Verifying Timing-Centric
Software Systems

Sanjit A. Seshia

EECS Department
UC Berkeley

Students: Jon Kotker, Dorsa Sadigh,
Sagar Jain, Min Xu, Andrew Chan, Lisa Yan
Collaborators: A. Rakhlin
Funding Sources: NSF, MuSyC, Industry sponsors

May 2011

Timing Analysis Is Central to Correctness
of Cyber-Physical Systems

Does the brake-by-wire software
always actuate the brakes within
1 ms?

Can the pacemaker software
trigger a pace more frequently
than prescribed?

S. A. Seshia

Several Timing Analysis Problems

Worst-case execution time (WCET) estimation
Estimating distribution of execution times

Threshold property: produce a test case that
causes a program to violate its deadline

Software-in-the-loop simulation: predict
execution time of particular program path

ALL involve predicting timing for
some/all executions of a program!

S. A. Seshia

What'’s Hard about Timing Analysis

=)

PROGRAM

Timing
Analysis
Tool

Timing estimate
(e.g. worst case)

UNDECIDABLE PROBLEM!

However: Only need to consider terminating programs
» statically-known bounds on loop iterations, recursion depth

S. A. Seshia

—4—

Example of Software Task

altitude_control_task() from implementation of software
controller of “Paparazzi UAV”

main.c:

switch(.) {
case 0O: ..
|altitude_control_task(m);|

while(l) {

periodic_task(.);

| T

void altitude control task(void) {
if (pprz_mode == PPRZ_ MODE_ AUTO2
|| pprz _mode == PPRZ MODE HOME) {

if (vertical mode == VERTICAL MODE AUTO ALT) {

/* inlined below: function altitude pid run(); =*/
float err = estimator z - desired altitude;
desired climb = pre climb + altitude pgailn x err;
if (desired climb < -CLIMB MAX)

desired climb = -CLIMB MAX;
if (desired climb > CLIMB_MAX)
desired climb = CLIMB MAX;

b
S. A. Seshia

What'’s Hard about Timing Analysis

Timing
Analysis
Tool

TERMINATING
PROGRAM

Timing estimate
(e.g. worst case)

Program timing depends HEAVILY on the program'’s
environment (platform): processor, memory hierarchy,
operating system, network, 1/O devices, ...

S. A. Seshia

Outline

m Challenge: Platform (Environment) Modeling

m The GameTime Approach: Learning Program-
Specific Environment Model

m Conclusion and Future Directions

S. A. Seshia

Simplifying the Problem

m Program = Sequential,
terminating program

® Runs uninterrupted

m Environment =
Single-core Processor +
Instruction/Data Cache

S. A. Seshia

Simple lllustrative Program

while(1flag)
{

flag=1l; (*xX)++;

flag = 1;
(X)) ++;
}

*X += 2;

X
o
CFG unrolled
to a DAG

Control-flow graph
(loop bound = 1)

S. A. Seshia

Simple lllustrative Program

On a processor
with a data cache

CFG unrolled

S. A. Seshia to a DAG

Simple lllustrative Program

On a processor
with a data cache

Case 1:
X Is originally

INn cache

CFG unrolled

S. A. Seshia to a DAG

Simple lllustrative Program

On a processor
with a data cache

Case 2:

X IS NOT
originally in
cache

cache miss

CFG unrolled

S. A. Seshia to a DAG

Challenge of Timing Analysis

On a processor
with a data
cache

| x

CFG unrolled

S. A. Seshia to a DAG

Timing of an edge (basic
block) depends on:

e Path it lies on

e [nitial platform state

Challenges:

« Exponential number of
paths and platform states!
 Lack of visibility into
platform state

Current State-of-the-art for
Timing Analysis

m Program = Sequential,
terminating program

® Runs uninterrupted

PROBLEM:

l Takes several man-

months to construct!

Also: limited to
extreme-case analysis

m Environment =
Single-core Processor +
Instruction/Data Cache

Timing Model

S. A. Seshia

Existing Approaches: One-size-fits-all?

= Why construct a
SINGLE timing model
for ALL programs?

= We are only interested
In analyzing a specific
program.

= Why not automatically
Infer a program-
specific timing model?

S. A. Seshia

Outline

s Challenge: Platform (Environment) Modeling

m The GameTime Approach: Learning Program-
Specific Environment Model

m Conclusion and Future Directions

S. A. Seshia

Our Approach and Contributions
[ICCAD '08, ACM TECS]

Model the estimation problem as a Game
— Tool vs. Platform

m Measurement-based, but minimal instrumentation

— Perform end-to-end measurements of selected
(linearly many) paths on platform

m Learn Environment Model
— Automatically learn a program-specific model of
platform’s behavior
m Online, randomized algorithm: GameTime
— Theoretical guarantee: can find WCET with arbitrarily
high probability under some assumptions

m Uses satisfiability modulo theories (SMT) solvers

for test generation 17—
S. A. Seshia

The GameTime Approach: Overview

Game-Theoretic Online Learning +
Satisfiability Solving Modulo Theories (SMT)

| LEARNING
UULER A\ | GORITHM

AV

MEASURE 1

PROGRAM CONTROL-FLOW EXECUTION
GRAPH TIMES PREDICT

TIMING
PROPERTIES

SMT SOLVER GENERATES (worst-case,
TEST INPUTS distribution,etc.)

EXTRACT BASIS PATHS

Publication: S. A. Seshia and A. Rakhlin, “Quantitative Analysis of Systems Using
s A Sesh@me-Theoretic Learning”, ACM Trans. Embedded Computing Systems. - 18 -

The Game Formulation

m Challenge: Exponentially many program paths and
platform states, lack of visibility

m Model as a 2-player Game: Tool vs. Platform
— Program paths controlled by tool

— Platform states uncontrollable (controlled by
adversary)

s Problems:
— How to select paths?
— What is the platform model and how do we learn it?

—-19 —
S. A. Seshia

Search Space = Paths
{

FonctionCall()

vold altitude control task(void)

—> if (pprz mode == PPRZ MODE AUTO2
|| pprz _mode == PPRZ MODE HOME) {
—>if (vertical mode == VERTICAL MODE AUTO ALT) ({

/* inlined below: function altitude pid run(); =/
float err = estimator z - desired altitude;
ppiz_mode = 2) desired climb = pre climb + altitude pgain x err;
if (desired climb < -CLIMB MAX)
desired climb = -CLIMB MAX;
> if (desired climb > CLIMB_MAX)
\ desired climb = CLIMB MAX;
b

(ern = exaimator_z - desired_alimde;
desired climb = pre_climb + altitude_pgain * en;)

Must find:
< a Longest path in the CFG

{ppre_mode 1= 3y

veltical_mode = 3)

Only deal with control-dependent
timing

Data-dependence: paths = inputs

—20-—

A Path is a Vector x € {0,1}™

(m = #edges)

x1=(1,1,1,0,0,1,1,0,0,1)

x2=(1,0,0,1,1,0,0,1,1,1)
x3 =(1,1,1,0,0,0,0,1,1,1)

x4 =(1,0,0,1,1,1,1,0,0,1)

Insight:
Only need to sample

a Basis
of the space of paths

Basis Paths

S. A. Seshia

xl =(1,1,1,0,0,1,1,0,0,1)

x2=(1,0,0,1,1,0,0,1,1,1)

x3 =(1,1,1,0,0,0,0,1,1,1)

x4 =(1,0,0,1,1,1,1,0,0,1)

x4=x]+x2—%x3

#(basis paths)
<m

Useful to compute
certain special
bases called
“barycentric
spanners”

Platform Model

m Adversary picks
weights for CFG
edges Iin two stages

m Important: weights
are path-dependent

S. A. Seshia

Platform Model

Models path-independent timing

~

Weights on edges of unrolled CFG

&
Path-specific perturbation

/7

Models path-dependent timing

S. A. Seshia

Formalizing Repeatable Timing

Path Dependence

m =0

|| <K
s |En]] < pmu

Platform Starting State Dependence

m W Independent of starting state (too strong!)

= W fixed, starting from known state

m W selected adversarially (see ACM TECS paper)

S. A. Seshia

Platform Model: Summary

The platform is an adversary picking edge weights

Weights on edges of unrolled CFG w € RM
&

Path-specific perturbation n € RM

Time taken by path xis x . (w + n)

S. A. Seshia

Timing Analysis Game (Our Model)

Played over several roundst=1, 2, 3, ..., 1

At each round t:

Tool Platform
picks X, picks w; (= w)

Platform picks m(x,)

v (-1,-1, -1, -1)

Tool observes I, = x, - (w, + w,) (5+7+1+11) - 4 = 20

At round t : Tool makes prediction (longest path x*)

Theorem about Estimating Distribution
(pictorial view)

[8]
=
==
b
S
—
<
i
2
p—
—
—
—
f—l
p—

Mean Perturbation
Assumption: V x € Paths

| BIX.]| < Hopa

path length & 1S O(D pyay) W. high prob.

S. A. Seshia

GameTime Algorithm: Intuition

Suppose we knew w, + z, for all t
Then, calculate x™ = argmax

max,, . X - (W, +)

X € Paths

ldea: Estimate w, + &, to sufficiently high accuracy
Problem: At any time t, we only see |,

Two design decisions in GameTime:

— How to pick x; ?
Choose a “basis path” uniformly at random

How to estimate w, + =, from |, ?
Perform “least squares estimation”

S. A. Seshia

Summary of Experimental Results
(detalls in ICCAD’08, ACM TECS papers)

m GameTime is Efficient
— E.g.: 7 x 10 total paths vs. < 200 basis paths

Sampling basis paths tells us about longer paths
we do not sample

— Found paths 25% longer than sampled basis
GameTime can accurately estimate the distribution
of execution times with few measurements

— Measure basis paths, predict other paths

GameTime does better than Random Testing
— Found estimates twice as large

m GameTime can even find larger WCET estimates

than conservative WCET estimation tools

—-31 -
S. A. Seshia

Estimating the Distribution: Modular Exponentiation
with 8-bit exponent — predict 256 paths from measuring

Q hasishath

Fredicted distribution of path lengths for moedexp

For StrongARM .

s | processor |
g F N 5 n

: LR

£ o4l !I‘

0 - : : : : :
160 1556 1600 1656 1700 1750 1800

S. Fredicted execulien ime (cyele count) —32-

Estimating the Distribution: Modular Exponentiation:
predictions in blue, actual 256 measurements in red

Fredicted and measured distnbubiong of path lengthe for modexp

Predicted —e—
For StrongARM Measured —w—
processor

1500 1550 1800 1850 1700 1750 1800
Executien time (eycle count}

GameTime’s Accuracy: Different

Starting Platform States

Actual
2200
2100
—#—State 0
2000 State 1
State 2
[
1900
=>=State 3 Error A)
e 4
1800 State 4
* o
State 5 =2 i
¢ 3 = F-;l
1700 =—State 6 1 1\ —&#—State |
State7 | 2 =0 | \ & State
1600 f i \ \ "
State 8 \ State .
z 1 i‘\\ %\\ |
1500 - T T T fo—na | o =—=State .
o 4 R AN i
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 =T i — i st o ==SGtate
s
. 0 2 4 6 \ 8 10 12 14 |16 18“20 22 24 st 23“30 State !
L r"" ——State |
a L L
Predicted , _ ¥ o o State’
2200 | | \ & State:
3 " 4
2100 y
=—&—State 0
2000 == State 1
-~ State 2
1900 = -

=—>&=State 3

-, Error = |Actual — Predicted|
St:t:? ACtuaI

1600
State 8

1500

Conclusions

m Timing analysis important for cyber-physical
systems

m Environment modeling is the hard part
— Current methods too tedious and error-prone

m GameTime: Automatic model generation

— Active learning from measurements
— SMT-based basis path testing (a form of coverage)

m Future work

— Concurrent software: interrupts, multitasking, etc.
(see NASA’s Toyota UA report)

— Data-dependent timing

— Other quantitative analysis problems (e.g. predicting

energy consumption)

S. A. Seshia —3-

