OVERVIEW

*Desire: Autonomy implements pilot behavior
—Create verifiable autonomous behaviors that work with
human intent to support more cooperative autonomous
mission operation

*Approach: Design a cognitive system with formal

methods for assurance
—Design intelligent agent in cognitive framework
—Translate from cognitive to formal environment
—Understand assumptions and potential near-term

limitations on autonomy

*Objective: Developing trust for intelligent systems

TECHNICAL SUMMARY

* Evaluated training manuals to identify
requirements for expected pilot behavior
— Practical Training Standards
—ONR

* Evaluated intelligent learning behavior

—Investigated ACT-R (synthetic teammate) and Soar for
agent-based behavior modeling

— Evaluated learning mechanisms
* Implemented Reinforcement Learning

* Semantic Memory
* Developed formal approach to verify
composition of rules
— Gain trust in autonomy with models in UPPAAL
— Maintaining architectural integrity
* Developed translation formalisms from
cognitive architectures to formal representation

— Maintain architectural integrity

— Algorithms to translate by maintaining the logic of
operations

PILOT MODEL: REQUIREMENTS

* The system shall be capable of determining
whether aircraft systems and equipment

CHECK LIST

are functioning normally = .
e Example: checklists O@]O@
0 = @ © e
* The system shall be capable of o EE I
recovering from flight plan deviations. 0 s 7 0 s &
PUIPNEU X-FO'S [woseus |
* Implemented in UPPAAL SRS

Verification of Decision Procedures Modeled In
Intelligent Agents

M. Carvalho* and J. Davis *

* Florida Institute of Technology
* Rockwell Collins, Advanced Tech Center

COGNITIVE ARCHITECTURE

S. Bhattacharyya®, T. Eskridge™

Agent architecture

Integration of several

components

* Perception, Memory,

Production systems

Rule Memory

-

g

-

Working Memory

-4 -

T

4{1
-

Decision
Making

State
Creation

Learning

Image Source: Soar Tutorial Part 1

INTELLIGENT LEARNING SYSTEM

* Applied Reinforcement Learning (RL)

—Explores the possible paths to go from source to

—Generates soar rules based on the path found by

destination

—When paths from source to destination in an

environment are unknown

* The system shall be capable of
recovering from unusual attitudes.

* The system shall be capable of

the RL
Path Paths
[
Exploration found

¢ O Eocth L.OD > @ 1 Eocth

LF, L LE | H = gl a2 FI L

¢ X rorth 1. = O 3 rworth

¢ JF eorth 1.0 -> 0 4§ a3 - §
B EaTET L. g BT

= 4 raoarth 1.0 > - K torth °

=" EsSETE L. O - _ & #AS - B
& 2=t 1.C. £ B Ed 8T

= f Tast 1.C 3 8 sl i

4 & Eorctk L -2 3 £
" Ea=T 1 dq BT
7T EOFETh L .C > 4 B eEeasc L
g cazxT 1 R i -
2 st 1 ~ & B sastc
g csast 1.C = 7 8B sant 1
8 cmal 1.4 > B B i

recovering from lost communications.

Guarantee that the autonomy always executes the
correct behavior as indicated in the FAA standards

 readily implementable
 modular architectural approach

Resultant Ruleset

ésp fapply*checklist-1
E{state <3> *x 0 ~v 0 ~condition <c> "operator <o>)

é{{:} ~name unchecked)
. {<o>» ~name checklist-1)

——>

. (write (crlf)
E{{s} ~operator <o> +)

| Do checklist item 1)

(<o> ~name checklist-2)

ésp fapply*checklist-2
E{state <3> "X
é{{:} ~name unchecked)

é{{:} ~“name checklist-2)

——>

(write (crlf)

. (write (crlf)
. {<3> ~condition <c> -)
(<c> "~name checked)

0 =~y

| Do checklist item 2])
| Done with checklist])

0 ~condition <c> "~operator <o>)

FORMAL VERIFICATION: UPPAAL

Verification tool: UPPAAL (graphical, supports
temporal-logic specification)

C-based TEJA/UPPAAL converter has been developed

Uppaal is a Real-time verification tool

Uppaal consists of three main parts:
- an editor (description language),
- a simulator and

— a model-checker

TEMPORAL CONSTRUCTS

A specific condition holds in some state of the

A specific condition holds in all the states of an
execution path

A specific condition is guaranteed to hold

model’s potential behaviors

E<> p “Exists eventually p”

RS

<
A3
<Y

E[] p “Exists globally p”

Al] p “Always globally p”

COGNITIVE MODEL — OFFLINE
LEARNING WITH V&V FLOW

. Existing checklists are coded into a Soar graph
representation

. Soar agent used to learn best path through
graph

. New rules formally verified and then used by

online Soar agent

. Diagram below illustrates checklist application
= >
) Int elligent
*— aystem
» o

Mission, Application

MODEL AND PROPERTY
SPECIFICATION IN UPPAAL
FOR THE PILOT AGENT

s name == preflight_checklist &&

5 status == incomplete &&

s checklist verified in timeslice == false &&

((aipc_chi1.s_checklist item_ status != (checklist_item_status checking or checklist item_status passed)) or
aipc_ch2.s checklist item_status != (checklist_item_status checking or checklist_item_status passed) or
(aipc_ch3.s checklist item status = (checklist_item status checking or checklist_item_status passed)))

step++,

aici_done = false,
identifyPotentialChecklistitemi),

pic_gti=s global _time index,

s operator _name = initiate_checklist_item,
checklist_item_to initiate(),

pici_done = true

- aetCurrentName
Get Checklist Name =
et Checklist Name step++ N

© ~© >

Start Propose _Initiate

aici_done
step++, pici_done = false

Guarantee correctness of design and implementation

Identify conflicts/dependencies in rules

Properties:

—The AS shall start checking items by a certain execution steps
—The autonomous systems (AS) shall check all the listed items
—The AS shall complete the cycle of execution between a

range of execution steps
& alpc chi.s checkliat item status == checklist item 3tatus checking

& alpc chl.s checklist item status == checklist item 3tatus pasged

& 3tep == 5 & plcl.itart PICT &e setitepFiratCycle == falze

A 3tep == 6 &4 alpe chl.s checklist itew status == checklist itew status ready to check &4 setitepFiratCycle == falze
A7 atep == 17 & alpc chl.s checklist item status == checklist itew status checking s setdtepFirstCycle == falge

Ay step == 21 && getitepFirstlycle == false

A 3tep == 3 &6 alpe.dpply AIPC &e aetitepFiratCycle == falae

CONCLUSION

General findings with the research community on
Cognitive architecture:
* not rigorously analyzable
- complex constructs
* not easy to implement
Need to elaborate approach towards verification of

eventually:
. A<> P “Always eventually p”
+ g p “q always leads to p”
q P g diways ieadas 10 p 5
> Cognitive Model
--——____-_
m____fl/
Fead and imnport the
Cognitive Model /"r
Maint ain
s Cognitre Engine Mo
l | it ity 7 l
Dr::iljpeiﬁgheringn . |de ntify the constricts in the
: propoase, Production Swsterm [Rule s)
ze|lect, apply cycle +
* Generate rulelocks Design ternplates foreach of
- Yars binding at runtime _
¢ Handline painter the propose E.mu:l apply rules:
Mo |, |dentify mmple comstrucs Translate into guards,
* Pssocigte phases with the rules assigntments on transitions
- AssOocigte rule with completion l
¢+ Simulate \ Instantiate cormponents and
= Formulate ' Fules
Temporal Logic / N
formulas l .
Are the
propertiss
satafied?

cognitive engine

Verification in Uppaal:

* dealing with bindings at runtime

* addressing the handling of pointers

* need for a pre-operator

4™ Florida Institute of Technology Rockw

"/ Harris Institute for Assured Information

	Slide Number 1

