
© Galois, Inc 2021

Verifiable Binary Lifting
Joe Hendrix, Andrew Kent and Simon Winwood
Galois, Inc
HCSS 2021

1

© Galois, Inc 2021

New Applications of Decompilers

2

© Galois, Inc 2021

What is Decompilation?
■ A compiler translates code written in a high-level language into a low level language for efficient

execution.

■ A decompiler reverses steps in this translation

3

uint64_t fib(uint64_t x) {
 if (x <= 1) {
 return x;
 } else {
 return fib(x-1)+fib(x-2);
 }
}

0000000000201000 fib:
 201000: 55 pushq %rbp
 201001: 4889e5 movq %rsp, %rbp
 201004: 4883ec20 subq $32, %rsp
 201008: 48897df0 movq %rdi, -16(%rbp)
 20100c: 48837df001 cmpq $1, -16(%rbp)
 201011: 0f870d000000 ja 13 <fib+0x24>
 201017: 488b45f0 movq -16(%rbp), %rax
 20101b: 488945f8 movq %rax, -8(%rbp)
 20101f: e934000000 jmp 52 <fib+0x58>
 201024: 488b45f0 movq -16(%rbp), %rax
 201028: 482d01000000 subq $1, %rax
 20102e: 4889c7 movq %rax, %rdi
 201031: e8caffffff callq -54 <fib>
 201036: 488b4df0 movq -16(%rbp), %rcx
 20103a: 4881e902000000 subq $2, %rcx
 201041: 4889cf movq %rcx, %rdi
 201044: 488945e8 movq %rax, -24(%rbp)
 201048: e8b3ffffff callq -77 <fib>
 20104d: 488b4de8 movq -24(%rbp), %rcx
 201051: 4801c1 addq %rax, %rcx
 201054: 48894df8 movq %rcx, -8(%rbp)
 201058: 488b45f8 movq -8(%rbp), %rax
 20105c: 4883c420 addq $32, %rsp
 201060: 5d popq %rbp
 201061: c3 retq

Compiler

© Galois, Inc 2021

Who uses Decompilers?
■ Decompilers are traditionally used by reverse engineers trying to understand a program.

■ Decompile into a language understandable by people.

■ User works with the decompiler to translate code into idiomatic code.

■ Without hints or existing source to target, it is generally impossible to recover the original source.

■ Information lost includes all the structure within function bodies such as original control flow
structure and local variables.

■ Much more information is lost when compiling with optimization.

■ More recent programs are aimed at using decompilers for program transformation and repair.

4

© Galois, Inc 2021

Decompilation for
Program Transformation
■ Researchers are increasingly looking at using decompilers to transform programs.

■ Patch code with vulnerabilities.

■ Extract functionality from legacy code for use in new applications.

■ Apply new compiler optimizations or insert security checks into legacy applications.

■ Port a program from one platform to another.

■ These new applications place greater emphasis on program correctness and may have less
emphasis on programmer understanding.

5

© Galois, Inc 2021

Compilation Toolchain

■ Decompilation needs to reverse these steps.

Source
Code

Headers

Frontend
Lowering

Optimization,
Machine Code
Generation and

Assembly

LLVM
Bitcode Linking &

Use
Analysis

Executable

Object
Files

Static
Libraries

Dynamic
Libraries

LLVM clang compilation

6

© Galois, Inc 2021

Recompilation Observations
Recompilation use case differences.

■ Sufficient to lift to compiler IR or object file representation rather than source.

■ Assured decompilation is much more important.

7

© Galois, Inc 2021

Program Recompilation
■ My talk today is focused on reopt, a tool for optimization of compiled executables.

■ This can be used for optimization, dead code elimination, and hardening legacy binaries.

Dead code

Necessary code

Application Reopt

Mission
optimized

binary

8

© Galois, Inc 2021

Three Step Process
Three Step Process

1. Decompilation

2. Optimized Compilation

3. Relinking

9

© Galois, Inc 2021

10
nweb
.exe

nweb
.ll

1.Decompilation

© Galois, Inc 2021

11
nweb
.exe

nweb-opt
.o

nweb
.ll

2. Optimized Compilation

1.Decompilation

© Galois, Inc 2021

12
nweb-opt
.exe

nweb
.exe

nweb-opt
.o

nweb
.ll

1.Decompilation

3. Relinking

2. Optimized Compilation

Decompilation Pipeline13
Extract Contents

.text

.data/.bss

.eh_frame

Program hdrs

Sections

Symbols

.debug_…

Relocations

LLVM
Generation

main
Invariant
Analysis

Function
Recovery

Signature
Analysis

Summarization

Interprocedural
Demand
Analysis

main
Invariant
Analysis

Function
Recovery

Function
Discovery

main

functionA

functionB

functionZ
main

Invariant
Analysis

Function
Recovery

External
Declarations

Constants
(String Pool)

Functions

© Galois, Inc 2021

Compositionality
■ Can export intermediate results at each stage of pipeline.

■ Import user information such as additional entry points and function arguments.

14

© Galois, Inc 2021

Verification

15

© Galois, Inc 2021

Verification Properties
Recompilation Soundness

■ Every observable execution in the LLVM should be possible in the machine code program.

Verification Soundness

■ If a property is true of the raised program, then it should be true of the machine code program.

16

t ∈ traces(PLLVM) ⇒ ∃ t’ ∈ traces(PMC), t ≡ t’

© Galois, Inc 2021

Observational Equivalence
■ Our current notion of equivalence is based on event traces.

■ Required events include:

■ Writes to non-stack addresses.

■ Other operations that may raise signals (e.g., divide-by-zero).

■ System calls

■ Internally, we make additional equivalence checks for compositional purposes.

17

© Galois, Inc 2021

Verification Approaches
1. Build a verified decompiler using

interactive theorem proving.

18

© Galois, Inc 2021

Verification Approaches
1. Build a verified decompiler using

interactive theorem proving.

■ Decompilation is an open-ended problem.

■ Very complex to implement, and needs
continued improvement.

19

© Galois, Inc 2021

Verification Approaches
1. Build a verified decompiler using

interactive theorem proving.

■ Decompilation is an open-ended problem.

■ Very complex to implement, and needs
continued improvement.

20
2. Use an automated checker to check the

programs are equivalent.

■ Program equivalence is ordinarily
decidable…

■ However, the decompiler output is
structurally similar to input binary.

■ We have developed a compositional
approach that checks equivalence of
basic blocks using SMT solving.

© Galois, Inc 2021

Verification Approach

Generated LLVM

Original Binary

Generated Annotations reopt-vcg SMTLIB Problems

Correctness claim: If all SMTLIB SAT problems are unsat, then the generated LLVM refines the original binary

■ We have implemented a verifier based on translation validation.

21

© Galois, Inc 2021

Satisfiability Modulo Theories (SMT)
■ SMT-based theorem provers can automatically prove theorems involving specific decidable

mathematical theories.

■ SMT solvers allow decision procedures for different theories to work together.

■ reopt-vcg uses bitvectors, arrays, and uninterpreted functions.

22

© Galois, Inc 2021

Compositional Proofs
■ The key to making automation tractable is to decompose the overall equivalence of programs into many

smaller proofs.
■ Instead of asking:

■ We instead ask solvers to answer many questions of the form:

■ For a compositional strategy, we need
■ All the assumptions needed to make the statement true.
■ Check that the assumptions hold when jumping from one block to another.

23

Is LLVM Program P equivalent to machine code program Q?

Is this effect in a LLVM basic block B equivalent to this effect in the machine code?

© Galois, Inc 2021

Compositional Proofs
■ Reopt-VCG’s compositional strategy enforces

■ Functions respect the ABI (how arguments are passed, callee-saved registers, etc)

■ The size of each stack frame is bounded to at most a page and all stack accesses are in
bounds.

■ Needed to avoid accessing heap memory via stack pointers.

■ Callee saved information is in fact properly saved and not modified during execution of the
program.

24

© Galois, Inc 2021

Getting Reopt
■ reopt and reopt-vcg are publicly available under open source libraries.

■ You can try it out online through Gitpod, download a Docker image, or use prebuilt binaries.

25

https://github.com/GaloisInc/reopt

© Galois, Inc 2021

Thank You

26

