
UT Austin CRASH Project

Nathalie Beavers, Soumava Ghosh, Shilpi Goel,
Marijn J. H. Heule, Warren A. Hunt, Jr., Matt Kaufmann,

Robert B. Krug, J Strother Moore, Ben Selfridge,
Nathan Wetzler

May, 2013

Computer Science Department
1 University Way, M/S C0500

University of Texas
Austin, TX 78712-0233

hunt@cs.utexas.edu
TEL: +1 512 471 9748
FAX: +1 512 471 8885

Page 1 (University of Texas at Austin) UT Austin CRASH Project May, 2013 1 / 28



Outline

1 Introduction

2 Evolving X86 ISA Model

3 Using Satisifiability Techniques

4 ACL2 Enhancements

5 Future Work

6 Conclusion

7 Publications

Page 2 (University of Texas at Austin) UT Austin CRASH Project May, 2013 2 / 28



Introduction

Outline

1 Introduction

2 Evolving X86 ISA Model

3 Using Satisifiability Techniques

4 ACL2 Enhancements

5 Future Work

6 Conclusion

7 Publications

Page 3 (University of Texas at Austin) UT Austin CRASH Project May, 2013 3 / 28



Introduction

Introduction

To enable the modeling and analysis of industrial-sized systems:

We are developing an x86 model suitable for code analysis.

We are extending our ACL2-based analysis toolsuite with SAT.

We are vetting our tools on commercial-sized problems.

We are improving our ACL2 theorem proving environment.

Our ACL2-based modeling and analysis toolsuite is in use by AMD,
Centaur, IBM, Rockwell-Collins, and others.

Today, we present our approach for modeling the x86 ISA and our use of
SAT for proof by symbolic execution.
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Introduction

Ecosystem

We have significant collaboration with the industry.

Boeing

Centaur Galois

JHU

JPL

Microsoft

NI

NSA RCI

AMD

Freescale IBM

Intel

Customers

Our Program

Raytheon

Application−oriented

Research

ACL2  Project

Technology, e.g. SAT

Extend our Core

Our own research includes:

Development of core technologies

Application of these technologies on di↵erent verification domains

Commercial Driver: validation for Centaur’s x86 design
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Introduction

Timeline

Our group has been working on the development and deployment of
reasoning systems for 40 years.
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Evolving X86 ISA Model

Evolving X86 ISA Model

We are developing a formal, executable x86 ISA model.

Our x86 model implements almost all one- and two-byte instructions.

For all defined instructions, model implements all addressing modes.

It can emulate many x86 binary programs emitted by GCC/LLVM.

We continue to do co-simulations to gain confidence in our model.
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Evolving X86 ISA Model

X86 Top-Level Model

We have a formal, executable implementation of 118 user-level x86
instructions (219 opcodes).

(defun x86-run (n x86)

; Returns x86 obtained by executing n instructions (or until halting).

(cond ((ms x86) x86)

((zp n) x86)

(t (let ((x86 (x86-fetch-decode-execute x86)))

(x86-run (1- n) x86)))))

x86 model about 40,000 lines in size, including our evolving 64-bit
paging model

Execution speed with paging included: 300,000 instructions/second

Execution speed with paging excluded: 3 million instructions/second
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Evolving X86 ISA Model

Emulating X86 Programs
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Evolving X86 ISA Model

Emulating X86 Programs

We run x86 binary programs on our x86 model.

We can run a contemporary SAT solver on our x86 model.

We have modified this solver so that it doesn’t require system calls...

We solve SAT competition benchmarks on our model; the largest
example tried so far: cmu-bmc-barrel6.cnf.

Number of variables: 2306
Number of clauses: 8931
Number of x86 instructions executed: 9,142,833,444

Co-simulation: Our model produced exactly the same e↵ects on the
memory and registers as those produced by a physical x86 processor.
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Evolving X86 ISA Model

Verifying X86 Programs

We use ACL2(h) to symbolically execute our x86 model.

We compile C-code with GCC/LLVM.

We load binary code into the memory of our x86 model.

As appropriate, we initialize the registers, etc. with symbolic values.

Previously, we have demonstrated a fully automatic proof of
correctness of a x86 binary program using symbolic execution.
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Using Satisifiability Techniques

BDDs versus SAT for Symbolic Execution

Our symbolic execution framework uses either BDDs or AIGs. AIGs
are transformed into CNF formulas, and checked by SAT solvers.

Binary Decision Diagrams (BDDs)

A mature technology; however,

Memory problems arise for large problems

Fully integrated into ACL2(h)

Satisfiability (SAT) solving

Powerful technology that is improved yearly

Problems can be solved with millions of clauses

Used as external tool

For some problems, SAT is demonstratively more e↵ective.
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Using Satisifiability Techniques

Matrix Root Problem in ACL2

Given a 2⇥ 2 matrix M , does there exist a 2⇥ 2 matrix R

with only natural numbers such that R

2 = M ?

✓
a b

c d

◆2

=

✓
w x

y z

◆

(defun matrix-root? (a b c d w x y z)

(declare (xargs :guard (and (natp a) (natp b)

(natp c) (natp d))))

(let* ((ww (+ (* a a) (* b c))) (xx (+ (* a b) (* b d)))

(yy (+ (* c a) (* d c))) (zz (+ (* c b) (* d d))))

(and (equal w ww) (equal x xx)

(equal y yy) (equal z zz))))
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Using Satisifiability Techniques

Matrix Root Problem with a Solution

✓
a b
c d

◆2

=

✓
229452 269434
326414 385740

◆
=

✓
311 331
401 503

◆2

Proof fails: using BDDs in 181 secs; however, with SAT in 0.03 secs!

(def-gl-thm matrix-root-large-fails

:hyp (let ((m 512))

(and (natp a) (natp b) (natp c) (natp d)

(< a m) (< b m) (< c m) (< d m)))

:concl

(not (matrix-root? a b c d 229452 269434 326414 385740))

:g-bindings

‘((a (:g-number ,(gl-int 0 1 10)))

(b (:g-number ,(gl-int 10 1 10)))

(c (:g-number ,(gl-int 20 1 10)))

(d (:g-number ,(gl-int 30 1 10)))))
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Using Satisifiability Techniques

Matrix Root Problem with No Solutions

✓
a b
c d

◆2

=

✓
229450 269434
326414 385740

◆
has no solutions

Proof succeeds: using BDDs in 177 secs; however, with SAT in 0.01 secs!

(def-gl-thm matrix-root-large-succeeds

:hyp (let ((m 512))

(and (natp a) (natp b) (natp c) (natp d)

(< a m) (< b m) (< c m) (< d m)))

:concl

(not (matrix-root? a b c d 229450 269434 326414 385740))

:g-bindings

‘((a (:g-number ,(gl-int 0 1 10)))

(b (:g-number ,(gl-int 10 1 10)))

(c (:g-number ,(gl-int 20 1 10)))

(d (:g-number ,(gl-int 30 1 10)))))
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Using Satisifiability Techniques

Verification of SAT results

SAT solving is a powerful technique, but presently external to ACL2:

SAT solutions are easy to check (in linear time)

Clausal proofs are popular but expensive to check

Even a SAT proof checker is hard to mechanically verify

How can we deal with a claim that no solution exists?

Our solution: filter clausal proofs

Then, check the filtered proof with a verified proof checker
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Using Satisifiability Techniques

Tool Chain for Checking Unsatisfiability Results

Input: Boolean formula constructed by ACL2

Black box solver

unsatisfiable?

Proof filter

Verified checker

Output: refutation proof emitted by SAT solver
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Using Satisifiability Techniques

Matrix Root Problem with No Solutions Verified

✓
a b
c d

◆2

=

✓
229450 269434
326414 385740

◆
has no solutions

Proof succeeds: using BDDs in 177 secs; however, with SAT in 0.01 secs!

Results on proof checking:

Boolean formula contained 4365 variables and 14749 clauses

Glucose solves the formula emitting a proof of 333 lemmas

Proof filter reduced the proof to 2 lemmas

The reduced proof is checked using a verified checker in 1.3 seconds

Future work: verify faster proof checker!
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ACL2 Enhancements

ACL2 Enhancements

ACL2 has been under continuous development for 20+ years, largely in
response to user requests. Release notes document 100s of enhancements.

ACL2 is freely available at: http://www.cs.utexas.edu/users/moore/acl2/

Released ACL2 Version 6.0 in December, 2012

Released ACL2 Version 6.1 in February, 2013

Sample developments:
Change in license: From GPL Version 2 to a 3-clause BSD license

High functionality data structures: Abstract and Nested Stobjs

Better feedback from the prover: Case split reports

Heuristic improvements: Arithmetic bounders for tau

In addition, we developed a proof format for SAT solvers to facilitate easy
generation and e�cient verification of compact proofs. We plan to
enhance ACL2 with SAT technology like we did with our BDD package.
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Future Work

Future Work

Extending the ACL2 system:

Integrate SAT mechanisms into ACL2 proof infrastructure

Improve e�ciency of our symbolic simulation techniques

In general, improve the ACL2 system, supporting our x86 ISA
modeling and proof e↵orts

Extending our x86 ISA model:

Develop infrastructure for binary code proofs

Integrate x86 memory management into our model

Add system calls to the x86 model

Continue extending the number of instructions modeled

Further automate our co-simulation environment for model validation

Page 24 (University of Texas at Austin) UT Austin CRASH Project May, 2013 24 / 28



Conclusion

Outline

1 Introduction

2 Evolving X86 ISA Model

3 Using Satisifiability Techniques

4 ACL2 Enhancements

5 Future Work

6 Conclusion

7 Publications

Page 25 (University of Texas at Austin) UT Austin CRASH Project May, 2013 25 / 28



Conclusion

Conclusion

We continue to expand our modeling and analysis capabilities.

We have developed a 64-bit data and 52-bit address memory model.

We have specified most integer instructions with all addressing modes.

We are developing a co-simulation mechanism for model validation.

We have started verifying x86 binary programs.

Our model can be used as a build-to and a compile-to specification.

We have developed a path to use SAT with our proofs.

We have extended and improved our x86 model.

Our model can be used to safely explore all manner of malware.

We continue to enhance the ACL2 system.

We perform our work in an environment where we can prove or disprove
theorems about our models.
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