
HCSS 03 – April 2003 Page 1Advanced Technology Center

vFaat: von Neumann Formal Analysis 
and Annotation Tool

David Greve 
Dr. Matthew Wilding

Rockwell Collins
Advanced Computing Systems

Cedar Rapids, IA

dagreve@rockwellcollins.com
mmwildin@rockwellcollins.com

April 2003



HCSS 03 – April 2003 Page 2Advanced Technology Center

Overview

� Rockwell Collins History
– Have 10+ years experience in applying Formal Methods

• Have embraced and extended a variety of techniques

� Observations
– Advantages to Accurate Low-Level Models

• Abstraction can be tedious
– Domain knowledge 

• Missing from generic theorem provers
• Can be codified

– Techniques generalize to
• Different Verification Targets
• Different Theorem Provers

� Conclusion
– Judicious use of automation simplifies verification task

• Improve Productivity, Extend Scope

vFaat: A collection of tools and
techniques to help simplify

reasoning about complex systems”



HCSS 03 – April 2003 Page 3Advanced Technology Center

Outline

� Motivating History
� Observations
� Future Directions



HCSS 03 – April 2003 Page 4Advanced Technology Center

RC Formal Methods Projects

� AAMP5/AAMP-FV
� JEM1: Symbolic Simulation
� JEM2: Executable Formal Models
� CAPS: High-Assurance Processor
� AAMP7: Intrinsic Partitioning



HCSS 03 – April 2003 Page 5Advanced Technology Center

AAMP5/AAMP-FV

� Goal
– Demonstrate use of Formal Methods in Industrial Setting

� Project
– Sponsored by NASA Langley
– Used PVS and teamed with SRI
– Abstract representation of instruction execution created
– Functionally described Microarchitecture
– Standard Commuting Diagram Proof

“Formal Verification of the AAMP5 Microprocessor”, NASA Report 1995
“Formal Verification of the AAMP-FV Microcode”, NASA Report 1999



HCSS 03 – April 2003 Page 6Advanced Technology Center

AAMP5/AAMP-FV

� Inspections connected model to implementation
– Found variety of errors in formal specification

� Was there a better way to validate the model?
– Better Integration with design process?

� Verified a number of instructions
– Even found a few bugs

� Brute Force Formalization
– Microcode specified by hand
– “Clock functions” crafted by hand

� Automated microcode specification an obvious next step



HCSS 03 – April 2003 Page 7Advanced Technology Center

JEM1: Symbolic Simulation

� Goals
– Integration of Formal Models into Design Process
– Leverage Automated Analysis
– Detect Microcode Errors (Bug Finding)

� Project
– Specified JEM1 Microarchitecture in PVS
– Used PVS to execute symbolically the model

• Generated Symbolic Results for Microcode Basic Blocks
– Analyzed Symbolic Results as part of Microcode Inspections

“Symbolic Simulation of the JEM1 Microprocessor”, FMCAD-98



HCSS 03 – April 2003 Page 8Advanced Technology Center

JEM1: Symbolic Simulation

� Symbolic Results Difficult to Read
– Good for detecting data-flow errors (Definition/Use)

• Unexpected Side-Effects
• Unexpected Data-Dependencies

� Demonstrated Effective Use of Automation
– Codified knowledge of problem domain

• Control Flow Analysis Dictated Proof Architecture
– Employed Automatic Generation of:

• Function Definitions (uCode)
• Theorems and Theory Structure (Proof Architecture)
• Symbolic Results (batch mode PVS)



HCSS 03 – April 2003 Page 9Advanced Technology Center

JEM2: Executable Formal Models

� Goals
– Integration of Formal Models into Design Process
– Improve Model Validation Technique

• Replace Microcode Simulator with Executable Formal Model

� Project
– Modeled JEM2 in logic of ACL2

• Subset of Common Lisp
– Compiled model to C and linked into GUI development environment

“Efficient Simulation of Formal Processor Models”, FMSD 2002



HCSS 03 – April 2003 Page 10Advanced Technology Center

JEM2: Executable Formal Models

� Impressive Results
– Final simulator ran as fast as original

• No penalty to developers for using formal model
– Successfully executed regression tests

• Guaranteed validity of formal model

� Exposed ACL2 tool limitations
– Model was large and complex
– Is it possible to reason about such models?



HCSS 03 – April 2003 Page 11Advanced Technology Center

CAPS: High-Assurance Processor

� Goals
– Reason about an Executable Formal Model
– Perform Instruction Level Proofs of CAPS processor

� Project
– Modeled Microarchitecture of CAPS in ACL2
– Executed Standard Regression Tests to Validate Model
– Formalized a set of CAPS instructions
– Constructed Instruction Level Proofs

“Evaluatable, High-Assurance Microprocessors”, HCSS-02



HCSS 03 – April 2003 Page 12Advanced Technology Center

CAPS ACL2 uarch
model passes 3-hr

standard CAPS 
regression test!

CAPS Microarchitecture Model

The ACL2 CAPS uarch model 
replaces the C model in the 
CAPS microcode simulator.  
The replacement is not 
observable to users.

High-speed, formal models 
provide for evaluatability

(looks like C, passes regression 
tests, integrated into dev 
process, proofs checked)



HCSS 03 – April 2003 Page 13Advanced Technology Center

CAPS Correctness Theorem

I - CAPS Instruction Set Model
Start state

End stateStart state

End state

M - CAPS Microarchitecture Model

How do we decompose the 
proof of this theorem into 

manageable pieces?



HCSS 03 – April 2003 Page 14Advanced Technology Center

Decomposing the Proof

Microcode sequences can be specified and verified 
in steps.

microcode line

Instruction microcode 
implementation



HCSS 03 – April 2003 Page 15Advanced Technology Center

Decomposing the Proof

Microcode sequences can be specified and verified 
in steps.

microcode line

microcode line spec Instruction microcode 
implementation



HCSS 03 – April 2003 Page 16Advanced Technology Center

Decomposing the Proof

Microcode sequences can be specified and verified 
in steps.

microcode line

microcode line spec

microcode block spec

Instruction microcode 
implementation



HCSS 03 – April 2003 Page 17Advanced Technology Center

Decomposing the Proof

Microcode sequences can be specified and verified 
in steps.

microcode line

microcode line spec

microcode block spec

abstract microcode block spec

Instruction microcode 
implementation



HCSS 03 – April 2003 Page 18Advanced Technology Center

Decomposing the Proof

Microcode sequences can be specified and verified 
in steps.

microcode line

microcode line spec

microcode block spec

abstract microcode block spec

instruction

Instruction microcode 
implementation



HCSS 03 – April 2003 Page 19Advanced Technology Center

Proving the CAPS Correctness Theorem

I - CAPS Instruction Set Model
Start state

End stateStart state

End state

M - CAPS Microarchitecture Model

Single Microcode Line Specs

Abstract Microcode Block Specs

Microcode Block Specs



HCSS 03 – April 2003 Page 20Advanced Technology Center

CAPS: High-Assurance Processor

� Considerable effort expended on EFM reasoning
– ACL2 enhanced to deal efficiently with single threaded expressions

� Techniques to manage complexity
– Proof libraries 

• Bit vectors
– Using low level model to help define abstract model

• Simplifies abstract specification and proof process
– Proof-generating Macros

• Similar to techniques constructed for JEM1 symbolic simulation



HCSS 03 – April 2003 Page 21Advanced Technology Center

AAMP7: Intrinsic Partitioning

� Goals
– Verify Security Properties of AAMP Intrinsic Partitioning Mechanism

� Project
– Formalize Security Property in ACL2
– Formalize Intrinsic Partitioning Functionality

• “Instruction Level” Model
• Linear Address Space

– Prove that Intrinsic Partitioning satisfies Security Property

“High-Assurance Intrinsic Partitioning”, HCSS-03



HCSS 03 – April 2003 Page 22Advanced Technology Center

Linear Address Space Reasoning

ACTIVE

CURRENT



HCSS 03 – April 2003 Page 23Advanced Technology Center

Linear Address Space Reasoning

ACTIVE

CURRENT



HCSS 03 – April 2003 Page 24Advanced Technology Center

AAMP7: Intrinsic Partitioning

� Reasoning about Linear Address Spaces
– Identify orthogonal functionality

• Techniques that scale
• Make explicit for theorem prover

– Could Leverage Data Flow (Definition/Use) Analysis

� Proof Architecture
– Block structured decomposition

• Similar to CAPS work
– Over function boundaries

• Not Microcode blocks



HCSS 03 – April 2003 Page 25Advanced Technology Center

Outline

� Motivating History
� Observations
� Future Directions



HCSS 03 – April 2003 Page 26Advanced Technology Center

Observations

� Advantages to Accurate Low-Level Models
– Model Validation
– Tie to Design Process via Simulation

� Domain knowledge
– Control Flow, Data Flow Analysis
– Can be codified in 3rd party tools

• Results represented in language of theorem prover

� Techniques generalize to
– Different theorem provers (PVS,ACL2)
– Many different processor models
– Different levels of abstraction



HCSS 03 – April 2003 Page 27Advanced Technology Center

Outline

� Motivating History
� Observations
� Future Directions



HCSS 03 – April 2003 Page 28Advanced Technology Center

Future Directions

� Extend techniques to larger, more complex problems
– Additional microprocessors in the AAMP/JEM/CAPS family
– Operating System Kernels
– Mathematical and Cryptographic Libraries
– Virtual Machines

� Enable the use of low-level models
– Model validation
– Avoid trusting or reasoning about compilers/abstractions
– Assembly/micro code is not uncommon in these domains

• Performance
• Access to features unavailable in high-level languages

� Encourage continued industrialization of theorem proving 
technology

– More powerful
– More capable



HCSS 03 – April 2003 Page 29Advanced Technology Center

vFaat: Overview

� Input
– Domain specific: object files, microcode
– Produces device and theorem prover independent representation

� Annotation
– Pre/Post conditions
– Proof Composition

� Analysis
– 3rd party tools automate capture of domain specific knowledge
– Stores results as annotations

� Output
– Generates input for theorem prover
– Isolates 3rd party tools from correctness argument

“A collection of tools and techniques to help
simplify reasoning about complex systems”



HCSS 03 – April 2003 Page 30Advanced Technology Center

Conclusion

� Rockwell Collins History
– Have 10+ years experience in applying Formal Methods

� Observations
– Low Level Models are useful in a variety of domains
– Domain knowledge can be codified and used in theorem provers
– Effective techniques generalize over domains and theorem provers

� Conclusion
– Combining automated analysis and theorem proving

• Improves productivity
• Continues to provide high-assurance results
• Extends the scope of what is currently feasible


