
© Copyright 2017 Rockwell Collins.
All rights reserved.

Verified Data Structures for Trusted
Autonomy: A Compilation Approach

David Hardin
Konrad Slind

 

© 2017 Rockwell Collins. All rights reserved.

Motivation
• Verification and Validation of Autonomous Systems is a

significant issue throughout DoD
• A commonly-held view is that current testing-based V&V regimes

are inadequate
• A human operator has long been relied upon as the ultimate

“safety monitor” — which truly autonomous systems lack
• Unfortunately, the sophistication of autonomous systems

development techniques makes V&V even more difficult
• “Deep learning” approaches thwart traditional requirements-

driven, test-coverage-driven V&V, making it difficult to even
provide a straightforward explanation of any given decision
• We’re not tackling this problem here!

• Even basic machine reasoning for inference, route planning,
etc. present a significant V&V challenge, due to their use of
complex data types and subtle algorithms 2

© 2017 Rockwell Collins. All rights reserved.

Motivation (cont’d.)

• Autonomy algorithms, e.g. route planning, employ complex
algebraic data types

• Proof techniques for these data structures exist, but are oriented
to unbounded, functional data types
• Functional data structure implementations are not often

efficient in space or time, so developers generally take a
more imperative approach

• We need to find proof techniques that embrace the “natural”
functional proof style, yet apply to more efficient data
structure implementations
• Including GPU-based and hardware-based data structures

3

© 2017 Rockwell Collins. All rights reserved.

Our Approach: Verified Data Structure
Compilation to Linearized Form
• Accepts Data Structure Specification from parsed ML-like data

structure specification
• Data structure specification includes a maximum size

• Compiles the Data Structure Specification into a linearized form
requiring no heap allocation or deallocation, in keeping with
high-assurance development tenets (e.g. DO-178C Level A)
• Allocation/deallocation may be added later for systems that

need it
• Produces proofs that compiled data structure operations on the

compiled form are equivalent to the same operations on the
functional form
• Proves that in-place updates are equivalent to functional

(copying) updates, given that no “old” copies of the data
structure are allowed

4

© 2017 Rockwell Collins. All rights reserved.

Verified Data Structure Compilation and Property Proofs

• Once we develop the Data Structure Compilation Correctness
Proof, properties proved of the functional data structure
specification will also hold for the optimized implementation

Functional Specification Proved Properties

Optimized Implementation

Property Proofs

 Verified Compilation

Data Structure Compilation
Correctness Proof

5

© 2017 Rockwell Collins. All rights reserved.

Touchstones for our Work

• Experience on Autonomy programs, e.g. AFRL Loyal Wingman
• DO-178C Airborne Systems Certification Standard (RTCA 2012)
• Guardol DSL for Cross-Domain Systems (TACAS 2012)
• Guardol Verified Compilation to VHDL (SAFECOMP 2016)
• Accelerating Large Graph Algorithms on the GPU using CUDA

(Harish and Narayanan, HiPC 2007)
• ACL2 Single-Thread Objects; functional programs with imperative

implementations (Boyer and Moore, PADL 2002)
• Formalization of a CUDA-based Parallelizable All-Pairs Shortest

Path Algorithm in ACL2 (ACL2 Workshop 2013)
• Decompilation into Logic (Myreen, Dissertation 2009)
• Verification-Enhanced Languages (Dafny, SPARK, Guardol)
• Verified Compilers (CompCert, CakeML)
• MASC: SystemC in ACL2 (O’Leary and Russinoff 2014) 6

© 2017 Rockwell Collins. All rights reserved.

The ACL2 Single-Threaded Object (stobj)

• The ACL2 theorem prover provides a declaration mechanism to
create so-called “single-threaded objects”, or stobjs

• ACL2 enforces strict syntactic rules on stobjs to ensure that “old”
states of a stobj are guaranteed not to exist
• This means that ACL2 can provide destructive implementation

for stobjs, allowing stobj operations to execute quickly
• An ACL2 single-threaded object thus combines:

• a functional semantics about which we can reason
• a relatively high-speed implementation that more closely

follows “normal” design rules for high assurance
• ACL2 stobjs have been used to produce, e.g. a high-speed,

detailed operational semantics for x86-64 that can process up
to 3 million simulated x86-64 instructions per second

• We make extensive use of the stobj idea in our DASL compiler 7

© 2017 Rockwell Collins. All rights reserved.

Autonomy Data Type Verification Overview

Autonomy Data
Structure

Specification

Generated
Verification
Conditions

Algebraic
Data Type
Lemmas

Optimizied
Generated
Code

Theorem
Prover

List, Array
Lemmas

VC Gen

D

RADA (interface
to SMT solver)

Datatype
Decision

Procedure

Counterexample

X

Verified
Data Type
Compiler

Parser

(New Work)

8

© 2017 Rockwell Collins. All rights reserved.

From Domain-Specific to Domain-Aware Programming
Languages

• Our work on Guardol, a Domain-Specific Language for cross-
domain systems led us to the realization that it is often more
useful for a language to be domain-aware than domain-specific

• Further, domain-aware language design principles can apply to a
number of domains with similar computational, environmental,
and regulatory requirements (e.g., embedded safety-critical
domains, security-critical domains)

• Thus, we have created a Domain-Aware Programming Language
(DAPL) for autonomy applications, called DASL

9

© 2017 Rockwell Collins. All rights reserved.

The Domain-Aware System Language (DASL)

• DASL is designed for the creation of efficient, verifiable,
accreditable algorithms in domains such as autonomy

• DASL is a system-level language, appropriate for expressing
algorithms and data structures that can be compiled to traditional
programming languages, GPU languages, as well as Hardware
Description Languages (HDLs)

• DASL can be characterized as a “mashup” of concepts from Ada,
ML, and the C family of languages, and has a similar feel to new
languages such as Swift and Rust

• The DASL toolchain is designed to support Formal Verification,
and utilizes the HOL4 theorem prover as its “middle end”

10

© 2017 Rockwell Collins. All rights reserved.

DASL Code Generation Options

DASL Source

RADA

JVM

DASL
Compiler
(HOL4)

GPU
Fabric

Binary Verified
Binary

Bit file

GNAT

Java
Ada/

SPARK CUDAML VHDL

javac CakeML CUDA
compiler

FPGA
Tools

D

11

© 2017 Rockwell Collins. All rights reserved.

The DASL Language

• DASL is, similar to Guadol, a strongly-typed imperative language, with
assignment, functions, for loops, while loops, etc., but with data types
influenced by ML:

datatype Tree = [elem: int, rank: int, children TreeList];

datatype TreeList
 = Nil
 | Cons : [hd: Tree, tl: TreeList]}

type IntOpt = { NONE | SOME : int }

function ins (t: in Tree, tlist: in TreeList) returns Ret: TreeList {
 match tlist {
 'Nil => Ret := 'Cons [hd: t, tl: 'Nil];
 'Cons c =>
 if t.rank < c.hd.rank then
 Ret := 'Cons [hd: t, tl: tlist];
 else
 Ret := ins (link (t, c.hd), c.tl); }}

12

© 2017 Rockwell Collins. All rights reserved.

DASL Language and Toolchain Attributes for Formal Analysis

• DASL does not allow arbitrary pointers or explicit pointer arithmetic

• Arrays are of fixed size, and array accesses are subject to mandatory
bounds-checking

• DASL does not support goto or setjmp/longjmp

• HOL4 gives semantics to DASL evaluation via decompilation into
logic, and we use proved source-to-source transformations in HOL4
to compile DASL code

• Technique from (Greve and Slind 2013) allows DASL functions to be
introduced into the logic with deferred termination proofs

• spec statements: Allow user to write property specifications in DASL
syntax that can be proven by the DASL backend 13

© 2017 Rockwell Collins. All rights reserved.

DASL Property Specifications and Proofs

• A feature of DASL inherited from Guardol is the ability to state and
prove formal property specifications directly in the source text,
using DASL language syntax

• The following property spec conjectures that if a TreeList is rank-
ordered, it is still rank-ordered after a new tree is inserted:

 spec rank_ordered_ins = {
 var t: Tree;
 list: TreeList;
 in
 if rank_ordered(list)
 then check rank_ordered(ins(t, tlist));
 else skip;
 }

• The DASL verification backend proves this property automatically
14

© 2017 Rockwell Collins. All rights reserved.

The sized Declarator and Compilation to Array-Based Form

• A new feature of DASL is the sized declarator, which informs the
toolchain that an otherwise unbounded datatype declaration has
limited size:

sized pq: PQType (MAX_VERTICES);

• sized datatypes can be compiled to an array-based form with
destructive updates, similar to the way that ACL2 stobjs are
compiled

• Array-based form greatly simplifies code generation for GPUs and
hardware

15

© 2017 Rockwell Collins. All rights reserved.

DASL Graph Datatypes

• Another new feature of DASL is a specialized graph datatype
declarator, and its associated sized declarator:

 graphtype DKGraph (nodeLabel = vertexLabelTy,
 edgeLabel = edgeLabelTy);

 sized dkg: DKGraph (MAX_VERTICES, MAX_EDGES_PER_VERTEX);

• The DASL toolchain compiles this declaration to an array-based
form, and generates several associated functions for manipulating
the array-based form:

 getOutEdges(), setOutEdges(), addEdge(), labelVertex(),
 labelEdge(),…

16

© 2017 Rockwell Collins. All rights reserved.

Array-Based Graph Representation

• Based on a data structure layout approach created for efficient
GPU execution (Harish and Narayanan, HiPC 2007); used to
code Dijkstra’s All-Pairs Shortest Path algorithm (APSP)

• Amenable to efficient CUDA, OpenCL implementation, as well as
hardware implmentation (VHDL)

• Implementated APSP using ACL2 single-threaded object (ACL2
Workshop 2013)
• Execution of Dijkstra’s shortest path algorithm on compiled

graph using stobjs was linear in number of vertices up to at
least 1 million vertices at 10 edges per vertex

• DASL compiler analyzes datatype, graphtype, and sized
declarations, creates appropriate array-based layout, and
instantiates runtime functions

17

© 2017 Rockwell Collins. All rights reserved.

Graph Compilation Example, Two Edges per
Vertex

18

© 2017 Rockwell Collins. All rights reserved.

Research Results to Date

• Defined DASL language features, focusing on sized data
structures

• Defined low-level data structure layouts similar to those used in
ACL2-13 paper, starting with prototypes in ACL2

• Defined “runtime” functions generated by the toolchain to
operate on the low-level data structures, using ACL2
• Performed basic correctness proofs of runtime functions

• Updated HOL4-based toolchain to support datatype, graphtype
declarations, and providing sized data structure compilation
correctness proofs

• Wrote DASL programs for a number of autonomy-relevant
algorithms and datastructures: tree search, priority queue,
Dijkstra APSP, unify/substitute

• Generating Ada code for datatype, graphtype declarations 19

© 2017 Rockwell Collins. All rights reserved.

Next Steps

• Complete working end-to-end examples for Dijkstra APSP, A*,
unify, etc. including high-level property proofs
• Proofs will utilize a combination of HOL4 and RADA

• Refine language and runtime definitions based on our experience

• Port runtime to Java, ML, CUDA, VHDL

• Make the generated Ada code SPARK-conformant

• Develop CUDA code generation

• Gain experience on larger examples, esp. in collaboration with
the Flex project at Kestrel 20

