “roots of trust”

 Root of trust for measurement (RTM): A platform-dependent

component that starts “measurement” of software running

 In a PC, the RTM is the platform itself, which is acceptable only if

the RTM cannot be subverted before or during its operation

 In practice, this means that the RTM must run first (or everything

that is run before it is trusted)

 e.g., BIOS boot block, called the “core root of trust for

measurement” (CRTM)

 Root of trust for reporting (RTR): A platform-independent

component that stores “measurements” as they happen, in

such a way that measurements cannot be “undone”

 RTR is implemented by the TPM

32

TPM Platform Configuration Registers

 TPM (version 1.1) contains sixteen 20-byte “platform

configuration registers” (PCRs)

 20 bytes in order to store a SHA-1 hash value

 Each PCR records the last in a sequence of hashes of the

software that has been loaded and run

001011
101101

h()

software

PCR

001011
101101

software
load

h()

 PCR is updated before newly

loaded software gets control

 PCR cannot be erased except by

reboot (or protected processor

instruction in v1.2 TPMs)

 In this way, PCR contains record

of software running

33

TCG Authenticated Boot

BIOS boot

block (CRTM) 001011
101101

h()

BIOS

PCR 0

001011
101101

ROMS

h()

PCR 1
001011
101101

OS loader

h()

PCR 2

001011
101101

OS

h()

PCR 3

001011
101101

OS

components

h()

PCR 4

001011
101101

h()

34

TCG Secure Boot

 Non-volatile “data integrity registers” (DIRs) are loaded with

expected PCR values

 DIRs are contained within TPM and require owner authorization to

write

 If a PCR value, when computed, doesn’t match corresponding

DIR value, then boot is canceled

35

TCG Integrity Challenge and Response

 Remote machine can query TPM for contents of PCRs

 TPM responds with signed PCR values

 Think of it as signed with KTPM

KTPM signed PCRvals = …

 (In reality, is not signed with KTPM but another “identity key” is

used to enhance privacy)

 TP additionally responds with records (hints) of what is

“summarized” in the PCR values

 Records could contain software itself, but more likely contains

name, supplier, version, and URL for software

 Enables remote machine to reconstruct and check PCR values

 Records not trusted and so are stored outside TPM

36

Example

Workstation W

O/S

Application A
NFS Server

O/S

Server
Network

channel

I wonder

what Mike’s

SSN is …

KW.OS signed

 (key(KW.OS).U

 says A says F)

1

UK

1

WK

KCA signed

key(KU) speaksfor key(KCA).U

KCA signed

key(KW) speaksfor key(KCA).W

1

.OS



WK

W.OS
W.OS.U

KW signed key(KW.OS) speaksfor key(KCA).W.OS

KU signed key(KCA).W.OS.U speaksfor key(KCA).U

37

Example (cont.)

1. KCA signed key(KW) speaksfor key(KCA).W

2. KCA signed key(KU) speaksfor key(KCA).U

3. KW signed key(KW.OS) speaksfor key(KCA).W.OS

4. KU signed key(KCA).W.OS.U speaksfor key(KCA).U

5. KW.OS signed (key(KW.OS).U speaksfor key(KCA).W.OS.U)

6. KW.OS signed (key(KW.OS).U says A says F)

7. key(KCA) says key(KW) speaksfor key(KCA).W says-I(1)

8. key(KCA) says key(KU) speaksfor key(KCA).U says-I(2)

9. key(KW) says key(KW.OS) speaksfor key(KCA).W.OS says-I(3)

10. key(KU) says key(KCA).W.OS.U speaksfor key(KCA).U says-I(4)

11. key(KW.OS) says (key(KW.OS).U speaksfor key(KCA).W.OS.U)

 says-I(5)

12. key(KW.OS) says (key(KW.OS).U says A says F) says-I(6)

38

Example (cont.)

13. key(KCA).W says key(KW.OS) speaksfor key(KCA).W.OS

 speaksfor-E2(7, 9)

14. key(KCA).U says (key(KCA).W.OS.U speaksfor key(KCA).U)

 speaksfor-E2(8, 10)

15. key(KCA).W.OS says (key(KW.OS).U speaksfor key(KCA).W.OS.U)

 speaksfor-E2(13, 11)

16. key(KW.OS).U says A says F says-LN(12)

17. key(KCA).W.OS.U says A says F speaksfor-E2(15, 16)

18. key(KCA).U says A says F speaksfor-E(14, 17)

39

Example: Web Server Authentication (1)

 What happens when you access https://www.foo.com?

 A protocol called Secure Sockets Layer (SSL) or Transport

Layer Security (TLS) is used to authenticate the web server

 Also performs other functions that are not important for the moment

SSL or TLS

TCP

IP

HTTP FTP SMTP

40

Example: Web Server Authentication (2)

 As part of SSL/TLS, web server sends a certificate

KCA signed (key(Kwww.foo.com) speaksfor key(KCA).'www.foo.com')

 to browser

 Browser is shipped with public keys for numerous CAs:

KCA1 , KCA2 , KCA3 , …

 Mozilla Firefox 23.0.1 ships with ~200 CA keys loaded

 Reportedly these represent organizations from over 30 countries: AT,

BE, BM, CH, CN, CO, DE, DK, EE, ES, EU, FI, FR, GB, GR, HK,

HU, IE, IL, IT, JP, NL, NO, PL, RO, SE, SK, TR, TW, US, VE, ZA

 Should we really trust that key(KCA).'www.foo.com' is the

“right” www.foo.com for all of these CAs?

41

Revisiting Trust of CA

 Trusting that for all CAs, key(KCA).A is the “correct” A is too

strong

 Remember that Firefox comes shipped with ~200 of them!

 A better approach would reduce this trust

 If principal names are hierarchical, then this is natural

 Many naming schemes are hierarchical, but the most well known

one is the Domain Name System (“DNS”)

42

Example: DNS Security

 DNS translates between human-readable hostnames and IP

addresses

 Ex: translates www.foo.com to 208.228.229.218

 Originally specified in RFC 1034 and RFC 1035, and revised by

many since

 DNS Security (“DNSSEC”) specifies extensions to DNS to

make DNS more secure

 “Owned” by the DNSEXT working group in IETF

 Specified in RFC 2065 (January 1997), revised since

43

Each zone (usually a

contiguous chunk of tree)

has name servers that

answer queries about

names it represents

.unc

DNS Name Hierarchy
Root

.com .net .edu .org … Top level

domains

… .ibm .microsoft … .cornell Domains

www .research …

www

.cs … .math

www … .lcs

44

DNS Name Resolution

.cs.unc.edu

(resolver)

(stub resolver)

“www.foo.com?”

(1)

(2)

(3)

root server

(4)

(5)

(7)
(6)

.com server

.foo.com server

(8)

“208.228.229.218”
www.foo.com

(9)

45

DNSSEC

(3)

root server

(5)

(7)

.com server

.foo.com server

(8)

www.foo.com

(3), (5), (7)

What does the client conclude?

 Each DNS record is digitally signed

 Certificates are appended to responses

46

Example Proof

1. Kroot signed (key(K.com) speaksfor key(Kroot).com)

2. K.com signed (key(K.foo.com) speaksfor key(Kroot).com.foo)

3. K.foo.com signed (key(Kwww.foo.com) speaksfor key(Kroot).com.foo.www)

4. Kwww.foo.com signed F

5. key(Kroot) says (key(K.com) speaksfor key(Kroot).com) says-I(1)

6. key(K.com) says (key(K.foo.com) speaksfor key(Kroot).com.foo) says-I(2)

7. key(K.foo.com) says (key(Kwww.foo.com) speaksfor key(Kroot).com.foo.www)

 says-I(3)

8. key(Kwww.foo.com) says F says-I(4)

9. key(Kroot).com says (key(K.foo.com) speaksfor key(Kroot).com.foo)

 speaksfor-E2(5, 6)

10. key(Kroot).com.foo says (key(Kwww.foo.com) speaksfor

 key(Kroot).com.foo.www) speaksfor-E2(9, 7)

11. key(Kroot).com.foo.www says F speaksfor-E2(10, 8)

47

What Went Wrong?

 We didn’t reduce the trust on the root

 But that’s real life: DNSSEC root is in TCB for every DNS name

 Is this bad? … The answer depends on your perspective

 Optimist: DNS already requires a trusted root, at least

DNSSEC is better (but not in this sense)

 Pessimist: Could have done better

 But probably not without changing how DNS works

 So, let’s try changing how DNS works

48

Eliminating a Globally Trusted Authority

.cs.unc.edu

(1)
(2)

(3)

(4)

(5)

(6)
(8)

(7)

(9)

(10)

.unc.edu

.edu

.cornell.edu

.cs.cornell.edu

www.cs.cornell.edu (11)

This part not in TCB for deducing

Kwww.cs.cornell.edu  www.cs.cornell.edu

49

Conclusion

 Presented a simple framework for reasoning about

authentication and access control in distributed systems

 Showed how it can be used to model the propagation of

authority in various settings

 Web security, secure booting, DNSSEC, …

 Can also be used to implement authentication and access

control in systems

 L. Bauer, S. Garriss, J. M. McCune, M. K. Reiter, J. Rouse and P.

Rutenbar. Device-enabled authorization in the Grey system. ISC 2005.

 L. Bauer, S. Garriss and M. K. Reiter. Efficient proving for practical

distributed access-control systems. ESORICS 2007.

 M. L. Mazurek, Y. Liang, W. Melicher, M. Sleeper, L. Bauer, G. R.

Ganger, N. Gupta, and M. K. Reiter. Toward strong, usable access

control for shared distributed data. In FAST 2014.

