BEDROCK

Systems Inc

Veritying C++ at Scale

Gregory Malecha

BedRock Systems, Inc

BEDROCK

Systems Inc

Systems
Veritying ¢ ~+ at Scale

Gregory Malecha

BedRock Systems, Inc

Scaling to...

(Many dimensions of scale)

BEDROCK

Systems Inc

Mainstream Languages
Everyday developers
Heterogeneous code-bases

Boring problems

Difficult problems

» Mainstream Languages

Scaling to...

(Many dimensions of scale)

BEDROCK

Systems Inc

Making Verification Mainstream

a a
A "Better" Language An Existing Language
Convince mainstream Provide tools to verify
developers to change their software written in existing
|anguage of choice. Mmainstream Ianguages
- Ada - C(several projects)
- Rust - Gt
o \

The future is built on BedRock. BEDROCK

Systems Inc

From C to C++

p

Surface
Complexities

— Parsing
— Type checking
— Overloading

— Syntactic sugar
— constexpr
templates

/ °
Semantic

Challenges

— Value categories
— Memory model
— Side-effects

— Modularity

Some features of C++ are overly complicated.

=> Under-approximate defined behavior.

Classes + Objects

— Constructors

— Destructors

— Inheritance

— Virtual dispatch

Can support more behaviors over time.

The future is built on BedRock.

BEDROCK

Systems Inc

» Everyday developers

Scaling to...

Many dimensions of scale

BEDROCK

Systems Inc

More than bug-free
(Confidence & Composition)

4)
Implementation-level assurance

. Explainability
o« Assurance

"Traditional" value-proposition of

formal methods.

BEDROCK

The future is built on BedRock. Systems Inc

More than bug-free
(Confidence & Composition)

Formal methods as the

science of design.

4 N)
Implementation-level assurance Design-level confidence
. Explainability « Composition
e Assurance . Abstraction
. Encapsulation
"Traditional" value-proposition of
formal methods. N /

BEDROCK

The future is built on BedRock. Systems Inc

More than bug-free
(Confidence & Composition)

e
Implementation-level assurance

. Explainability
o« Assurance

"Traditional" value-proposition of

formal methods.

The future is built on BedRock.

~

Formal methods as the

science of design.

Design-level confidence

. Composition Formal methods must be
. Abstraction more than "testing".

. Encapsulation

BEDROCK

Systems Inc

. . Our language of formal methods
Separation Logic

Separation is inherent in our understanding,
it should be the cornerstone of our reasoning...

BEDROCK

The future is built on BedRock. Systems Inc

What does it look like?

Divide the "world" into disjoint regions.

e Disjointness enables composition
e Implicitly open-world reasoning
o New functions
o New threads
o Dynamic rather than static

Separation transcends the programming
language, equally useful at all levels of the
stack!

Disjoint resources

**

The future is built on BedRock.

Protected
Resources

BEDROCK

Systems Inc

What does it look like?

Divide the "world" into disjoint regions.

e Disjointness enables composition
e Implicitly open-world reasoning
o New functions
o New threads
o Dynamic rather than static

Separation transcends the programming
language, equally useful at all levels of the
stack!

Disjoint resources

Mutex()

Protected
Resources

Encapsulation

Mutex
Protected

atomic<int> Resources

The future is built on BedRock. BEDROCK

Systems Inc

What does it look like?

Divide the "world" into disjoint regions.

e Disjointness enables composition
e Implicitly open-world reasoning
o New functions
o New threads
o Dynamic rather than static

Separation transcends the programming
language, equally useful at all levels of the
stack!

Disjoint resources

Mutex()

Protected
Resources

Encapsulation

Mutex
Protected

atomic<int> Resources

acquire()

Mutex
L Protected

atomic<int> Resources

The future is built on BedRock. BEDROCK

Systems Inc

What does it look like?

Divide the "world" into disjoint regions.

e Disjointness enables composition
e Implicitly open-world reasoning
o New functions
o New threads
o Dynamic rather than static

Separation transcends the programming
language, equally useful at all levels of the
stack!

Disjoint resources

Mutex()

Protected
Resources

Encapsulation

Mutex
Protected

atomic<int> Resources

acquire()

Mutex
Protected
atomic<int> Resources

release()

Mutex

Protected
atomic<int> Resources

BEDROCK

The future is built on BedRock. Systems Inc

"The specification makes the problem a

Experlences lot clearer." ~VMM Developer

(clear focus on core problem)

Mediating access to guest memory, races between HW,

software instruction emulation, virtual devices, et.al.

- VMM guest memory management

Formal methods provides a
lens for evaluating designs,
and finding alternatives.
BEDROCK

The future is built on BedRock. Systems Inc

"The specification makes the problem a

Experlences lot clearer." ~VMM Developer

(clear focus on core problem)

Mediating access to guest memory, races between HW,

software instruction emulation, virtual devices, et.al.

VMM guest memory management

ACLs for network traffic Generalized the code-architecture of rules.
Simpler user-facing model and easier to extend.

Console multiplexer
Clarify the protocol between the control- and data-"planes".
(reusable abstraction)

Driver architecture

Better understanding of the design space allowed us to Formal methods provides a

lens for evaluating designs,
and finding alternatives.

iron out generic specifications and evaluate alternatives.

BEDROCK

The future is built on BedRock. Systems Inc

FM and "Best Practice"” Tend to Agree

("better" code is easier to specify/understand)

constructor

e Easy explanation of move vs copy
semantics this |-> anyR cls

that |-> ClsR m
this |-> ClsR m

that does not

constructor

this |-> anyR cls

that |-> ClsR m | thatislost
this [-> ClsR m (only destructable)

** 3 m', that |-> ClsR m'

BEDROCK

Systems Inc

The future is built on BedRock.

FM and "Best Practice"” Tend to Agree

("better" code is easier to specify/understand)

e Easy explanation of move vs copy
semantics

e Don'treturn pointers/references to

(certain) internal data

e Avoid duplicate information

o Potential for Inconsistent views
o Atomic update is difficult / expensive

e A function should only work at one
level of abstraction

o Huge layering improvements

e Mutation is (often) not necessary

constructor

this |[-> anyR
that |-> ClsR
this |-> ClsR m

that does not
i change

that |-> ClsR

constructor
this |-> anyR

cls

that |-> ClsR m

this |-> ClsR

m

that is lost
(only destructable)

** 3 m', that |-> ClsR m'

The future is built on BedRock.

BEDROCK

Systems Inc

Sca I] ng to- X » Heterogeneous code-bases

Many dimensions of scale

BEDROCK

Systems Inc

Verification target
(Heterogeneous & modular)

System built from many components

- Separate verification

- Significant code & proof re-use

- More than just C++

- Assembly (x86, ARM, ...)

Hardware devices
Guest code

<

|
Guest

Applications are isolated and
can work in the presence of
untrusted applications

/
vETH
Switch

BRHV Userspace

Devs

NOVA (microhypervisor)

=

asm
<

The future is built on BedRock.

BEDROCK

Systems Inc

Scaling to...

Many dimensions of scale » Boring problems

BEDROCK

Systems Inc

Easy Problems,

Easy Solutions
(patterns & automation)

Formal methods are pedantic in nature.

Proofs done in complete detail

Precise about everything

Reduce "boilerplate”

Ensure that the easy things are easy

Leverage the language

Fall back on the proof assistant

Specification Generators

-> (Getters/ setters
= Default operations
= Simple structures

Customizable Automation

= Common patterns
= Domain-specific
automation

The future is built on BedRock.

BEDROCK

Systems Inc

Scaling to...

Many dimensions of scale

» Difficult problems

BEDROCK

Systems Inc

Hard Problems...

~

Hardware devices
Page tables

TLBs
Concurrency
Weak memory

/VVVVV\

)

BEDROCK

The future is built on BedRock. Systems Inc

Hard Problems...

Possible Solutions
(expressivity & patterns)

Fancy updates, step indexing, etc \
Advanced (generic) features » Hardware devices
Encapsulate complexity seinemEeslloehe | . Page tables
» T[LBs

Abstract common patterns

. . Concurrency
Provide automation
(when possible) Leverage extensible automation eak memOl’y /

General-purpose modeling
language

Benefit of working in a general

purpose proof assistant

The future is built on BedRock. BEDROCK

Systems Inc

Scaling to...

(Many dimensions of scale)

BEDROCK

Systems Inc

Mainstream Languages
Everyday developers
Heterogeneous code-bases

Boring problems

Difficult problems

