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Motivation
• Verification and Validation of Autonomous Systems is a 

significant issue throughout DoD 
• A commonly-held view is that current testing-based V&V regimes 

are inadequate 
• A human operator has long been relied upon as the ultimate 

“safety monitor” — which truly autonomous systems lack 
• Unfortunately, the sophistication of autonomous systems 

development techniques makes V&V even more difficult 
• “Deep learning” approaches thwart traditional requirements-

driven, test-coverage-driven V&V, making it difficult to even 
provide a straightforward explanation of any given decision 
• We’re not tackling this problem here! 

• Even basic machine reasoning for inference, route planning, 
etc. present a significant V&V challenge, due to their use of 
complex data types and subtle algorithms 2
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Motivation (cont’d.)

• Autonomy algorithms, e.g. route planning, employ complex 
algebraic data types 

• Proof techniques for these data structures exist, but are oriented 
to unbounded, functional data types 
• Functional data structure implementations are not often 

efficient in space or time, so developers generally take a 
more imperative approach 

• We need to find proof techniques that embrace the “natural” 
functional proof style, yet apply to more efficient data 
structure implementations 
• Including GPU-based and hardware-based data structures

3
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Our Approach: Verified Data Structure 
Compilation to Linearized Form
• Accepts Data Structure Specification from parsed ML-like data 

structure specification 
• Data structure specification includes a maximum size 

• Compiles the Data Structure Specification into a linearized form 
requiring no heap allocation or deallocation, in keeping with 
high-assurance development tenets (e.g. DO-178C Level A) 
• Allocation/deallocation may be added later for systems that 

need it 
• Produces proofs that compiled data structure operations on the 

compiled form are equivalent to the same operations on the 
functional form 
• Proves that in-place updates are equivalent to functional 

(copying) updates, given that no “old” copies of the data 
structure are allowed

4
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Verified Data Structure Compilation and Property Proofs

• Once we develop the Data Structure Compilation Correctness 
Proof, properties proved of the functional data structure 
specification will also hold for the optimized implementation

Functional Specification Proved Properties

Optimized Implementation

Property Proofs

   Verified   Compilation

Data Structure Compilation 
Correctness Proof
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Touchstones for our Work

• Experience on Autonomy programs, e.g. AFRL Loyal Wingman 
• DO-178C Airborne Systems Certification Standard (RTCA 2012) 
• Guardol DSL for Cross-Domain Systems (TACAS 2012) 
• Guardol Verified Compilation to VHDL (SAFECOMP 2016) 
• Accelerating Large Graph Algorithms on the GPU using CUDA 

(Harish and Narayanan, HiPC 2007) 
• ACL2 Single-Thread Objects; functional programs with imperative 

implementations (Boyer and Moore, PADL 2002) 
• Formalization of a CUDA-based Parallelizable All-Pairs Shortest 

Path Algorithm in ACL2 (ACL2 Workshop 2013) 
• Decompilation into Logic (Myreen, Dissertation 2009) 
• Verification-Enhanced Languages (Dafny, SPARK, Guardol) 
• Verified Compilers (CompCert, CakeML) 
• MASC: SystemC in ACL2 (O’Leary and Russinoff 2014) 6
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The ACL2 Single-Threaded Object (stobj)

• The ACL2 theorem prover provides a declaration mechanism to 
create so-called “single-threaded objects”, or stobjs 

• ACL2 enforces strict syntactic rules on stobjs to ensure that “old” 
states of a stobj are guaranteed not to exist 
• This means that ACL2 can provide destructive implementation 

for stobjs, allowing stobj operations to execute quickly 
• An ACL2 single-threaded object thus combines: 

• a functional semantics about which we can reason 
• a relatively high-speed implementation that more closely 

follows “normal” design rules for high assurance 
• ACL2 stobjs have been used to produce, e.g. a high-speed, 

detailed operational semantics for x86-64 that can process up 
to 3 million simulated x86-64 instructions per second 

• We make extensive use of the stobj idea in our DASL compiler 7
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Autonomy Data Type Verification Overview
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From Domain-Specific to Domain-Aware Programming 
Languages

• Our work on Guardol, a Domain-Specific Language for cross-
domain systems led us to the realization that it is often more 
useful for a language to be domain-aware than domain-specific 

• Further, domain-aware language design principles can apply to a 
number of domains with similar computational, environmental, 
and regulatory requirements (e.g., embedded safety-critical 
domains, security-critical domains) 

• Thus, we have created a Domain-Aware Programming Language 
(DAPL) for autonomy applications, called DASL

9
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The Domain-Aware System Language (DASL)

• DASL is designed for the creation of efficient, verifiable, 
accreditable algorithms in domains such as autonomy 

• DASL is a system-level language, appropriate for expressing 
algorithms and data structures that can be compiled to traditional 
programming languages, GPU languages, as well as Hardware 
Description Languages (HDLs) 

• DASL can be characterized as a “mashup” of concepts from Ada, 
ML, and the C family of languages, and has a similar feel to new 
languages such as Swift and Rust 

• The DASL toolchain is designed to support Formal Verification, 
and utilizes the HOL4 theorem prover as its “middle end”

10
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DASL Code Generation Options
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The DASL Language

• DASL is, similar to Guadol, a strongly-typed imperative language, with 
assignment, functions, for loops, while loops, etc., but with data types 
influenced by ML: 

datatype Tree = [elem: int, rank: int, children TreeList]; 

datatype TreeList  
  = Nil 
  | Cons : [hd: Tree, tl: TreeList]} 

type IntOpt = { NONE | SOME : int } 

function ins (t: in Tree, tlist: in TreeList) returns Ret: TreeList { 
  match tlist {  
    'Nil => Ret := 'Cons [hd: t, tl: 'Nil]; 
    'Cons c =>  
        if t.rank < c.hd.rank then  
          Ret := 'Cons [hd: t, tl: tlist];  
        else 
          Ret := ins (link (t, c.hd), c.tl); }}

12
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DASL Language and Toolchain Attributes for Formal Analysis

• DASL does not allow arbitrary pointers or explicit pointer arithmetic 

• Arrays are of fixed size, and array accesses are subject to mandatory 
bounds-checking 

• DASL does not support goto or setjmp/longjmp 

• HOL4 gives semantics to DASL evaluation via decompilation into 
logic, and we use proved source-to-source transformations in HOL4 
to compile DASL code 

• Technique from (Greve and Slind 2013) allows DASL functions to be 
introduced into the logic with deferred termination proofs 

• spec statements: Allow user to write property specifications in DASL 
syntax that can be proven by the DASL backend 13
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DASL Property Specifications and Proofs

• A feature of DASL inherited from Guardol is the ability to state and 
prove formal property specifications directly in the source text, 
using DASL language syntax 

• The following property spec conjectures that if a TreeList is rank-
ordered, it is still rank-ordered after a new tree is inserted: 

    spec rank_ordered_ins = { 
      var t: Tree; 
          list: TreeList; 
      in  
        if rank_ordered(list) 
          then check rank_ordered(ins(t, tlist)); 
        else skip; 
    } 

• The DASL verification backend proves this property automatically
14
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The sized Declarator and Compilation to Array-Based Form

• A new feature of DASL is the sized declarator, which informs the 
toolchain that an otherwise unbounded datatype declaration has 
limited size: 

sized pq: PQType (MAX_VERTICES); 

• sized datatypes can be compiled to an array-based form with 
destructive updates, similar to the way that ACL2 stobjs are 
compiled 

• Array-based form greatly simplifies code generation for GPUs and 
hardware

15
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DASL Graph Datatypes

• Another new feature of DASL is a specialized graph datatype 
declarator, and its associated sized declarator: 

    graphtype DKGraph (nodeLabel = vertexLabelTy,  
                      edgeLabel = edgeLabelTy); 

    sized dkg: DKGraph (MAX_VERTICES, MAX_EDGES_PER_VERTEX); 

• The DASL toolchain compiles this declaration to an array-based 
form, and generates several associated functions for manipulating 
the array-based form: 

    getOutEdges(), setOutEdges(), addEdge(), labelVertex(),  
   labelEdge(),…

16
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Array-Based Graph Representation

• Based on a data structure layout approach created for efficient 
GPU execution (Harish and Narayanan, HiPC 2007); used to 
code Dijkstra’s All-Pairs Shortest Path algorithm (APSP) 

• Amenable to efficient CUDA, OpenCL implementation, as well as 
hardware implmentation (VHDL) 

• Implementated APSP using ACL2 single-threaded object (ACL2 
Workshop 2013) 
• Execution of Dijkstra’s shortest path algorithm on compiled 

graph using stobjs was linear in number of vertices up to at 
least 1 million vertices at 10 edges per vertex 

• DASL compiler analyzes datatype, graphtype, and sized 
declarations, creates appropriate array-based layout, and 
instantiates runtime functions

17
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Graph Compilation Example, Two Edges per 
Vertex
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Research Results to Date

• Defined DASL language features, focusing on sized data 
structures 

• Defined low-level data structure layouts similar to those used in 
ACL2-13 paper, starting with prototypes in ACL2 

• Defined “runtime” functions generated by the toolchain to 
operate on the low-level data structures, using ACL2 
• Performed basic correctness proofs of runtime functions 

• Updated HOL4-based toolchain to support datatype, graphtype 
declarations, and providing sized data structure compilation 
correctness proofs 

• Wrote DASL programs for a number of autonomy-relevant 
algorithms and datastructures: tree search, priority queue, 
Dijkstra APSP, unify/substitute 

• Generating Ada code for datatype, graphtype declarations 19
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Next Steps

• Complete working end-to-end examples for Dijkstra APSP, A*, 
unify, etc. including high-level property proofs 
• Proofs will utilize a combination of HOL4 and RADA 

• Refine language and runtime definitions based on our experience 

• Port runtime to Java, ML, CUDA, VHDL 

• Make the generated Ada code SPARK-conformant 

• Develop CUDA code generation 

• Gain experience on larger examples, esp. in collaboration with 
the Flex project at Kestrel 20


