
Secure Device Design
via Protocol Analysis
By means of an example

Joshua D. Guttman John D. Ramsdell

High Assurance Software and Systems

Version of May 8, 2023

HCSS ’23
1 / 22

Example: Cryptographically Assured Information Flow

Secure reprogrammable devices Even remotely
▶ End Cryptographic Units, Key loaders, Enterprise Mgt.

Reprogrammable counts because:
▶ Asymmetric algs may change Digital Signatures

e.g. in response to quantum threat
▶ Application-level crypto too ciphers + hashes
▶ Other code may evolve Key mgt

Minimal hardware to ensure
we control our programs and keys on device

Adapted from Trusted Execution Environments

HCSS ’23
2 / 22

Adversary model for secure reprogrammability

If we can reprogram it,
maybe the adversary can too?

Goals preserved even if adversary:
▶ installs malicious software on my devices

or modifies my software maliciously

Must assure:
▶ My data delivered only to my programs confidentiality
▶ My programs act only on my data integrity

Payoff for:
▶ End Cryptographic Units, Data Transfer Devices, Enterprise mgt

HCSS ’23
3 / 22

CAIF mechanism: Services

Services are programs with
▶ Isolated address space
▶ Unchanging executable code segment
▶ Hash of code segment is service identity

CAIF mechanism maintains hash of code segment

CAIF uses code hash for:
▶ Provenance:

Who prepared this data for me?

▶ Protection:

Who can receive this data from me?

HCSS ’23
4 / 22

CAIF mechanism: Instructions

Two pairs of instructions
to control flow between services

as identified by code hash

For protection + provenance:
▶ protect-for and retrieve-from

Symmetric authenticated encryption

For provenance:
▶ attest-locally and check-attest

Message Authentication Codes

Focus: protect-for / retrieve-from

HCSS ’23
5 / 22

Instruction pair: protect-for / retrieve-from

prot-for v, dh encrypt {| v |}k sh :=caif ch(current)

rtr-from {| v |}k, sh decrypt v dh :=caif ch(current)

Device has a (purely local) intrinsic secret IS

Keys derived via IS, current service and intended peer
each identified by code hash ch(svc)

k = kdf("pf", IS, sh, dh)

HCSS ’23
6 / 22

Core questions
For a CAIF device d

Local to d: Can a service svc on d determine local service

1 src as source of data value v
2 dst as sole destination of data value v

Yes, by construction of protect-for / retrieve-from

Remote from d: Can principal not on d determine
a service svc on d as the

1 source of incoming value v
2 sole destination of outgoing value v

“Assured remote execution” by svc on d

More challenging: Requires device-rooted protocol analysis

HCSS ’23
7 / 22

Core questions
For a CAIF device d

Local to d: Can a service svc on d determine local service

1 src as source of data value v
2 dst as sole destination of data value v

Yes, by construction of protect-for / retrieve-from

Remote from d: Can principal not on d determine
a service svc on d as the

1 source of incoming value v
2 sole destination of outgoing value v

“Assured remote execution” by svc on d

More challenging: Requires device-rooted protocol analysis

HCSS ’23
7 / 22

Core questions
For a CAIF device d

Local to d: Can a service svc on d determine local service

1 src as source of data value v
2 dst as sole destination of data value v

Yes, by construction of protect-for / retrieve-from

Remote from d: Can principal not on d determine
a service svc on d as the

1 source of incoming value v
2 sole destination of outgoing value v

“Assured remote execution” by svc on d

More challenging: Requires device-rooted protocol analysis
despite an adversary that can run programs

HCSS ’23
7 / 22

Anchor for assured remote execution method

Via shared secret key ks
Assumption 1: Each device has a distinct, publicly known

▶ Immutable ID imid

Assumption 2: We can once at factory?
▶ Run a known anchor program anc on device
▶ Deliver a shared secret r securely
▶ Compute ks = kdf("c1", r, imid)

HCSS ’23
8 / 22

Run Anchor initially
At start in safe environment

Run “anchor” program anc on device, that does:
▶ Receive ⟨imid, sh, dh, r, n0⟩
▶ Warn unless (i) imid is mine, (ii) sh = ch(anc)
▶ Let

ks = kdf("c1", r, imid)

▶ Execute prot-for ks, dh
▶ Send confirmation n0

Hence:

if any service svc gets ks on device
then dh = ch(svc)

Mgt chooses one program to use ks

But: What should that program do with ks?

HCSS ’23
9 / 22

Where anchor key ks goes to
Protocol analysis with CPSA shows (1):

HCSS ’23
10 / 22

Run Anchor initially
At start in safe environment

Run “anchor” program anc on device, that does:
▶ Receive ⟨imid, sh, dh, r, n0⟩
▶ Warn unless (i) imid is mine, (ii) sh = ch(anc)
▶ Let

ks = kdf("c1", r, imid)

▶ Execute prot-for ks, dh
▶ Send confirmation n0

Hence:

if any service svc gets ks on device
then dh = ch(svc)

Mgt chooses one program to use ks

But: What should that program do with ks?

HCSS ’23
11 / 22

Distributor program dtr
Use ks to derive new per-service keys

Distributor dtr, with ch(dtr) = dtrh, when run:
▶ Retrieves ks from anchor
▶ Receives msg of form

{| imid, (h, dtrh, ch(anc)), . . . |}ks

▶ Sets kh = kdf("c2", ks, h)
▶ Protects kh for h
▶ Exits, forgetting kh

For every svc:
kch(svc) is a shared secret between infrastructure with ks and
svc on device d

(h, dtrh, ch(anc)) is a trust chain

HCSS ’23
12 / 22

Distributor program dtr
Use ks to derive new per-service keys

Distributor dtr, with ch(dtr) = dtrh, when run:
▶ Retrieves ks from anchor
▶ Receives msg of form

{| imid, (h, dtrh, ch(anc)), . . . |}ks

▶ Sets kh = kdf("c2", ks, h)
▶ Protects kh for h
▶ Exits, forgetting kh

For every svc:
kch(svc) is a shared secret between infrastructure with ks and
svc on device d

(h, dtrh, ch(anc)) is a trust chain

HCSS ’23
12 / 22

Where distributor command comes from
Protocol analysis with CPSA shows (2):

HCSS ’23
13 / 22

Testing an action keyed by distributor
Protocol analysis with CPSA shows (3):

HCSS ’23
14 / 22

Testing an action keyed by distributor (supplement)
Protocol analysis shows with CPSA (3):

HCSS ’23
15 / 22

Setting up trustworthy digital signatures
Distributor passes secret K0 to service SigGen

Setup phase:
▶ Generate signature key pair (sk, vk) Protect sk for myself
▶ Prove possession of sk and K0

{| [[. . . , ch(SigGen), vk, . . .]]sk |}K0

▶ Receive cert associating ch(SigGen) and vk on imid

[[. . . , imid, ch(SigGen), vk, . . .]]CA

Usage phase, for target service t:
▶ Generate signature key pair tsk, tvk
▶ Protect tsk for ch(t) Retrieve sk
▶ Send cert associating ch(t) and tvk on imid

[[. . . imid, ch(t), tvk . . .]]sk

HCSS ’23
16 / 22

How to do this wrong
Against a powerful adversary that can run code on device

HCSS ’23
17 / 22

Setting up trustworthy digital signatures
Distributor passes secret K0 to service SigGen

Setup phase:
▶ Generate signature key pair (sk, vk) Protect sk for myself
▶ Prove possession of sk and K0

{| [[. . . , ch(SigGen), trust-ch, vk, . . .]]sk |}K0

▶ Receive cert associating ch(SigGen) and vk on imid

[[. . . , imid, ch(SigGen), trust-ch, vk, . . .]]CA

Usage phase, for target service t:
▶ Generate signature key pair tsk, tvk
▶ Protect tsk for ch(t) Retrieve sk
▶ Send cert associating ch(t) and tvk on imid

[[. . . imid, ch(t), trust-ch, tvk . . .]]sk

HCSS ’23
18 / 22

Adversary model, 1: Wildcat protect

(defrole wildcat-protect
. . .
(trace

(load lis (is-entry d is))
(recv val)
. . .
(stor loc (cat d (prot-for val (mem-key is srch dsth))))))

Wildcat-protect instances are subject to an axiom:

Axiom

If an instance of wildcat-protect uses a srch

Then, for that srch, not(compliant(srch))

HCSS ’23
19 / 22

Adversary model, 2: Wildcat retrieve

(defrole wildcat-retrieve
. . .
(trace

(load lis (is-entry d is))
(load loc (cat d (prot-for val (mem-key is srch dsth))))
(send val)))

Wildcat-retrieve instances are subject to an axiom:

Axiom

If an instance of wildcat-retrieve uses a dsth

Then, for that dsth, not(compliant(dsth))

HCSS ’23
20 / 22

Subliminal message

Security protocol analysis
can help solve problems
you may not think of as

security protocols

HCSS ’23
21 / 22

Core questions
For a CAIF device d

Local to d: Can a service svc on d determine local service

1 src as source of data value v
2 dst as sole destination of data value v

Yes, by construction of protect-for / retrieve-from

Remote from d: Can principal not on d determine
a service svc on d as the

1 source of incoming value v
2 sole destination of outgoing value v

“Assured remote execution” by svc on d

More challenging: Requires device-rooted protocol analysis

Protocol analysis enables answers,
about devices facing a powerful adversary

HCSS ’23
22 / 22

