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Cryptography: A Foundation of Trust

Cryptographic algorithms are a small, 
but essential part of critical systems.

Defects in cryptographic 
implementation can compromise 
security of the entire system.

Testing is insufficient to find all bugs.
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In 2007, Harry Reimann discovered a bug in BN_nist_mod_384, 
a function used for field division in OpenSSL’s implementation of 
the NIST P-384 elliptic curve.

■ A similar bug occurred in the implementation of 
the NIST P-256 elliptic curve.

■ Edge case that occurred on less than 1 in 229 
inputs; no known exploit at the time.

■ Found day before release of OpenSSL0.9.8g; fix 
committed 6 months later.

3An Improbable Bug
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In 2012, Brumley, Barbosa, Page, and Vercauteren published a 
paper showing an adaptive attack that allowed full key recovery 
by triggering the bug.

■ Ephemeral keys provide a mitigation.

■ Several Linux distributions were still unpatched.

■ The authors call for formal verification:
We suggest that the effort required to adopt a 
development strategy capable of supporting 
formal verification is both warranted, and an 
increasingly important area for future work.

4Exploiting ECDH in OpenSSL
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Bugs Are Prevalent

Statistics from the testing laboratories show that 48 
percent of the cryptographic modules and 27 percent 
of the cryptographic algorithms brought in for voluntary 
testing had security flaws that were corrected during 
testing.

Without this program, the federal government would 
have had only a 50-50 chance of buying correctly 
implemented cryptography.

NIST Computer Security Division, 2008 Annual report

Software is a digital artifact — potential 
for much greater confidence in the 
correctness of our software than in the 
correctness of our bridges.

5
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Our Contribution

Galois has developed tools for 
showing that different cryptographic 
implementations compute the same 
values for all possible keys and inputs.

Uses formal verification techniques 
including symbolic simulation, 
rewriting, and third-party SAT and 
SMT-solvers.

From a user’s perspective, our tool 
performs exhaustive test coverage. 6

ABC
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Cryptol:
The Language of Cryptography 7

■ Declarative specification language
■ Language tailored to the crypto domain.
■ Designed with feedback from NSA.
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Cryptol Examples 8

■ Add two 384-bits numbers
add : ([384],[384]) -> [384];
add(x,y) = x + y;

■ Bit manipulation
ext : {n} (fin n) => [n] -> [n+1];
ext(x) = x # zero;
trim : {n} (fin n) => [n+1] -> [n];
trim(x) = reverse (tail (reverse x));

■ Addition modulo
add_mod : {n} (fin n) => ([n],[n],[n]) -> [n];
add_mod(x,y,p) = trim((ext x + ext y) % ext p);
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One specification - Many uses 9

9
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Verification Ecosystem

10
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Verification Strategy

1.Use forward symbolic simulation to unroll 
implementations, and generate terms that precisely 
describe results.

2.Show equivalence of two terms through rewriting, 
and off-the-shelf theorem provers, including abc or 
Yices.

11

Implementation A Implementation B

ABC Rewriting
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Suite B Verification Efforts 15

Role Implementation Lines of 
Code

AES-128

SHA-384

ECDSA (P-384)

Symmetric Key Cipher BouncyCastle
(Java) 817

Secure Hash Function libgcrypt
(C) 423

Digital Signature Scheme galois
(Java) 2348
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Suite B Problem Sizes 16

Lines of 
Code

AIG
Size

Decomposition
Steps Required

Verification
Time

AES-128
BouncyCastle

AESFastEngine

SHA-384
libgcrypt

ECDSA (P-384)
(galois)

817 1MB None needed
Fully automatic 40 min

423 3.2MB 12 steps
All solved via SAT 160 min

2348 More than 
5GB

48 steps
Multiple tactics 

required
10 min
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y2 = x3 + ax + b

What is an Elliptic Curve? 17
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26

■ For large elliptic curves, scalar multiplication is a one-way 
function:

Q = k·P
(Easy to compute k·P; hard to compute Q/P)

■ This operation is used to implement ECDSA and ECDH.
(digital signatures and key agreement)

Use in Cryptography
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NIST P384 Curve
ECC is a family of algorithms, with many options.

■ We implemented the NIST P-384 curve.

■  Part of NSA Suite B.

Symmetric
Key Size (bits)

Elliptic Curve
Key Size (bits)

RSA Key
Size (bits)

128 256 3072
192 384 7680
256 521 15360

NIST Recommended Key Sizes

27
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NIST P384 Curve

■ Prime field P384

P384 = 2384 - 2128 - 296 + 232 - 1

■ Curve Equation: y2 = x3 - 3x + b

b = b3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112
0314088f 5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef

28
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29

■ Create an efficient verified implementation of ECDSA over 
NIST P-384 curve in Java.

■ Use known optimizations such as twin multiplication, 
projective coordinates, optimized field arithmetic.

■ Specification can use the same algorithms as the 
implementation.  It doesn’t have to start from first 
principals.

■ Implementation uses many low-level tricks for improving 
efficiency.

Project Goals
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Implementing ECC 30

Cryptographic Protocols

One Way Functions

Point Operations

Field Operations
Multiplication

Addition
Squaring

Subtraction
Division
Doubling

Addition
R = P + Q

Subtraction
R = P - Q

Doubling
R = 2⋅P

Scalar Multiplication
R = s⋅P

Twin Multiplication
R = s⋅P + t⋅Q

ECDSA ECDH
Digital Signatures Key Agreement
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Optimize modular reduction 
for specific field prime.
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Use projective coordinates to avoid field 
division and minimize multiplications.
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Use sign digit encoding to reduce 
average number of points additions.
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Use twin multiplication 
when needed. 
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Field addition in Java
  /** Assigns z = x + y (mod field_prime). */
  public void field_add(int[] z, int[] x, int[] y) {
    if (add(z, x, y) != 0 || leq(field_prime, z)) decFieldPrime(z);
  }

  int[] field_prime = { -1, 0, 0, -1, -2, -1, -1, -1, -1, -1, -1, -1 };
  
  static final long LONG_MASK = 0xFFFFFFFFL;

  /** Assigns z = x + y and returns carry. */
  protected int add(int[] z, int[] x, int[] y) {
    long c = 0;
    for (int i = 0; i != z.length; ++i) {
      c += (x[i] & LONG_MASK) + (y[i] & LONG_MASK);
      z[i] = (int) c; c = c >> 32;
    }
    return (int) c;
  }
  
  static boolean leq(int[] x, int[] y) { ... }
  protected int decFieldPrime(int[] x) { ... }

35
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Field addition in Cryptol

p384_field_add : ([384],[384]) -> [384];
p384_field_add(x,y) = mod_add(x,y,384_prime);

p384_prime : [384];
p384_prime = 2 ** 384 - 2 ** 128 - 2 ** 96 + 2 ** 32 - 1;

mod_add : {n} (fin n) => ([n],[n],[n]) -> [n];
mod_add(x,y,p) = if sum >= ext(p) then
                   trim(sum) - p
                 else 
                   trim(sum)
  where sum = ext(x) + ext(y);

ext : {n} (fin n) => [n] -> [n+1];
ext(x) = x # zero;

trim : {n} (fin n) => [n+1] -> [n];
trim(x) = reverse (tail (reverse x));

36
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ECC Benchmarks
Sign & Verify 37
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SAWScript:
Language for Compositional Verification 38
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Elliptic Curve Crypto (ECC) 39
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Solvable using SAT-based 
equivalence checking.
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Elliptic Curve Crypto (ECC) 41
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Symbolic simulation can construct models up 
to point layer, but verification was infeasible.

Doubling
R = 2⋅P
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SAWScript Capabilities 42

■ Allows behavior of Java methods, including side 
effects, to be precisely defined using Cryptol functions.

■ Method specifications are used in two ways:

■ As statements to be proven.

■ As lemmas to help verify later methods.

■ SAWScript has a simple tactic language for user 
control over verification steps.
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Method
Specification Requirements

■ Cryptol types for Java variables, including lengths for 
arrays.

■ Assumptions on inputs.

■ Which references can alias other references.

■ Expected results when method terminates.

■ Optionally, postconditions at intermediate breakpoints 
within method.

■ Tactics for verifying method.

43
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field_add Specification

extern SBV ref_field_add("sbv/p384_field_add.sbv")
  : ([384],[384]) -> [384];

let field_prime = <| 2^384 - 2^128 - 2^96 + 2^32 - 1 |> : [384];

method com.galois.ecc.P384ECC64.field_add 
{
  var z, x, y :: int[12];
  mayAlias { z, x, y };

  var this.field_prime :: int[12];
  assert valueOf(this.field_prime) := split(field_prime) : [12][32];

  let jx = join(valueOf(x));
  let jy = join(valueOf(y));
  ensure valueOf(z) := split(ref_field_add(jx, jy)) : [12][32];

  verify { rewrite; yices; };
};

44

Import specification 
from Cryptol
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field_add Specification
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45

Constants support arbitrary 
bitwidths.
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field_add Specification

extern SBV ref_field_add("sbv/p384_field_add.sbv")
  : ([384],[384]) -> [384];

let field_prime = <| 2^384 - 2^128 - 2^96 + 2^32 - 1 |> : [384];

method com.galois.ecc.P384ECC64.field_add 
{
  var z, x, y :: int[12];
  mayAlias { z, x, y };

  var this.field_prime :: int[12];
  assert valueOf(this.field_prime) := split(field_prime) : [12][32];

  let jx = join(valueOf(x));
  let jy = join(valueOf(y));
  ensure valueOf(z) := split(ref_field_add(jx, jy)) : [12][32];

  verify { rewrite; yices; };
};

46

Declare arguments.
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field_add Specification
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Declare initialized field value.
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field_add Specification
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48

Define post-condition.
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field_add Specification

extern SBV ref_field_add("sbv/p384_field_add.sbv")
  : ([384],[384]) -> [384];

let field_prime = <| 2^384 - 2^128 - 2^96 + 2^32 - 1 |> : [384];
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{
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  verify { rewrite; yices; };
};

49

Specify tactics.
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Compositional Verification

■ Once a specification is defined, it can be used to 
simplify later methods.

void ec_double(JacobianPoint r) {
    ...
    field_add(t4, r.x, t4);
    field_mul(t5, t4, t5);
    field_mul3(t4, t5);
    ...
}

■ Rather than execute code for field_add, simulator 
simply replaces value at t4 with an application of 
Cryptol ref_field_add.

50

Cryptographic Protocols

One Way Functions

Scalar Multiplication
R = s P

Twin Multiplication
R = s P + t Q

ECDSA ECDH

Digital Signatures Key Agreement

Multiplication
Addition

Squaring
Subtraction

Division
Doubling

Addition
R = P + Q

Subtraction
R = P - Q

Point Operations

Field Operations

Doubling
R = 2 P

Friday, May 11, 12



© 2012 Galois, Inc. All rights reserved.

ECC Verification Results 51
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52

■ We were able to successfully verify the Java implementation 
against a Cryptol specification using SAWScript.

■ Specification can use the same algorithms as the 
implementation.  It doesn’t have to start from first 
principals.

■ Specification can be independently validates using 
theorem proving where desired.

Verification Results
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53

■ 48 Method Specifications Total

■ 2 protocol specifications (verify & sign)

■ 8 scalar multiplication specifications.

■ 3 point specifications (add, subtract, double).

■ 20 field specifications.

■ 15 bitvector specifications.

■ Total verification time is under 10 minutes.

Verification Statistics
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Found Three Bugs

■ Sign & verify failed to clear all intermediate results.

■ Boundary condition due to use of less-than where 
less-than-or-equal was needed.

■ Modular reduction failed to propagate one overflow.

54
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Modular division bug 55

NISTCurve.java (line 964):

      d = (z[ 0] & LONG_MASK) + of;
      z[ 0] = (int) d; d >>= 32;
      d = (z[ 1] & LONG_MASK) - of;
      z[ 1] = (int) d; d >>= 32;
      d += (z[ 2] & LONG_MASK);
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Modular division bug 56

NISTCurve.java (line 964):

      d = (z[ 0] & LONG_MASK) + of;
      z[ 0] = (int) d; d >>= 32;
      d += (z[ 1] & LONG_MASK) - of;
      z[ 1] = (int) d; d >>= 32;
      d += (z[ 2] & LONG_MASK);
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Modular division bug 57

NISTCurve.java (line 964):

      d = (z[ 0] & LONG_MASK) + of;
      z[ 0] = (int) d; d >>= 32;
      d += (z[ 1] & LONG_MASK) - of;
      z[ 1] = (int) d; d >>= 32;
      d += (z[ 2] & LONG_MASK);

Bug only occurs when this addition overflows.

Previous code guaranteed that 0 < of < 5
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Modular division bug 58

NISTCurve.java (line 964):

      d = (z[ 0] & LONG_MASK) + of;
      z[ 0] = (int) d; d >>= 32;
      d += (z[ 1] & LONG_MASK) - of;
      z[ 1] = (int) d; d >>= 32;
      d += (z[ 2] & LONG_MASK);

abc found bug in 20 seconds.
Testing found bug after 2 hours

(8 billion field reductions).
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Verification Features Used

■ Rewriter used 30 times (18 in conjunction with another solver).

■ Yices used 23 times.

■ abc used in 13 times.

■ Yices was often faster, but used uninterpreted functions; 
counterexamples could be spurious.

■ Specification with inductive assertions only used once 
(modular division).

59
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Proof Engineering

■ Modified implementation to make verification easier.
■ In large loops, such as scalar multiplication, we moved loop 

body into a separate function, and verified the body 
independently.

■ Other minor syntactic changes to make rewriting easier.
■ Code performance was not affected significantly.

■ Also modified Cryptol large word multiplication 
specification to ease verification.
■ Introduces risk of bugs in specification; risk could be 

reduced by proving properties about specification.

60
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Summary 61

■ We’ve successfully verified implementations of the 
main cryptographic algorithms used in Suite B.

■ The level of effort required for verification depends on 
the algorithm.

■ Verification of complex algorithms benefits from tools 
that offer a variety of verification techniques, and 
requires compositional reasoning.
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Thanks!
62
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