dWs
)

Scalable and Provable
Distributed SAT Solvers

Mike Whalen, Principal Applied Scientist, Automated Reasoning Group

Joint work with
Dawn Michaelson
Dominik Schreiber
Marijn Heule
Ben Kiesl-Reiter




SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Talk Takeaways

SAT solvers are general purpose reasoning engines that can be used for both verification and
optimization purposes.

These solvers are the basis for many of the automated reasoning tools in use today.

Recent work in distributed Clause Sharing Portfolio Solvers has led to dramatic performance
improvements over state-of-the-art sequential SAT solvers.

We have created a scalable approach for proofs for distributed solvers to ensure the correctness of
solver results.

aws

N ~) © 2023, Amazon Web Services, Inc. or its affiliates.



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

What is SAT?

Boolean satisfiability: Assign true/false to
variables to make formula true

Some formulas don’t have such an
assignment

“standard” representation uses numbers for
variables

aws

N ~) © 2023, Amazon Web Services, Inc. . or its affi iliates.

(QV=ab)A(aVcV —d)

a=T,b=T,c=Fd=F

—aA(aVvV-ab)A(aVb)

(QV=ab)A(aVcV —d)




SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

SAT Solvers

Learn extra clauses to simplify search---
prune search space

Problem is unsatisfiable if the empty
clause is learned

aws

N ~) © 2023, Amazon Web Services, Inc. or its affiliates.




S
SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS @ 7

aws

N ~) © 2023, Amazon Web Services, Inc. or its affiliates.



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

The Utility of SAT

exploit
generation

Ol0kd 1
0000
0000

term rewriting
termination

BUG

formal verification

aws

N ~) © 2023, Amazon Web Services,

, Inc. or its affiliates.

Graph Theory

planning and
scheduling

Reachability / cliques

Keller’s tiling conjecture



o000 RSAKeyring.dfy — src

£ Main.dfy = RSAKeyring.dfy X

SDK > Keyring = RSAKeyring.dfy

hod OnEncrypt(encMat:
requires Valid()

go requires encMat.valid()
a7 ensures Valid()
ensures res.Success? ==> res.value.Valid() I
@ ensures res.Success? ==> res.value.algorithmSuiteID == encMat.algévithmSuiteID
ensures res.Success? & old(encMat.plaintextDataKey.Some?) ==> res.value.plaintex.
ensures enc_key.None? ==> res.Failure?
BZID decreases encMat
{
if enc_key.None? {
res := Failure("Encryption key undefined");
} else {
70 var data_key := encMat.plaintextDataKey;

var alg_id := encMat.algorithmSuiteID;
if data_key.None? {
var k := RNG.GenBvtes(AlaarithmSuite.inout kev lenath(ala id)

MS (69 OUTPU YEBUG CONSO! TERMINAL

:~/Source/aws-encryption-sdk-dafny

() aws/amazon-freertos: loTope: X | () amazon-freertos/ARPAgeCach X (3 Pull request - Marvell SDKR8 = X+
& C @ GitHub, Inc. [US] | github.com/aw:

Pull request - Marvell SDK R8 P2 - August 29 2019 #1163

MarcoMarvell commits into

txt in vendor/ma J w300_rd

Merge branch ‘master’' into master

88 rix hardcoded build path in CMakeLis

pushing to the master branch on MarcoMarvell/famazon-freertos.

° Review required

At least 2 approving rev

Some checks were not successful

2 failing, cted, an: uccessful c

CBMC Batch: lotHttpsClient_AddHeader — CBMC Batch job lotHttpsCli
CBMC Batch: lotHttpsClient_SendSync — CBMC Batch job lotHttpsCl
Build check on Linux Expected — Waiting for status to be reported
Build check on Windows Expected — Waiting for status to be reported
Code style check Expected — ting for status to be reported

Build on Linux (New) — Build finished. 6 tests run, 0 skipped, O failed

Merging is blocked

Learn more.

.EncryptionMaterials) returns (res: Result<Materi

uint16):

Add your review

Hide all checks

Details

Proofs about the AWS

Encryption SDK

Proofs about memor
safety of FreeRTOS

3 pérticipants

ﬁ Lock conversation

ocuments/git/aws—c—common/verification/cbmc/proofs/aws_byte_buf_init_copy_from_cursor/logs/projectl.txt; exit ${PIPESTATUS[®

goto-instrument --remove-function-body aws_default_allocator —-remove-function-body s_cf_allocator_allocate —-remove-function-body

s_cf_allocator_copy_description —-remove-function-body s_cf_allocator_deallocate —-remove-function-body s_cf_allocator_preferred_siz

e ——remove—function-body s_cf_allocator_reallocate remove-function-body s_default_calloc —-remove-function-body s_default_free r
body s_default_malloc —-remove-functi] mww/Documents/git/
rification/cbmc/proofs/aws_byte_buf_i} lgit/aws—c—common/v
c/proofs/aws_byte_buf_init_copy_from_| t/aws—c—common/ver
proofs/aws_byte_buf_init_copy_from_cu
ogram from '/Users/mww/Documents/git/

Proofs about AWS C
Common library

rom_cursor/gotos/p

_default_allocator in goto program
f_allocator_allocate in goto program
f_allocator_copy_description in goto
f_allocator_deallocate in goto progral
. . M€ f_allocator_preferred_size in goto pr®%
function s_cf_allocator_reallocate in goto program
function s_default_calloc in goto program
function s_default_free in goto program
function s_default_malloc in goto program
function s_default_realloc in goto program
function abort in goto program
Writing GOTO program to '/Users/mww/Documents/git/aws—-c—common/verification/cbmc/proofs/aws_byte_buf_init_copy_from_cursor/gotos/pro
ject2.goto"
goto-cc -—function aws_byte_buf_init_copy_from_cursor_harness /Users/mww/Documents/git/aws—c—common/verification/cbmc/proofs/aws_by
te_buf_init_copy_from_cursor/gotos/proof2.goto /Users/mww/Documents/git/aws—c—common/verification/cbmc/proofs/aws_byte_buf_init_copy
_from_cursor/gotos/project2.goto -o /Users/mww/Documents/git/aws—c—-common/verification/cbmc/proofs/aws_byte_buf_init_copy_from_curso
r/gotos/aws_byte_buf_init_copy_from_cursor_harness.cl.goto 2>&1 | tee /Users/mww/Documents/git/aws—c-common/verification/cbmc/proof
s/aws_byte_buf_init_copy_from_cursor/logs/aws_byte_buf_init_copy_from_cursor_harness.cl.txt; exit ${PIPESTATUS[@]1}
goto-instrument /Users/mww/Documents/git/aws—c—common/verification/cbmc/proofs/aws_byte_buf_init_copy_from_cursor/gotos/aws_byte_b
uf_init_copy_from_cursor_harness.cl.goto /Users/mww/Documents/git/aws—c—common/verification/cbmc/proofs/aws_byte_buf_init_copy_from_
cursor/gotos/aws_byte_buf_init_copy_from_cursor_harness.c2.goto 2>&1 | tee /Users/mww/Documents/git/aws—-c—common/verification/cbmc/
proofs/aws_byte_buf_init_copy_from_cursor/logs/aws_byte_buf_init_copy_from_cursor_harness.c2.txt; exit ${PIPESTATUS[@1}
Reading GOTO program from '/Users/mww/Documents/git/aws—c—common/verification/cbmc/proofs/aws_byte_buf_init_copy_from_cursor/gotos/a
ws_byte_buf_init_copy_from_cursor_harness.cl.goto'
Writing GOTO program to '/Users/mww/Documents/git/aws—-c—common/verification/cbmc/proofs/aws_byte_buf_init_copy_from_cursor/gotos/aws
_byte_buf_init_copy_from_cursor_harness.c2.goto
goto-instrument --drop-unused-functions /Users/mww/Documents/git/aws—c—-common/verification/cbmc/proofs/aws_byte_buf_init_copy_from_
cursor/gotos/aws_byte_buf_init_copy_from_cursor_harness.c2.goto /Users/mww/Documents/git/aws-c—-common/verification/cbmc/proofs/aws_b
yte_buf_init_copy_from_cursor/gotos/aws_byte_buf_init_copy_from_cursor_harness.c3.goto 2>&1 | tee /Users/mww/Documents/git/aws-c-co
mmon/verification/cbmec/proofs/aws_byte_buf_init_copy_from_cursor/logs/aws_byte_buf_init_copy_from_cursor_harness.c3.txt; exit ${PIPE

—gpmmon /verification/chme/nronfs/aws hvte buf_init cony from_cursor/antos/a

00

d65f03co

Proofs about networking code
s2n

X@ (rvalue(word 2));

X1 (rvalue(word >

)
4, arm_MOV X2 (rvalue(word 0x1)
4, arm_MADD X2 X0 X1 X2;
4, arm_MUL X0 ) RS
4, arm_MADD X1 X2 X1 X1;
arm_MUL X2 X0 X0;

arm_MADD X1 X@ X1 X1;
arm_MUL X0 X2 X2,
arm_MADD X1 X2 X1 X1;
arm_MADD X0 X@ X1 X1

let WORD_NEGMODINV_EXEC ARM_MK_EXEC word_negmodinv_as
8 (* Lemmas about the initial bit hacking to get the o
8 (* If a is odd, then x = (a a<<2) xor 2 is good S -

let WORD_NEGMODINV_SEED_LEMMA prove




SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Scaling Proof Engines
L A ' e

Overnight

aws
~—

© 2023, Amazon

Web Services,

nc. or its affiliates.

Coffee

Squiggle *



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Scaling Proof Engines

Overnight

aws
~—

© 2023, Amazon

Web Sen

vices, Inc. or its affiliates.

Coffee



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Scaling Proof Engines

aws

N

Computer Scientists Attempt to Corner
the Collatz Conjecture

10



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

SAT Scalability

Mid 90s: thousands of clauses & variables

In 2020: millions of clauses & variables

aws

N ~) © 2023, Amazon Web Services, Inc. . or its affi iliates.



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

SAT Scalability

TeChniqUes fOr Searching fOr Results on the SC2020 Benchmark Suite
answers improve over time

—=o— kissat-2020
—&— maple-lcm-disc-cb-dI-v3-2019
—=&2— maple-lcm-dist-cb-2018
—a&— maple-lcm-dist-2017
—4— maple-comsps-drup-2016
—6— lingeling-2014
—#—— abcdsat-2015

lingeling-2013
—+— glucose-2012

glucose-2011

This graph describes the winning
solver for each of the last 20 years,
running on the same problems on e

the same hardware. ot =lEE

—@&— limmat-2002

cryptominisat-2010
—l— precosat-2009
—H&— minisat-2008

berkmin-2003

0
(O]
O
=
(g}
=
7]
=
o
(D]
=
Q
(2]}

Benchmark suite contains 400 — s
prOblemS. wallclock time

aws

N ~) © 2023, Amazon Web Services, Inc. or its affiliates. 12



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Distributed SAT Solvers

Distributed SAT solvers run multiple
instances that work together

Still a new and improving technology

~30x faster than best sequential
solver

aws

N

Results on the SC2020 Benchmark Suite

71 @ mallob-mono-21-hc
| ® mallob-mono-20

—o— kissat-2020

—e— maple-lem-cb-dl-v3-2019
—a—maple-lem-cb-2018
—e—maple-lem-2017

—— maple-comsps-drup-2016
——lingeling-2014

n
fob)
Q
a
o]
+~
n
§=
o)
)
2
@)
wn

—e— limmat-2002

wallclock time

© 2023, Amazon Web Services, Inc. or its affiliates. 13



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Distributed SAT Solvers

2022 SAT Competition

Distributed and parallel solvers
improving more quickly than
sequential solvers

2020-22: Distributed solver
improvement: 56%

—~
—
—

=
N
<)
()
s
<
-~
N
|
.-
—
i
.-
g
=

Sequential solver improvement:
18%

600 800 1,000

wallclock time

aws

N ~) © 2023, Amazon Web Services, Inc. or its affiliates. 14



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Using Distributed Solvers

Imagine a distributed
SAT solver proves the
Collatz Conjecture

This means the solver
derives UNSAT for the

negation of the conjecture

Fame! Glory!!
Accolades!!!

But are we absolutely sure

of the result?

Computer Scientists Attempt to Corner
the Collatz Conjecture

15



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Trusting Results

aws

N

Although distributed solvers are demonstrably the most powerful tools for
solving hard SAT problems, there is an important caveat: unlike sequential
solvers, current distributed clause-sharing solvers cannot produce proofs of un-
satisfiability. While there has been foundational work in producing proofs for

shared-memory clause-sharing SAT solvers [14] existing approaches are nelther

theoretical problem—for four problems in the 2020 and 2021 SAT competltlons
distributed solvers produced incorrect answers that were not discovered until the
2022 competition because they could not be independently verified.®

Unsatisfiability Proofs for Distributed Clause Sharing SAT Solvers, TACAS 2023

© 2023, Amazon Web Services, Inc. or its affiliates.

16



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Solver Quadrants

Distributed SAT

?7?

Distributed SAT

Solver without

proof

30.4x
Faster

Performance

Sequential Solver

DRAT Proofs

Solver with proof

?7?

Sequential solver

without proof

2.1x Slower

with proof

Trustworthiness

aws
~—

v

© 2023, Amazon Web Services, Inc. or its affiliates.

17



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Sequential Proof Format

Standard format: DRAT Original Problem

=N R

|
NN
>

—— Adding clauses

|_\
I
W

I
|_\
W

Adding
empty clause

|_\
W
I

0
0
0
-1 =3 0
0
0
0
0

|_\
W
TN

aws

N ~) © 2023, Amazon Web Services, Inc. . or its affi iliates.



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Distributed Solvers

Multiple solver instances running in
parallel on same problem

Share learned clauses

aws

N

© 2023, Amazon Web Services, Inc. or its

affiliates.




SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Distributed Solver Proof Challenges

aws

N ~) © 2023, Amazon Web Services, Inc. or its affiliates.

Each solver produces a sequential

proof with only its own clauses

UN
SAT

20



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Combining Proofs

 Need dependency order of clauses between solvers

« Need to order clauses from different proofs relative to each other

{\ T
t /'AU/

aws

N ~) © 2023, Amazon Web Services, Inc. . or its affi iliates.

21



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Combining Proofs

 Need dependency order of clauses between solvers

« Need to order clauses from different proofs relative to each other

aws

N ~) © 2023, Amazon Web Services, Inc. . or its affi iliates.

22



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Technical Challenges

* Provide metadata to identify which solver produced each learned clause

« Efficiently sort learned clauses in dependency order across all solvers

« Reduce proof size by removing unnecessary clauses, so that proof can be
efficiently checked.

aws

N ~) © 2023, Amazon Web Services, Inc. . or its affi iliates.

23



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS 1 5
2 6

Sequential Proof Format fl ;

Standard format: DRAT AngthalrFosbiatn LRAT

—— Adding clauses —=

Adding
empty clause

N ~) © 2023, Amazon Web Services, Inc. . or its affi iliates.



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Distributed Clause ID

« Each clause needs unique ID across all instances

 Needs to be unique without communication

 Formula:
o+i+t*k
where
 0: original clauses
* j: currentinstance num

e t: total instances
e k: number of clauses learned in current instance

N ~) © 2023, Amazon Web Services, Inc. or its affiliates

3 Instances
19 Original Clauses

1 2 3
20 21 22
23 pZ 25

25




SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Technical Challenges

* Provide metadata to identify which solver produced each learned clause

= Cross-Solver Unique Clause IDs used by LRAT format.

« Efficiently sort learned clauses in dependency order across all solvers

« Reduce proof size by removing unnecessary clauses, so that proof can be
efficiently checked.

aws

N ~) © 2023, Amazon Web Services, Inc. . or its affi iliates.

26



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Using Epochs to Structure Proof Reconstruction

aws
~—

Assigned clause IDs

Assi

o
o

© 2023, Amazon Web Services, Inc. or its affiliates.

ned clause IDs

No dependencies

Later
WENES
do not
impact
earlier
WENES



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Naive Approach

aws
~—

Because of epochs, could just
merge all proofs together.

However, proofs are HUGE
Mean proof size: 65 GB
Largest proof size: >1 TB

Unreasonably large to check.



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Using Epochs to Structure Proof Reconstruction

™
w

i

!
/
l

Y
X

|-
A
%
rv‘ix'

‘!
’ <
a

}

O
%
X

;"
=

R
)
NV
TR W

€0
L]
I
o]
L]
L]
L]
L
L]

Va)

| I
Val

Va)
Va)
1SN

Assigned clause IDs

aws

N

Removing duplicate requests for
the same clause from multiple
nodes: use same mechanism that
Mallob uses for clause sharing.




SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Using Epochs to Structure Proof Reconstruction

Removing duplicate requests for
the same clause from multiple
nodes: use same mechanism that
Mallob uses for clause sharing.

Mean proof size: 5.5 GB.
8% of Naive approach




SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Technical Challenges

* Provide metadata to identify which solver produced each learned clause
= Cross-solver unique clause IDs used by LRAT format.
« Efficiently sort learned clauses in dependency order across all solvers

= Use the same techniques used to share clauses to share proof dependencies

« Reduce proof size by removing unnecessary clauses, so that proof can be
efficiently checked.

= Work backwards from the empty clause to establish results

N ~) © 2023, Amazon Web Services, Inc. . or its affi iliates. 31



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Solver Quadrants

A
istri ?7?7?
Distributed SAT i Distributed SAT
SEEr el Solver with proof
proof LRAT Proofs + k
Assembly
)
O
c
S 30.4x ?7?
£ Faster
(@)
T
)
a
Sequential Solver DRAT Proofs Sequential solver
without proof 2. 1x Slower with proof

Trustworthiness

aws

NN ~) © 2023, Amazon Web Services, Inc. or its affiliates.



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Experiment

* Run parallel and distributed solvers on SAT-Comp 2022 benchmarks (400
problems)

« Compare against the winners of the SAT-Comp 2022 tracks
= Sequential track — running on mé6i.4xlarge AWS instance w/16 cores, 64GB RAM
= Parallel track - running on m6i.16xlarge AWS instance w/64 cores, 256 GB RAM

= Distributed track — running on 100 * m6i.4xlarge AWS instances

 Track solving time and proof reconstruction time

aws

N ~) © 2023, Amazon Web Services, Inc. . or its affi iliates.

33



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Results:
Solving

Distributed proof solver is
~1.8x slower (median) than
best distributed solver

Distributed proof solver is
~17x faster (median) than
best sequential solver

solved instances

—+——mallob-kicaliglu

—H—mallob-cacld
mallob-cacld-p
parkissat-rs
mallob-capar

——mallob-capar-p (Seq.)
mallob-capar-p (Par.)

—#—mallob-ki
—4a—Kissat _MAB-HyWalk

| !
400 600 800 1,000

wallclock time

ervices, Inc. or its affiliates.

Fastest Distributed
Solver

Distributed solver with
proof

Fastest Parallel Solver

Parallel solver with
Proof

Fastest Sequential
Solver




SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Results: Proof

(Not shown) Average overhead for proof
checking of sequential solver: 1.1x solve time

Average overhead for proof assembly and

postprocessing (proof checking) for distributed
solver: 5.1x solve time

Distributed solver is relatively slower at
performing proofs than sequential solver and
has substantial variance with solving time.

aws
~—

N
_—
-
=
O
o)
O
n
=
o0
-
o r—
3
O
n
-
o)
—
O
©
O
|
0
®)
—
—
d
=

© 2023, Amazon

Dots far away
S - from line:
checking is
expensive!

Dots close to line:
checking is cheap relative
to solving

Baseline: Time to
Solve

Assembly
overhead: ~18x
~— Assembly + proof
oyerhead: ~40x

—
-
W]

Sdlving: 23s
+= assembly: 450s
+= proof: 1030s

p—

-
RN
\

solving+assembly (left) +postprocessing (right)

Web Services, Inc. or its affiliates. 35



SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Solver Quadrants

Distributed SAT
Solver without

Performance

Sequential Solver
without proof

Solve time: 1.8x slower
Check time 9.2x slower

Total: 16.5x slower

Distributed SAT

LRAT Proofs+
Assembly

DRAT Proofs

Solver with proof

Sequential solver

2.1x Slower

with proof

aws
~—

Trustworthiness

v

© 2023, Amazon Web Services, Inc. or its affiliates.

Even though proof checking adds
more overhead than sequential
solving proof checking, the total time
improvement for the distributed
prover is 4x.

We expect to be able to improve
solver performance once more
solvers support LRAT to diversify our
portfolio.

4x Faster
(solving + checking)

We also expect to be able to improve
checker performance using a parallel
post-processor and proof checker.

Near term goal:
10x solving + checking 36




SCALABLE AND PROVABLE DISTRIBUTED SAT SOLVERS

Talk Takeaways

SAT solvers are general purpose reasoning engines that can be used for both verification and
optimization purposes.

These solvers are the basis for most of the automated reasoning tools in use today.

Recent work in distributed Clause Sharing Portfolio Solvers has led to dramatic performance
improvements over state-of-the-art sequential SAT solvers.

We have created a scalable approach for proofs for distributed solvers to ensure the correctness of
solver results.

aws

N ~) © 2023, Amazon Web Services, Inc. or its affiliates.



dWs
~—

Thank you!

Mike Whalen

mww@amazon.com

© 2022, Amazon Web Services, Inc. or its affiliates.

Clause Sharing:

solved instances

Performance on Solving:

Results on the SC2020 Benchmark Suite
—————— @ mallob-mono-21-hc
® mallob-mono-20

N e e s
0 200 400 600 800 1,000

wallclock time

Assigned clause IDs




