
UT Austin CRASH Project

Nathalie Beavers, Soumava Ghosh, Shilpi Goel,
Marijn J. H. Heule, Warren A. Hunt, Jr., Matt Kaufmann,

Robert B. Krug, J Strother Moore, Ben Selfridge,
Nathan Wetzler

May, 2013

Computer Science Department
1 University Way, M/S C0500

University of Texas
Austin, TX 78712-0233

hunt@cs.utexas.edu
TEL: +1 512 471 9748
FAX: +1 512 471 8885

Page 1 (University of Texas at Austin) UT Austin CRASH Project May, 2013 1 / 28



Outline

1 Introduction

2 Evolving X86 ISA Model

3 Using Satisifiability Techniques

4 ACL2 Enhancements

5 Future Work

6 Conclusion

7 Publications

Page 2 (University of Texas at Austin) UT Austin CRASH Project May, 2013 2 / 28



Introduction

Outline

1 Introduction

2 Evolving X86 ISA Model

3 Using Satisifiability Techniques

4 ACL2 Enhancements

5 Future Work

6 Conclusion

7 Publications

Page 3 (University of Texas at Austin) UT Austin CRASH Project May, 2013 3 / 28



Introduction

Introduction

To enable the modeling and analysis of industrial-sized systems:

We are developing an x86 model suitable for code analysis.

We are extending our ACL2-based analysis toolsuite with SAT.

We are vetting our tools on commercial-sized problems.

We are improving our ACL2 theorem proving environment.

Our ACL2-based modeling and analysis toolsuite is in use by AMD,
Centaur, IBM, Rockwell-Collins, and others.

Today, we present our approach for modeling the x86 ISA and our use of
SAT for proof by symbolic execution.

Page 4 (University of Texas at Austin) UT Austin CRASH Project May, 2013 4 / 28



Introduction

Ecosystem

We have significant collaboration with the industry.

Boeing

Centaur Galois

JHU

JPL

Microsoft

NI

NSA RCI

AMD

Freescale IBM

Intel

Customers

Our Program

Raytheon

Application−oriented

Research

ACL2  Project

Technology, e.g. SAT

Extend our Core

Our own research includes:

Development of core technologies

Application of these technologies on di↵erent verification domains

Commercial Driver: validation for Centaur’s x86 design

Page 5 (University of Texas at Austin) UT Austin CRASH Project May, 2013 5 / 28



Introduction

Timeline

Our group has been working on the development and deployment of
reasoning systems for 40 years.

Boyer and Moore meet 

insertion sort 

binary adder 

expression compiler 

prime factorization 

BDX930 abandoned 

RSA 

unsolvability of halting problem 

FM8501 

Gödel 

FM8502 

KIT OS kernel 

Piton 

micro Gypsy compiler 

Unity 
Gauss 

FM9001 

Byzantine Generals 

clock sync 

biphase mark 

Motorola 68020 

Nqthm compiler 

DEC alpha 
Motorola CAP 

Paris-Harrington Ramsey 

AMD K5 floating-point division 
µcode 

real-time model 

Rockwell JEM1 

initial ACL2 workshop 

Logic formalization (Spain), 
ongoing 

IBM floating point algorithms 

Kalman filters 

FM9801 

UCLID integration prototype 
AAMP7G MIL cert. 

Y86 

Dijkstra shortest path 

sixth ACL2 workshop 

Rockwell Greenhills OS 

Galois/Rockwell SHADE 
AMD floating-point rtl, ongoing 

ACM Software System Award 

Buyer/seller 

x86 ring model/proof 

fast consensus analysis 

Y86 with STOBJ 
X86 ISA 

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 

Page 6 (University of Texas at Austin) UT Austin CRASH Project May, 2013 6 / 28



Evolving X86 ISA Model

Outline

1 Introduction

2 Evolving X86 ISA Model

3 Using Satisifiability Techniques

4 ACL2 Enhancements

5 Future Work

6 Conclusion

7 Publications

Page 7 (University of Texas at Austin) UT Austin CRASH Project May, 2013 7 / 28



Evolving X86 ISA Model

Evolving X86 ISA Model

We are developing a formal, executable x86 ISA model.

Our x86 model implements almost all one- and two-byte instructions.

For all defined instructions, model implements all addressing modes.

It can emulate many x86 binary programs emitted by GCC/LLVM.

We continue to do co-simulations to gain confidence in our model.

ZV

Regs

PC

Mem

Programmer
State

S ZV
Next−State

Function

X86

Regs

PC

Mem

Programmer
State

S

Page 8 (University of Texas at Austin) UT Austin CRASH Project May, 2013 8 / 28



Evolving X86 ISA Model

X86 Top-Level Model

We have a formal, executable implementation of 118 user-level x86
instructions (219 opcodes).

(defun x86-run (n x86)

; Returns x86 obtained by executing n instructions (or until halting).

(cond ((ms x86) x86)

((zp n) x86)

(t (let ((x86 (x86-fetch-decode-execute x86)))

(x86-run (1- n) x86)))))

x86 model about 40,000 lines in size, including our evolving 64-bit
paging model

Execution speed with paging included: 300,000 instructions/second

Execution speed with paging excluded: 3 million instructions/second

Page 9 (University of Texas at Austin) UT Austin CRASH Project May, 2013 9 / 28



Evolving X86 ISA Model

Emulating X86 Programs

*&&�//90�&RPSLOHU

2EMGXPS��6KHOO�6FULSWV��
3\WKRQ

$&/��/LVS
&RQVWDQW

0HPRU\

;���6WDWH

5HJLVWHUV

,QVWUXFWLRQ�
3RLQWHU )ODJV

;���0RGHO�LQ�$&/�

;���5XQ�)XQFWLRQ

;���6WHS�)XQFWLRQ

;���,QVWUXFWLRQ�6HPDQWLF�)XQFWLRQV

�GH I FRQV W � 
 S U RJ UDP�E L QD U \ 

� � � �

6XEVHW�
2SHUDWLRQ

,PSOHPHQWHG�2SFRGHV

3URJUDP
2SFRGHV

1R�����LPSOHPHQW�
UHTXLUHG�RSFRGHV

<HV

5HDO�0DFKLQH

0DFKLQH�6WDWH

5HJLVWHUV

,QVWUXFWLRQ�
3RLQWHU )ODJV

0HPRU\

���
���
���

&R�VLPXODWLRQ

$UH�SURJUDP�
RSFRGHV�D�
VXEVHW�RI�
LPSOHPHQWHG�
RSFRGHV"

7UDQVIRUP
2SHUDWLRQ

6WDWH�E\�6WDWH
'LII

*'%�VFULSWV�
)RUPDWWLQJ�
IXQFWLRQV

$&/��SULQWLQJ
IXQFWLRQV

Page 10 (University of Texas at Austin) UT Austin CRASH Project May, 2013 10 / 28



Evolving X86 ISA Model

Emulating X86 Programs

We run x86 binary programs on our x86 model.

We can run a contemporary SAT solver on our x86 model.

We have modified this solver so that it doesn’t require system calls...

We solve SAT competition benchmarks on our model; the largest
example tried so far: cmu-bmc-barrel6.cnf.

Number of variables: 2306
Number of clauses: 8931
Number of x86 instructions executed: 9,142,833,444

Co-simulation: Our model produced exactly the same e↵ects on the
memory and registers as those produced by a physical x86 processor.

Page 11 (University of Texas at Austin) UT Austin CRASH Project May, 2013 11 / 28



Evolving X86 ISA Model

Verifying X86 Programs

We use ACL2(h) to symbolically execute our x86 model.

We compile C-code with GCC/LLVM.

We load binary code into the memory of our x86 model.

As appropriate, we initialize the registers, etc. with symbolic values.

Previously, we have demonstrated a fully automatic proof of
correctness of a x86 binary program using symbolic execution.

Mem
Regs

PC

Mem
Regs

PC

Mem
Regs

PC

Regs

PC

Mem

Programmer
State

S ZV

Regs

PC

Mem

Programmer
State

S ZV

Mem
Regs

PC

Page 12 (University of Texas at Austin) UT Austin CRASH Project May, 2013 12 / 28



Using Satisifiability Techniques

Outline

1 Introduction

2 Evolving X86 ISA Model

3 Using Satisifiability Techniques

4 ACL2 Enhancements

5 Future Work

6 Conclusion

7 Publications

Page 13 (University of Texas at Austin) UT Austin CRASH Project May, 2013 13 / 28



Using Satisifiability Techniques

BDDs versus SAT for Symbolic Execution

Our symbolic execution framework uses either BDDs or AIGs. AIGs
are transformed into CNF formulas, and checked by SAT solvers.

Binary Decision Diagrams (BDDs)

A mature technology; however,

Memory problems arise for large problems

Fully integrated into ACL2(h)

Satisfiability (SAT) solving

Powerful technology that is improved yearly

Problems can be solved with millions of clauses

Used as external tool

For some problems, SAT is demonstratively more e↵ective.

Page 14 (University of Texas at Austin) UT Austin CRASH Project May, 2013 14 / 28



Using Satisifiability Techniques

Matrix Root Problem in ACL2

Given a 2⇥ 2 matrix M , does there exist a 2⇥ 2 matrix R

with only natural numbers such that R

2 = M ?

✓
a b

c d

◆2

=

✓
w x

y z

◆

(defun matrix-root? (a b c d w x y z)

(declare (xargs :guard (and (natp a) (natp b)

(natp c) (natp d))))

(let* ((ww (+ (* a a) (* b c))) (xx (+ (* a b) (* b d)))

(yy (+ (* c a) (* d c))) (zz (+ (* c b) (* d d))))

(and (equal w ww) (equal x xx)

(equal y yy) (equal z zz))))

Page 15 (University of Texas at Austin) UT Austin CRASH Project May, 2013 15 / 28



Using Satisifiability Techniques

Matrix Root Problem with a Solution

✓
a b
c d

◆2

=

✓
229452 269434
326414 385740

◆
=

✓
311 331
401 503

◆2

Proof fails: using BDDs in 181 secs; however, with SAT in 0.03 secs!

(def-gl-thm matrix-root-large-fails

:hyp (let ((m 512))

(and (natp a) (natp b) (natp c) (natp d)

(< a m) (< b m) (< c m) (< d m)))

:concl

(not (matrix-root? a b c d 229452 269434 326414 385740))

:g-bindings

‘((a (:g-number ,(gl-int 0 1 10)))

(b (:g-number ,(gl-int 10 1 10)))

(c (:g-number ,(gl-int 20 1 10)))

(d (:g-number ,(gl-int 30 1 10)))))

Page 16 (University of Texas at Austin) UT Austin CRASH Project May, 2013 16 / 28



Using Satisifiability Techniques

Matrix Root Problem with No Solutions

✓
a b
c d

◆2

=

✓
229450 269434
326414 385740

◆
has no solutions

Proof succeeds: using BDDs in 177 secs; however, with SAT in 0.01 secs!

(def-gl-thm matrix-root-large-succeeds

:hyp (let ((m 512))

(and (natp a) (natp b) (natp c) (natp d)

(< a m) (< b m) (< c m) (< d m)))

:concl

(not (matrix-root? a b c d 229450 269434 326414 385740))

:g-bindings

‘((a (:g-number ,(gl-int 0 1 10)))

(b (:g-number ,(gl-int 10 1 10)))

(c (:g-number ,(gl-int 20 1 10)))

(d (:g-number ,(gl-int 30 1 10)))))

Page 17 (University of Texas at Austin) UT Austin CRASH Project May, 2013 17 / 28



Using Satisifiability Techniques

Verification of SAT results

SAT solving is a powerful technique, but presently external to ACL2:

SAT solutions are easy to check (in linear time)

Clausal proofs are popular but expensive to check

Even a SAT proof checker is hard to mechanically verify

How can we deal with a claim that no solution exists?

Our solution: filter clausal proofs

Then, check the filtered proof with a verified proof checker

Page 18 (University of Texas at Austin) UT Austin CRASH Project May, 2013 18 / 28



Using Satisifiability Techniques

Tool Chain for Checking Unsatisfiability Results

Input: Boolean formula constructed by ACL2

Black box solver

unsatisfiable?

Proof filter

Verified checker

Output: refutation proof emitted by SAT solver

Page 19 (University of Texas at Austin) UT Austin CRASH Project May, 2013 19 / 28



Using Satisifiability Techniques

Matrix Root Problem with No Solutions Verified

✓
a b
c d

◆2

=

✓
229450 269434
326414 385740

◆
has no solutions

Proof succeeds: using BDDs in 177 secs; however, with SAT in 0.01 secs!

Results on proof checking:

Boolean formula contained 4365 variables and 14749 clauses

Glucose solves the formula emitting a proof of 333 lemmas

Proof filter reduced the proof to 2 lemmas

The reduced proof is checked using a verified checker in 1.3 seconds

Future work: verify faster proof checker!

Page 20 (University of Texas at Austin) UT Austin CRASH Project May, 2013 20 / 28



ACL2 Enhancements

Outline

1 Introduction

2 Evolving X86 ISA Model

3 Using Satisifiability Techniques

4 ACL2 Enhancements

5 Future Work

6 Conclusion

7 Publications

Page 21 (University of Texas at Austin) UT Austin CRASH Project May, 2013 21 / 28



ACL2 Enhancements

ACL2 Enhancements

ACL2 has been under continuous development for 20+ years, largely in
response to user requests. Release notes document 100s of enhancements.

ACL2 is freely available at: http://www.cs.utexas.edu/users/moore/acl2/

Released ACL2 Version 6.0 in December, 2012

Released ACL2 Version 6.1 in February, 2013

Sample developments:
Change in license: From GPL Version 2 to a 3-clause BSD license

High functionality data structures: Abstract and Nested Stobjs

Better feedback from the prover: Case split reports

Heuristic improvements: Arithmetic bounders for tau

In addition, we developed a proof format for SAT solvers to facilitate easy
generation and e�cient verification of compact proofs. We plan to
enhance ACL2 with SAT technology like we did with our BDD package.

Page 22 (University of Texas at Austin) UT Austin CRASH Project May, 2013 22 / 28



Future Work

Outline

1 Introduction

2 Evolving X86 ISA Model

3 Using Satisifiability Techniques

4 ACL2 Enhancements

5 Future Work

6 Conclusion

7 Publications

Page 23 (University of Texas at Austin) UT Austin CRASH Project May, 2013 23 / 28



Future Work

Future Work

Extending the ACL2 system:

Integrate SAT mechanisms into ACL2 proof infrastructure

Improve e�ciency of our symbolic simulation techniques

In general, improve the ACL2 system, supporting our x86 ISA
modeling and proof e↵orts

Extending our x86 ISA model:

Develop infrastructure for binary code proofs

Integrate x86 memory management into our model

Add system calls to the x86 model

Continue extending the number of instructions modeled

Further automate our co-simulation environment for model validation

Page 24 (University of Texas at Austin) UT Austin CRASH Project May, 2013 24 / 28



Conclusion

Outline

1 Introduction

2 Evolving X86 ISA Model

3 Using Satisifiability Techniques

4 ACL2 Enhancements

5 Future Work

6 Conclusion

7 Publications

Page 25 (University of Texas at Austin) UT Austin CRASH Project May, 2013 25 / 28



Conclusion

Conclusion

We continue to expand our modeling and analysis capabilities.

We have developed a 64-bit data and 52-bit address memory model.

We have specified most integer instructions with all addressing modes.

We are developing a co-simulation mechanism for model validation.

We have started verifying x86 binary programs.

Our model can be used as a build-to and a compile-to specification.

We have developed a path to use SAT with our proofs.

We have extended and improved our x86 model.

Our model can be used to safely explore all manner of malware.

We continue to enhance the ACL2 system.

We perform our work in an environment where we can prove or disprove
theorems about our models.

Page 26 (University of Texas at Austin) UT Austin CRASH Project May, 2013 26 / 28



Publications

Outline

1 Introduction

2 Evolving X86 ISA Model

3 Using Satisifiability Techniques

4 ACL2 Enhancements

5 Future Work

6 Conclusion

7 Publications

Page 27 (University of Texas at Austin) UT Austin CRASH Project May, 2013 27 / 28



Publications

Publications

Since November, 2012:
Automated Reencoding of Boolean Formulas
Norbert Manthey and Marijn J. H. Heule and Armin Biere

Revisiting Hyper Binary Resolution
Marijn J. H. Heule, Matti Jarvisalo, and Armin Biere

Enhancements to ACL2 in Versions 5.0, 6.0, and 6.1
Matt Kaufmann and J Strother Moore

A Parallelized Theorem Prover for a Logic with Parallel Execution
David L. Rager, Warren A. Hunt, Jr., and Matt Kaufmann

Abstract Stobjs and Their Application to ISA Modeling
Shilpi Goel, Warren A. Hunt, Jr., and Matt Kaufmann

Automated Code Proofs on a Formal Model of the X86
Shilpi Goel and Warren A. Hunt, Jr.

Verifying Refutations with Extended Resolution
Marijn J. H. Heule, Warren A. Hunt, Jr., and Nathan Wetzler

Mechanical Verification of SAT Refutations with Extended Resolution
Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt, Jr.

A SAT Approach to Clique-Width
Marijn J. H. Heule and Stefan Szeider

Page 28 (University of Texas at Austin) UT Austin CRASH Project May, 2013 28 / 28


	Introduction
	Evolving X86 ISA Model
	Using Satisifiability Techniques
	ACL2 Enhancements
	Future Work
	Conclusion
	Publications

