
© 2012 Galois, Inc. All rights reserved.

Verification of Elliptic
Curve Cryptography
Joe Hendrix, Galois, Inc
HCSS | May 2012

The Cryptol team, past and present:
Sally Browning, Ledah Casburn, Iavor Diatchki, Trevor Elliot, Levent Erkok,
Sigbjorn Finne, Adam Foltzer, Andy Gill, Fergus Henderson, Joe Hendrix,
Joe Hurd, John Launchbury, Jeff Lewis, Lee Pike, John Matthews,
Thomas Nordin, Mark Shields, Joel Stanley, Frank Seaton Taylor, Jim Teisher,
Aaron Tomb, Mark Tullsen, Philip Weaver, Adam Wick, Edward Yang

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Cryptography: A Foundation of Trust

Cryptographic algorithms are a small,
but essential part of critical systems.

Defects in cryptographic
implementation can compromise
security of the entire system.

Testing is insufficient to find all bugs.

2

Friday, May 11, 12

file://localhost/Users/jhendrix/projects/hcss_abstract/Vigene%CC%80re_square_shading.svg
file://localhost/Users/jhendrix/projects/hcss_abstract/Vigene%CC%80re_square_shading.svg

© 2012 Galois, Inc. All rights reserved.

In 2007, Harry Reimann discovered a bug in BN_nist_mod_384,
a function used for field division in OpenSSL’s implementation of
the NIST P-384 elliptic curve.

■ A similar bug occurred in the implementation of
the NIST P-256 elliptic curve.

■ Edge case that occurred on less than 1 in 229
inputs; no known exploit at the time.

■ Found day before release of OpenSSL0.9.8g; fix
committed 6 months later.

3An Improbable Bug

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

In 2012, Brumley, Barbosa, Page, and Vercauteren published a
paper showing an adaptive attack that allowed full key recovery
by triggering the bug.

■ Ephemeral keys provide a mitigation.

■ Several Linux distributions were still unpatched.

■ The authors call for formal verification:
We suggest that the effort required to adopt a
development strategy capable of supporting
formal verification is both warranted, and an
increasingly important area for future work.

4Exploiting ECDH in OpenSSL

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Bugs Are Prevalent

Statistics from the testing laboratories show that 48
percent of the cryptographic modules and 27 percent
of the cryptographic algorithms brought in for voluntary
testing had security flaws that were corrected during
testing.

Without this program, the federal government would
have had only a 50-50 chance of buying correctly
implemented cryptography.

NIST Computer Security Division, 2008 Annual report

Software is a digital artifact — potential
for much greater confidence in the
correctness of our software than in the
correctness of our bridges.

5

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Our Contribution

Galois has developed tools for
showing that different cryptographic
implementations compute the same
values for all possible keys and inputs.

Uses formal verification techniques
including symbolic simulation,
rewriting, and third-party SAT and
SMT-solvers.

From a user’s perspective, our tool
performs exhaustive test coverage. 6

ABC

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Cryptol:
The Language of Cryptography 7

■ Declarative specification language
■ Language tailored to the crypto domain.
■ Designed with feedback from NSA.

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Cryptol Examples 8

■ Add two 384-bits numbers
add : ([384],[384]) -> [384];
add(x,y) = x + y;

■ Bit manipulation
ext : {n} (fin n) => [n] -> [n+1];
ext(x) = x # zero;
trim : {n} (fin n) => [n+1] -> [n];
trim(x) = reverse (tail (reverse x));

■ Addition modulo
add_mod : {n} (fin n) => ([n],[n],[n]) -> [n];
add_mod(x,y,p) = trim((ext x + ext y) % ext p);

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

One specification - Many uses 9

9

Design

Validate

Build

Domain-specific
design capture

w0=u-I*I mod p + u-I*wl mod p
s=f * (w0 +pw2) mod q Assured

implementation

Verify crypto
implementations

Formal models
and test cases

Special purpose
processor

Software
implementation

Hardware
implementation

Cryptol
WorkbenchCryptol

FPGA

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Verification Ecosystem

10

VHDL

Cryptol

C
Language

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Verification Strategy

1.Use forward symbolic simulation to unroll
implementations, and generate terms that precisely
describe results.

2.Show equivalence of two terms through rewriting,
and off-the-shelf theorem provers, including abc or
Yices.

11

Implementation A Implementation B

ABC Rewriting

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

1.Use forward symbolic simulation to unroll
implementations, and generate terms that precisely
describe results.

2.Show equivalence of two terms through rewriting,
and off-the-shelf theorem provers, including abc or
Yices.

Verification Strategy 12

Implementation A

ABC Rewriting

Implementation B

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

1.Use forward symbolic simulation to unroll
implementations, and generate terms that precisely
describe results.

2.Show equivalence of two terms through rewriting,
and off-the-shelf theorem provers, including abc or
Yices.

Verification Strategy 13

Implementation A

ABC Rewriting

Implementation B

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

1.Use forward symbolic simulation to unroll
implementations, and generate terms that precisely
describe results.

2.Show equivalence of two terms through rewriting,
and off-the-shelf theorem provers, including abc or
Yices.

Verification Strategy 14

Implementation A

ABC Rewriting

Implementation B

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Suite B Verification Efforts 15

Role Implementation Lines of
Code

AES-128

SHA-384

ECDSA (P-384)

Symmetric Key Cipher BouncyCastle
(Java) 817

Secure Hash Function libgcrypt
(C) 423

Digital Signature Scheme galois
(Java) 2348

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Suite B Problem Sizes 16

Lines of
Code

AIG
Size

Decomposition
Steps Required

Verification
Time

AES-128
BouncyCastle

AESFastEngine

SHA-384
libgcrypt

ECDSA (P-384)
(galois)

817 1MB None needed
Fully automatic 40 min

423 3.2MB 12 steps
All solved via SAT 160 min

2348 More than
5GB

48 steps
Multiple tactics

required
10 min

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

y2 = x3 + ax + b

What is an Elliptic Curve? 17

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

18

y2 = x3 - x + 1

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

19

y2 = x3 - x + 1

9
8
7
6
5
4
3
2
1
0

18
17
16
15
14
13
12
11
10

0 1 2 3 4 5 6 7 9810 11 12 13 14 15 16 17 18

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

20

y2 = x3 - x + 1
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-Q

Q

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

21

y2 = x3 - x + 1
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

P
Q

R = P + Q

-R

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

22

y2 = x3 - x + 1

P

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

R = 2P

-R

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

23

y2 = x3 - x + 1
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-Q

Q

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

O

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

P
Q

R = P + Q

-R

24

y2 = x3 - x + 1

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

P + Q = (Rx,Ry)
 where s = (Qy - Py)/(Qx - Px)
 Rx = s2 - Px - Qx
 Ry = s(Px - Rx) - Py

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

9
8
7
6
5
4
3
2
1
0

18
17
16
15
14
13
12
11
10

0 1 2 3 4 5 6 7 9810 11 12 13 14 15 16 17 18
25

y2 = x3 - x + 1

P

Q
R

-R

P + Q = (Rx,Ry)
 where s = (Qy - Py)/(Qx - Px)
 Rx = s2 - Px - Qx
 Ry = s(Px - Rx) - Py

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

26

■ For large elliptic curves, scalar multiplication is a one-way
function:

Q = k·P
(Easy to compute k·P; hard to compute Q/P)

■ This operation is used to implement ECDSA and ECDH.
(digital signatures and key agreement)

Use in Cryptography

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

NIST P384 Curve
ECC is a family of algorithms, with many options.

■ We implemented the NIST P-384 curve.

■ Part of NSA Suite B.

Symmetric
Key Size (bits)

Elliptic Curve
Key Size (bits)

RSA Key
Size (bits)

128 256 3072
192 384 7680
256 521 15360

NIST Recommended Key Sizes

27

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

NIST P384 Curve

■ Prime field P384

P384 = 2384 - 2128 - 296 + 232 - 1

■ Curve Equation: y2 = x3 - 3x + b

b = b3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112
0314088f 5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef

28

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

29

■ Create an efficient verified implementation of ECDSA over
NIST P-384 curve in Java.

■ Use known optimizations such as twin multiplication,
projective coordinates, optimized field arithmetic.

■ Specification can use the same algorithms as the
implementation. It doesn’t have to start from first
principals.

■ Implementation uses many low-level tricks for improving
efficiency.

Project Goals

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Implementing ECC 30

Cryptographic Protocols

One Way Functions

Point Operations

Field Operations
Multiplication

Addition
Squaring

Subtraction
Division
Doubling

Addition
R = P + Q

Subtraction
R = P - Q

Doubling
R = 2⋅P

Scalar Multiplication
R = s⋅P

Twin Multiplication
R = s⋅P + t⋅Q

ECDSA ECDH
Digital Signatures Key Agreement

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Cryptographic Protocols

One Way Functions

Point Operations

Field Operations
Multiplication

Addition
Squaring

Subtraction
Division
Doubling

Addition
R = P + Q

Subtraction
R = P - Q

Doubling
R = 2⋅P

Scalar Multiplication
R = s⋅P

Twin Multiplication
R = s⋅P + t⋅Q

ECDSA ECDH
Digital Signatures Key Agreement

Implementing ECC 31

Optimize modular reduction
for specific field prime.

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Cryptographic Protocols

One Way Functions

Point Operations

Field Operations
Multiplication

Addition
Squaring

Subtraction
Division
Doubling

Addition
R = P + Q

Subtraction
R = P - Q

Doubling
R = 2⋅P

Scalar Multiplication
R = s⋅P

Twin Multiplication
R = s⋅P + t⋅Q

ECDSA ECDH
Digital Signatures Key Agreement

Implementing ECC 32

Use projective coordinates to avoid field
division and minimize multiplications.

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Cryptographic Protocols

One Way Functions

Point Operations

Field Operations
Multiplication

Addition
Squaring

Subtraction
Division
Doubling

Addition
R = P + Q

Subtraction
R = P - Q

Doubling
R = 2⋅P

Scalar Multiplication
R = s⋅P

Twin Multiplication
R = s⋅P + t⋅Q

ECDSA ECDH
Digital Signatures Key Agreement

Implementing ECC 33

Use sign digit encoding to reduce
average number of points additions.

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Cryptographic Protocols

One Way Functions

Point Operations

Field Operations
Multiplication

Addition
Squaring

Subtraction
Division
Doubling

Addition
R = P + Q

Subtraction
R = P - Q

Doubling
R = 2⋅P

Scalar Multiplication
R = s⋅P

Twin Multiplication
R = s⋅P + t⋅Q

ECDSA ECDH
Digital Signatures Key Agreement

Implementing ECC 34

Use twin multiplication
when needed.

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Field addition in Java
 /** Assigns z = x + y (mod field_prime). */
 public void field_add(int[] z, int[] x, int[] y) {
 if (add(z, x, y) != 0 || leq(field_prime, z)) decFieldPrime(z);
 }

 int[] field_prime = { -1, 0, 0, -1, -2, -1, -1, -1, -1, -1, -1, -1 };

 static final long LONG_MASK = 0xFFFFFFFFL;

 /** Assigns z = x + y and returns carry. */
 protected int add(int[] z, int[] x, int[] y) {
 long c = 0;
 for (int i = 0; i != z.length; ++i) {
 c += (x[i] & LONG_MASK) + (y[i] & LONG_MASK);
 z[i] = (int) c; c = c >> 32;
 }
 return (int) c;
 }

 static boolean leq(int[] x, int[] y) { ... }
 protected int decFieldPrime(int[] x) { ... }

35

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Field addition in Cryptol

p384_field_add : ([384],[384]) -> [384];
p384_field_add(x,y) = mod_add(x,y,384_prime);

p384_prime : [384];
p384_prime = 2 ** 384 - 2 ** 128 - 2 ** 96 + 2 ** 32 - 1;

mod_add : {n} (fin n) => ([n],[n],[n]) -> [n];
mod_add(x,y,p) = if sum >= ext(p) then
 trim(sum) - p
 else
 trim(sum)
 where sum = ext(x) + ext(y);

ext : {n} (fin n) => [n] -> [n+1];
ext(x) = x # zero;

trim : {n} (fin n) => [n+1] -> [n];
trim(x) = reverse (tail (reverse x));

36

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

ECC Benchmarks
Sign & Verify 37

0ms

10ms

20ms

30ms

40ms

50ms

60ms

70ms

 BC (64bit) Galois (32bit) OpenSSL (32bit) Galois (64bit) OpenSSL (64bit)

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

SAWScript:
Language for Compositional Verification 38

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Elliptic Curve Crypto (ECC) 39

Cryptographic Protocols

One Way Functions

Scalar Multiplication
R = s⋅P

Twin Multiplication
R = s⋅P + t⋅Q

ECDSA ECDH
Digital Signatures Key Agreement

Multiplication
Addition

Squaring
Subtraction

Division
Doubling

Addition
R = P + Q

Subtraction
R = P - Q

Point Operations

Field Operations
Doubling
R = 2⋅P

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Elliptic Curve Crypto (ECC) 40

Cryptographic Protocols

One Way Functions

Point Operations

Field Operations
Multiplication

Addition
Squaring

Subtraction
Division
Doubling

Addition
R = P + Q

Subtraction
R = P - Q

Doubling
R = 2⋅P

Scalar Multiplication
R = s⋅P

Twin Multiplication
R = s⋅P + t⋅Q

ECDSA ECDH
Digital Signatures Key Agreement

Solvable using SAT-based
equivalence checking.

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Elliptic Curve Crypto (ECC) 41

Cryptographic Protocols

One Way Functions

Scalar Multiplication
R = s⋅P

Twin Multiplication
R = s⋅P + t⋅Q

ECDSA ECDH
Digital Signatures Key Agreement

Multiplication
Addition

Squaring
Subtraction

Division
Doubling

Addition
R = P + Q

Subtraction
R = P - Q

Point Operations

Field Operations

Symbolic simulation can construct models up
to point layer, but verification was infeasible.

Doubling
R = 2⋅P

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

SAWScript Capabilities 42

■ Allows behavior of Java methods, including side
effects, to be precisely defined using Cryptol functions.

■ Method specifications are used in two ways:

■ As statements to be proven.

■ As lemmas to help verify later methods.

■ SAWScript has a simple tactic language for user
control over verification steps.

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Method
Specification Requirements

■ Cryptol types for Java variables, including lengths for
arrays.

■ Assumptions on inputs.

■ Which references can alias other references.

■ Expected results when method terminates.

■ Optionally, postconditions at intermediate breakpoints
within method.

■ Tactics for verifying method.

43

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

field_add Specification

extern SBV ref_field_add("sbv/p384_field_add.sbv")
 : ([384],[384]) -> [384];

let field_prime = <| 2^384 - 2^128 - 2^96 + 2^32 - 1 |> : [384];

method com.galois.ecc.P384ECC64.field_add
{
 var z, x, y :: int[12];
 mayAlias { z, x, y };

 var this.field_prime :: int[12];
 assert valueOf(this.field_prime) := split(field_prime) : [12][32];

 let jx = join(valueOf(x));
 let jy = join(valueOf(y));
 ensure valueOf(z) := split(ref_field_add(jx, jy)) : [12][32];

 verify { rewrite; yices; };
};

44

Import specification
from Cryptol

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

field_add Specification

extern SBV ref_field_add("sbv/p384_field_add.sbv")
 : ([384],[384]) -> [384];

let field_prime = <| 2^384 - 2^128 - 2^96 + 2^32 - 1 |> : [384];

method com.galois.ecc.P384ECC64.field_add
{
 var z, x, y :: int[12];
 mayAlias { z, x, y };

 var this.field_prime :: int[12];
 assert valueOf(this.field_prime) := split(field_prime) : [12][32];

 let jx = join(valueOf(x));
 let jy = join(valueOf(y));
 ensure valueOf(z) := split(ref_field_add(jx, jy)) : [12][32];

 verify { rewrite; yices; };
};

45

Constants support arbitrary
bitwidths.

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

field_add Specification

extern SBV ref_field_add("sbv/p384_field_add.sbv")
 : ([384],[384]) -> [384];

let field_prime = <| 2^384 - 2^128 - 2^96 + 2^32 - 1 |> : [384];

method com.galois.ecc.P384ECC64.field_add
{
 var z, x, y :: int[12];
 mayAlias { z, x, y };

 var this.field_prime :: int[12];
 assert valueOf(this.field_prime) := split(field_prime) : [12][32];

 let jx = join(valueOf(x));
 let jy = join(valueOf(y));
 ensure valueOf(z) := split(ref_field_add(jx, jy)) : [12][32];

 verify { rewrite; yices; };
};

46

Declare arguments.

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

field_add Specification

extern SBV ref_field_add("sbv/p384_field_add.sbv")
 : ([384],[384]) -> [384];

let field_prime = <| 2^384 - 2^128 - 2^96 + 2^32 - 1 |> : [384];

method com.galois.ecc.P384ECC64.field_add
{
 var z, x, y :: int[12];
 mayAlias { z, x, y };

 var this.field_prime :: int[12];
 assert valueOf(this.field_prime) := split(field_prime) : [12][32];

 let jx = join(valueOf(x));
 let jy = join(valueOf(y));
 ensure valueOf(z) := split(ref_field_add(jx, jy)) : [12][32];

 verify { rewrite; yices; };
};

47

Declare initialized field value.

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

field_add Specification

extern SBV ref_field_add("sbv/p384_field_add.sbv")
 : ([384],[384]) -> [384];

let field_prime = <| 2^384 - 2^128 - 2^96 + 2^32 - 1 |> : [384];

method com.galois.ecc.P384ECC64.field_add
{
 var z, x, y :: int[12];
 mayAlias { z, x, y };

 var this.field_prime :: int[12];
 assert valueOf(this.field_prime) := split(field_prime) : [12][32];

 let jx = join(valueOf(x));
 let jy = join(valueOf(y));
 ensure valueOf(z) := split(ref_field_add(jx, jy)) : [12][32];

 verify { rewrite; yices; };
};

48

Define post-condition.

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

field_add Specification

extern SBV ref_field_add("sbv/p384_field_add.sbv")
 : ([384],[384]) -> [384];

let field_prime = <| 2^384 - 2^128 - 2^96 + 2^32 - 1 |> : [384];

method com.galois.ecc.P384ECC64.field_add
{
 var z, x, y :: int[12];
 mayAlias { z, x, y };

 var this.field_prime :: int[12];
 assert valueOf(this.field_prime) := split(field_prime) : [12][32];

 let jx = join(valueOf(x));
 let jy = join(valueOf(y));
 ensure valueOf(z) := split(ref_field_add(jx, jy)) : [12][32];

 verify { rewrite; yices; };
};

49

Specify tactics.

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Compositional Verification

■ Once a specification is defined, it can be used to
simplify later methods.

void ec_double(JacobianPoint r) {
 ...
 field_add(t4, r.x, t4);
 field_mul(t5, t4, t5);
 field_mul3(t4, t5);
 ...
}

■ Rather than execute code for field_add, simulator
simply replaces value at t4 with an application of
Cryptol ref_field_add.

50

Cryptographic Protocols

One Way Functions

Scalar Multiplication
R = s P

Twin Multiplication
R = s P + t Q

ECDSA ECDH

Digital Signatures Key Agreement

Multiplication
Addition

Squaring
Subtraction

Division
Doubling

Addition
R = P + Q

Subtraction
R = P - Q

Point Operations

Field Operations

Doubling
R = 2 P

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

ECC Verification Results 51

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

52

■ We were able to successfully verify the Java implementation
against a Cryptol specification using SAWScript.

■ Specification can use the same algorithms as the
implementation. It doesn’t have to start from first
principals.

■ Specification can be independently validates using
theorem proving where desired.

Verification Results

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

53

■ 48 Method Specifications Total

■ 2 protocol specifications (verify & sign)

■ 8 scalar multiplication specifications.

■ 3 point specifications (add, subtract, double).

■ 20 field specifications.

■ 15 bitvector specifications.

■ Total verification time is under 10 minutes.

Verification Statistics

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Found Three Bugs

■ Sign & verify failed to clear all intermediate results.

■ Boundary condition due to use of less-than where
less-than-or-equal was needed.

■ Modular reduction failed to propagate one overflow.

54

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Modular division bug 55

NISTCurve.java (line 964):

 d = (z[0] & LONG_MASK) + of;
 z[0] = (int) d; d >>= 32;
 d = (z[1] & LONG_MASK) - of;
 z[1] = (int) d; d >>= 32;
 d += (z[2] & LONG_MASK);

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Modular division bug 56

NISTCurve.java (line 964):

 d = (z[0] & LONG_MASK) + of;
 z[0] = (int) d; d >>= 32;
 d += (z[1] & LONG_MASK) - of;
 z[1] = (int) d; d >>= 32;
 d += (z[2] & LONG_MASK);

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Modular division bug 57

NISTCurve.java (line 964):

 d = (z[0] & LONG_MASK) + of;
 z[0] = (int) d; d >>= 32;
 d += (z[1] & LONG_MASK) - of;
 z[1] = (int) d; d >>= 32;
 d += (z[2] & LONG_MASK);

Bug only occurs when this addition overflows.

Previous code guaranteed that 0 < of < 5

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Modular division bug 58

NISTCurve.java (line 964):

 d = (z[0] & LONG_MASK) + of;
 z[0] = (int) d; d >>= 32;
 d += (z[1] & LONG_MASK) - of;
 z[1] = (int) d; d >>= 32;
 d += (z[2] & LONG_MASK);

abc found bug in 20 seconds.
Testing found bug after 2 hours

(8 billion field reductions).

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Verification Features Used

■ Rewriter used 30 times (18 in conjunction with another solver).

■ Yices used 23 times.

■ abc used in 13 times.

■ Yices was often faster, but used uninterpreted functions;
counterexamples could be spurious.

■ Specification with inductive assertions only used once
(modular division).

59

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Proof Engineering

■ Modified implementation to make verification easier.
■ In large loops, such as scalar multiplication, we moved loop

body into a separate function, and verified the body
independently.

■ Other minor syntactic changes to make rewriting easier.
■ Code performance was not affected significantly.

■ Also modified Cryptol large word multiplication
specification to ease verification.
■ Introduces risk of bugs in specification; risk could be

reduced by proving properties about specification.

60

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Summary 61

■ We’ve successfully verified implementations of the
main cryptographic algorithms used in Suite B.

■ The level of effort required for verification depends on
the algorithm.

■ Verification of complex algorithms benefits from tools
that offer a variety of verification techniques, and
requires compositional reasoning.

Friday, May 11, 12

© 2012 Galois, Inc. All rights reserved.

Thanks!
62

Friday, May 11, 12

