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New Applications of Decompilers
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What is Decompilation?
■ A compiler translates code written in a high-level language into a low level language for efficient 

execution. 

■ A decompiler reverses steps in this translation
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uint64_t fib(uint64_t x) { 
    if (x <= 1) { 
        return x; 
    } else { 
        return fib(x-1)+fib(x-2); 
    } 
} 

0000000000201000 fib: 
  201000: 55              pushq %rbp 
  201001: 4889e5          movq %rsp, %rbp 
  201004: 4883ec20        subq $32, %rsp 
  201008: 48897df0        movq %rdi, -16(%rbp) 
  20100c: 48837df001      cmpq $1, -16(%rbp) 
  201011: 0f870d000000    ja   13 <fib+0x24> 
  201017: 488b45f0        movq -16(%rbp), %rax 
  20101b: 488945f8        movq %rax, -8(%rbp) 
  20101f: e934000000      jmp 52 <fib+0x58> 
  201024: 488b45f0        movq -16(%rbp), %rax 
  201028: 482d01000000    subq $1, %rax 
  20102e: 4889c7          movq %rax, %rdi 
  201031: e8caffffff      callq -54 <fib> 
  201036: 488b4df0        movq -16(%rbp), %rcx 
  20103a: 4881e902000000  subq $2, %rcx 
  201041: 4889cf          movq %rcx, %rdi 
  201044: 488945e8        movq %rax, -24(%rbp) 
  201048: e8b3ffffff      callq -77 <fib> 
  20104d: 488b4de8        movq -24(%rbp), %rcx 
  201051: 4801c1          addq %rax, %rcx 
  201054: 48894df8        movq %rcx, -8(%rbp) 
  201058: 488b45f8        movq -8(%rbp), %rax 
  20105c: 4883c420        addq $32, %rsp 
  201060: 5d              popq %rbp 
  201061: c3              retq 

Compiler
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Who uses Decompilers?
■ Decompilers are traditionally used by reverse engineers trying to understand a program. 

■ Decompile into a language understandable by people. 

■ User works with the decompiler to translate code into idiomatic code. 

■ Without hints or existing source to target, it is generally impossible to recover the original source. 

■ Information lost includes all the structure within function bodies such as original control flow 
structure and local variables. 

■ Much more information is lost when compiling with optimization. 

■ More recent programs are aimed at using decompilers for program transformation and repair.
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Decompilation for 
Program Transformation
■ Researchers are increasingly looking at using decompilers to transform programs. 

■ Patch code with vulnerabilities. 

■ Extract functionality from legacy code for use in new applications. 

■ Apply new compiler optimizations or insert security checks into legacy applications. 

■ Port a program from one platform to another. 

■ These new applications place greater emphasis on program correctness and may have less 
emphasis on programmer understanding.
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Compilation Toolchain

■ Decompilation needs to reverse these steps.
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Recompilation Observations
Recompilation use case differences.  

■ Sufficient to lift to compiler IR or object file representation rather than source. 

■ Assured decompilation is much more important.
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Program Recompilation
■ My talk today is focused on reopt, a tool for optimization of compiled executables. 

■ This can be used for optimization, dead code elimination, and hardening legacy binaries.
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Three Step Process
Three Step Process 

1. Decompilation 

2. Optimized Compilation 

3. Relinking
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Decompilation Pipeline13
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Compositionality
■ Can export intermediate results at each stage of pipeline. 

■ Import user information such as additional entry points and function arguments.
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Verification
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Verification Properties
Recompilation Soundness 

■ Every observable execution in the LLVM should be possible in the machine code program.  

Verification Soundness 

■ If a property is true of the raised program, then it should be true of the machine code program.
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t ∈ traces(PLLVM) ⇒ ∃ t’ ∈ traces(PMC), t ≡ t’ 
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Observational Equivalence
■ Our current notion of equivalence is based on event traces. 

■ Required events include: 

■ Writes to non-stack addresses. 

■ Other operations that may raise signals (e.g., divide-by-zero). 

■ System calls 

■  Internally, we make additional equivalence checks for compositional purposes.
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Verification Approaches
1. Build a verified decompiler using 

interactive theorem proving.

18



© Galois, Inc 2021

Verification Approaches
1. Build a verified decompiler using 

interactive theorem proving. 

■ Decompilation is an open-ended problem. 

■ Very complex to implement, and needs 
continued improvement.
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Verification Approaches
1. Build a verified decompiler using 

interactive theorem proving. 

■ Decompilation is an open-ended problem. 

■ Very complex to implement, and needs 
continued improvement.
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2. Use an automated checker to check the 

programs are equivalent. 

■ Program equivalence is ordinarily 
decidable… 

■ However, the decompiler output is 
structurally similar to input binary. 

■ We have developed a compositional 
approach that checks equivalence of 
basic blocks using SMT solving.
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Verification Approach

Generated LLVM

Original Binary

Generated Annotations reopt-vcg SMTLIB Problems

Correctness claim: If all SMTLIB SAT problems are unsat, then the generated LLVM refines the original binary

■ We have implemented a verifier based on translation validation.  
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Satisfiability Modulo Theories (SMT)
■ SMT-based theorem provers can automatically prove theorems involving specific decidable 

mathematical theories. 

■ SMT solvers allow decision procedures for different theories to work together. 

■ reopt-vcg uses bitvectors, arrays, and uninterpreted functions.
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Compositional Proofs
■ The key to making automation tractable is to decompose the overall equivalence of programs into many 

smaller proofs. 
■ Instead of asking: 

■ We instead ask solvers to answer many questions of the form: 

■ For a compositional strategy, we need 
■ All the assumptions needed to make the statement true. 
■ Check that the assumptions hold when jumping from one block to another.
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Is LLVM Program P equivalent to machine code program Q? 

Is this effect in a LLVM basic block B equivalent to this effect in the machine code?
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Compositional Proofs
■ Reopt-VCG’s compositional strategy enforces 

■ Functions respect the ABI (how arguments are passed, callee-saved registers, etc) 

■ The size of each stack frame is bounded to at most a page and all stack accesses are in 
bounds. 

■ Needed to avoid accessing heap memory via stack pointers. 

■ Callee saved information is in fact properly saved and not modified during execution of the 
program.
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Getting Reopt
■ reopt and reopt-vcg are publicly available under open source libraries. 

■ You can try it out online through Gitpod, download a Docker image, or use prebuilt binaries.
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https://github.com/GaloisInc/reopt
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Thank You
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