~ TRUST MATTERS,

- e - —~— e

; e - — -
o Rt S e N % ~~‘.~_/- T R
8 T s TRy D& 33T — Wt o

R N
. - . .- - -
RS y'{-" P S g -
=

. e

Verified Data Structures for Trusted
Autonomy: A Compilation Approach

David Hardin
Konrad Slind
Rockwe

-~
© Copyright 2017 Rockwell Collins. co Ins
All rights reserved.

Rockwe

Motivation

e Verification and Validation of Autonomous Systems is a
significant issue throughout DoD

e A commonly-held view is that current testing-based V&V regimes
are inadequate
e A human operator has long been relied upon as the ultimate
“safety monitor” — which truly autonomous systems lack
e Unfortunately, the sophistication of autonomous systems
development techniques makes V&V even more difficult
e "Deep learning” approaches thwart traditional requirements-
driven, test-coverage-driven V&V, making it difficult to even
provide a straightforward explanation of any given decision
e We're not tackling this problem here!
e Even basic machine reasoning for inference, route planning,
etc. present a significant V&V challenge, due to their use of
complex data types and subtle algorithms

© 2017 Rockwell Collins. All rights reserved.

ey

Rockwe

ey

Motivation (cont’d.)

e Autonomy algorithms, e.g. route planning, employ complex
algebraic data types

e Proof techniques for these data structures exist, but are oriented
to unbounded, functional data types

e Functional data structure implementations are not often
efficient in space or time, so developers generally take a
more imperative approach

e We need to find proof techniques that embrace the “natural”
functional proof style, yet apply to more efficient data

structure implementations
e Including GPU-based and hardware-based data structures

© 2017 Rockwell Collins. All rights reserved.

Rockwe

ey

Our Approach: Verified Data Structure
Compilation to Linearized Form

e Accepts Data Structure Specification from parsed ML-like data
structure specification
e Data structure specification includes a maximum size

e Compiles the Data Structure Specification into a linearized form
requiring no heap allocation or deallocation, in keeping with
high-assurance development tenets (e.g. DO-178C Level A)
¢ Allocation/deallocation may be added later for systems that

need it

e Produces proofs that compiled data structure operations on the
compiled form are equivalent to the same operations on the
functional form

e Proves that in-place updates are equivalent to functional
(copying) updates, given that no “old” copies of the data
structure are allowed

© 2017 Rockwell Collins. All rights reserved.

Rocky s A

Verified Data Structure Compilation and Property Proofs

e Once we develop the Data Structure Compilation Correctness
Proof, properties proved of the functional data structure
specification will also hold for the optimized implementation

: . _ Property Proofs _
Functional Specification » Proved Properties

Verified |Compilation

Data Structure Compilation
Correctness Proof

\4

Optimized Implementation

© 2017 Rockwell Collins. All rights reserved.

Rockwe

ey

Touchstones for our Work

e Experience on Autonomy programs, e.g. AFRL Loyal Wingman
e DO-178C Airborne Systems Certification Standard (RTCA 2012)
e Guardol DSL for Cross-Domain Systems (TACAS 2012)

e Guardol Verified Compilation to VHDL (SAFECOMP 2016)

e Accelerating Large Graph Algorithms on the GPU using CUDA
(Harish and Narayanan, HiPC 2007)

e ACL2 Single-Thread Objects; functional programs with imperative
implementations (Boyer and Moore, PADL 2002)

e Formalization of a CUDA-based Parallelizable All-Pairs Shortest
Path Algorithm in ACL2 (ACL2 Workshop 2013)

e Decompilation into Logic (Myreen, Dissertation 2009)

e Verification-Enhanced Languages (Dafny, SPARK, Guardol)

¢ Verified Compilers (CompCert, CakeML)

e MASC: SystemC in ACL2 (O’Leary and Russinoff 2014) 6

© 2017 Rockwell Collins. All rights reserved.

Rockwe

ey

The ACL2 Single-Threaded Object (stobj)

e The ACL2 theorem prover provides a declaration mechanism to
create so-called “single-threaded objects”, or stobjs

e ACL2 enforces strict syntactic rules on stobjs to ensure that “old”
states of a stobj are guaranteed not to exist
e This means that ACL2 can provide destructive implementation

for stobjs, allowing stobj operations to execute quickly

e An ACL2 single-threaded object thus combines:

e a functional semantics about which we can reason

e a relatively high-speed implementation that more closely
follows “normal” design rules for high assurance

e ACL2 stobjs have been used to produce, e.g. a high-speed,
detailed operational semantics for x86-64 that can process up
to 3 million simulated x86-64 instructions per second

e We make extensive use of the stobj idea in our DASL compiler -

© 2017 Rockwell Collins. All rights reserved.

Rockwel/l
Collins

Autonomy Data Type Verification Overview

D Verified Optimizied
»| Parser — Data Type —» Generated

N Compiler Code
Autonomy Data (New Work)
Structure Datatype
Specification Decision
Procedure
Algebraic %
Data Type v m
Lemmas Theorem Q : RADA (interface
to SMT solver
List, Array Prover =2 Vel
Lemmas Generated Counterexample
Verification
VC Gen Conditions

v X,

© 2017 Rockwell Collins. All rights reserved.

Rockwe

ey

From Domain-Specific to Domain-Aware Programming
Languages

e QOur work on Guardol, a Domain-Specific Language for cross-
domain systems led us to the realization that it is often more
useful for a language to be domain-aware than domain-specific

e Further, domain-aware language design principles can apply to a
number of domains with similar computational, environmental,
and regulatory requirements (e.g., embedded safety-critical
domains, security-critical domains)

e Thus, we have created a Domain-Aware Programming Language
(DAPL) for autonomy applications, called DASL

© 2017 Rockwell Collins. All rights reserved.

Rockwe

ey

The Domain-Aware System Language (DASL)

e DASL is designed for the creation of efficient, verifiable,
accreditable algorithms in domains such as autonomy

e DASL is a system-level language, appropriate for expressing
algorithms and data structures that can be compiled to traditional
programming languages, GPU languages, as well as Hardware
Description Languages (HDLs)

e DASL can be characterized as a “mashup” of concepts from Ada,
ML, and the C family of languages, and has a similar feel to new
languages such as Swift and Rust

e The DASL toolchain is designed to support Formal Verification,
and utilizes the HOL4 theorem prover as its "middle end”

10

© 2017 Rockwell Collins. All rights reserved.

Rockwel/l
Collins

DASL Code Generation Options

D DASL
P Compiler o RADA

| (HOL4)
DASL Source /

Ada/ i |

SPARK Java ML : CUDA | VHDL

GNAT javac CakeML ClibE e

compiler Tools

JVM Ver ified GPU
Binary Fabric

© 2017 Rockwell Collins. All rights reserved.

Rockwe

ey

The DASL Language

e DASL is, similar to Guadol, a strongly-typed imperative language, with

assignment, functions, for loops, while loops, etc., but with data types
influenced by ML.:

datatype Tree = [elem: int, rank: int, children Treelist];

datatype Treelist
= Nil
| Cons : [hd: Tree, tl: Treelist]}

type IntOpt = { NONE | SOME : int }

function ins (t: in Tree, tlist: in Treelist) returns Ret: Treelist {
match tlist {

'Nil => Ret := 'Cons [hd: t, tl: 'Nil];
'Cons c =>
if t.rank < c.hd.rank then
Ret := 'Cons [hd: t, tl: tlist];
else
Ret := ins (link (t, c.hd), c.tl); }}
12

© 2017 Rockwell Collins. All rights reserved.

Rockwe

ey

DASL Language and Toolchain Attributes for Formal Analysis

e DASL does not allow arbitrary pointers or explicit pointer arithmetic

e Arrays are of fixed size, and array accesses are subject to mandatory
bounds-checking

e DASL does not support goto or setjmp/longjmp

e HOL4 gives semantics to DASL evaluation via decompilation into
logic, and we use proved source-to-source transformations in HOL4
to compile DASL code

e Technique from (Greve and Slind 2013) allows DASL functions to be
introduced into the logic with deferred termination proofs

e spec statements: Allow user to write property specifications in DASL

syntax that can be proven by the DASL backend i3

© 2017 Rockwell Collins. All rights reserved.

Rockwe

ey

DASL Property Specifications and Proofs

o A feature of DASL inherited from Guardol is the ability to state and
prove formal property specifications directly in the source text,
using DASL language syntax

e The following property spec conjectures that if a TreelList is rank-
ordered, it is still rank-ordered after a new tree is inserted:

spec rank ordered ins = {
var t: Tree;
list: Treelist;
in
if rank ordered(list)
then check rank ordered(ins(t, tlist));
else skip;

}

e The DASL verification backend proves this property automatically

14

© 2017 Rockwell Collins. All rights reserved.

Rockwe

ey

The sized Declarator and Compilation to Array-Based Form

e A new feature of DASL is the sized declarator, which informs the

toolchain that an otherwise unbounded datatype declaration has
limited size:

sized pq: PQType (MAX VERTICES) ;

e sized datatypes can be compiled to an array-based form with
destructive updates, similar to the way that ACL2 stobjs are
compiled

e Array-based form greatly simplifies code generation for GPUs and
hardware

15

© 2017 Rockwell Collins. All rights reserved.

Rockwe

ey

DASL Graph Datatypes

e Another new feature of DASL is a specialized graph datatype
declarator, and its associated sized declarator:

graphtype DKGraph (nodelabel = vertexLabelTy,
edgelabel = edgelabelTy) ;

sized dkg: DKGraph (MAX VERTICES, MAX EDGES PER VERTEX) ;

e The DASL toolchain compiles this declaration to an array-based
form, and generates several associated functions for manipulating
the array-based form:

getOutEdges () , setOutEdges (), addEdge (), labelVertex(),

labelEdge(),..
16

© 2017 Rockwell Collins. All rights reserved.

Rockwe

ey

Array-Based Graph Representation

e Based on a data structure layout approach created for efficient
GPU execution (Harish and Narayanan, HiPC 2007); used to
code Dijkstra’s All-Pairs Shortest Path algorithm (APSP)

e Amenable to efficient CUDA, OpenCL implementation, as well as
hardware implmentation (VHDL)

e Implementated APSP using ACL2 single-threaded object (ACL2
Workshop 2013)

e Execution of Dijkstra’s shortest path algorithm on compiled
graph using stobjs was linear in number of vertices up to at
least 1 million vertices at 10 edges per vertex

e DASL compiler analyzes datatype, graphtype, and sized

declarations, creates appropriate array-based layout, and
instantiates runtime functions

17

© 2017 Rockwell Collins. All rights reserved.

ok Etlins

Graph Compilation Example, Two Edges per

Vertex
13 4 9
@ Graph (incomplete)
3 > 60
21 0 7)
Vertices O|13]|5 - he-1 Array representation
Edges 0|24 |7|6|2]|5 115

Weights | 0 |{14|94 60|42 |5 (21 |...[13 |31

18

© 2017 Rockwell Collins. All rights reserved.

Collins

Research Results to Date

e Defined DASL language features, focusing on sized data
structures

e Defined low-level data structure layouts similar to those used in
ACL2-13 paper, starting with prototypes in ACL2

e Defined “runtime” functions generated by the toolchain to
operate on the low-level data structures, using ACL2

e Performed basic correctness proofs of runtime functions
e Updated HOL4-based toolchain to support datatype, graphtype

declarations, and providing sized data structure compilation
correctness proofs

e Wrote DASL programs for a number of autonomy-relevant
algorithms and datastructures: tree search, priority queue,
Dijkstra APSP, unify/substitute

e Generating Ada code for datatype, graphtype declarations 19

© 2017 Rockwell Collins. All rights reserved.

Collins

Next Steps

e Complete working end-to-end examples for Dijkstra APSP, A*,
unify, etc. including high-level property proofs

e Proofs will utilize a combination of HOL4 and RADA

e Refine language and runtime definitions based on our experience

e Port runtime to Java, ML, CUDA, VHDL

e Make the generated Ada code SPARK-conformant

e Develop CUDA code generation

e Gain experience on larger examples, esp. in collaboration with
the Flex project at Kestrel

© 2017 Rockwell Collins. All rights reserved.

20

