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Overview

� Rockwell Collins History
– Have 10+ years experience in applying Formal Methods

• Have embraced and extended a variety of techniques

� Observations
– Advantages to Accurate Low-Level Models

• Abstraction can be tedious
– Domain knowledge 

• Missing from generic theorem provers
• Can be codified

– Techniques generalize to
• Different Verification Targets
• Different Theorem Provers

� Conclusion
– Judicious use of automation simplifies verification task

• Improve Productivity, Extend Scope

vFaat: A collection of tools and
techniques to help simplify

reasoning about complex systems”
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Outline

� Motivating History
� Observations
� Future Directions
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RC Formal Methods Projects

� AAMP5/AAMP-FV
� JEM1: Symbolic Simulation
� JEM2: Executable Formal Models
� CAPS: High-Assurance Processor
� AAMP7: Intrinsic Partitioning
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AAMP5/AAMP-FV

� Goal
– Demonstrate use of Formal Methods in Industrial Setting

� Project
– Sponsored by NASA Langley
– Used PVS and teamed with SRI
– Abstract representation of instruction execution created
– Functionally described Microarchitecture
– Standard Commuting Diagram Proof

“Formal Verification of the AAMP5 Microprocessor”, NASA Report 1995
“Formal Verification of the AAMP-FV Microcode”, NASA Report 1999
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AAMP5/AAMP-FV

� Inspections connected model to implementation
– Found variety of errors in formal specification

� Was there a better way to validate the model?
– Better Integration with design process?

� Verified a number of instructions
– Even found a few bugs

� Brute Force Formalization
– Microcode specified by hand
– “Clock functions” crafted by hand

� Automated microcode specification an obvious next step
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JEM1: Symbolic Simulation

� Goals
– Integration of Formal Models into Design Process
– Leverage Automated Analysis
– Detect Microcode Errors (Bug Finding)

� Project
– Specified JEM1 Microarchitecture in PVS
– Used PVS to execute symbolically the model

• Generated Symbolic Results for Microcode Basic Blocks
– Analyzed Symbolic Results as part of Microcode Inspections

“Symbolic Simulation of the JEM1 Microprocessor”, FMCAD-98
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JEM1: Symbolic Simulation

� Symbolic Results Difficult to Read
– Good for detecting data-flow errors (Definition/Use)

• Unexpected Side-Effects
• Unexpected Data-Dependencies

� Demonstrated Effective Use of Automation
– Codified knowledge of problem domain

• Control Flow Analysis Dictated Proof Architecture
– Employed Automatic Generation of:

• Function Definitions (uCode)
• Theorems and Theory Structure (Proof Architecture)
• Symbolic Results (batch mode PVS)



HCSS 03 – April 2003 Page 9Advanced Technology Center

JEM2: Executable Formal Models

� Goals
– Integration of Formal Models into Design Process
– Improve Model Validation Technique

• Replace Microcode Simulator with Executable Formal Model

� Project
– Modeled JEM2 in logic of ACL2

• Subset of Common Lisp
– Compiled model to C and linked into GUI development environment

“Efficient Simulation of Formal Processor Models”, FMSD 2002
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JEM2: Executable Formal Models

� Impressive Results
– Final simulator ran as fast as original

• No penalty to developers for using formal model
– Successfully executed regression tests

• Guaranteed validity of formal model

� Exposed ACL2 tool limitations
– Model was large and complex
– Is it possible to reason about such models?
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CAPS: High-Assurance Processor

� Goals
– Reason about an Executable Formal Model
– Perform Instruction Level Proofs of CAPS processor

� Project
– Modeled Microarchitecture of CAPS in ACL2
– Executed Standard Regression Tests to Validate Model
– Formalized a set of CAPS instructions
– Constructed Instruction Level Proofs

“Evaluatable, High-Assurance Microprocessors”, HCSS-02
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CAPS ACL2 uarch
model passes 3-hr

standard CAPS 
regression test!

CAPS Microarchitecture Model

The ACL2 CAPS uarch model 
replaces the C model in the 
CAPS microcode simulator.  
The replacement is not 
observable to users.

High-speed, formal models 
provide for evaluatability

(looks like C, passes regression 
tests, integrated into dev 
process, proofs checked)
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CAPS Correctness Theorem

I - CAPS Instruction Set Model
Start state

End stateStart state

End state

M - CAPS Microarchitecture Model

How do we decompose the 
proof of this theorem into 

manageable pieces?
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Decomposing the Proof

Microcode sequences can be specified and verified 
in steps.

microcode line

Instruction microcode 
implementation
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Decomposing the Proof

Microcode sequences can be specified and verified 
in steps.

microcode line

microcode line spec Instruction microcode 
implementation
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Decomposing the Proof

Microcode sequences can be specified and verified 
in steps.

microcode line

microcode line spec

microcode block spec

Instruction microcode 
implementation
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Decomposing the Proof

Microcode sequences can be specified and verified 
in steps.

microcode line

microcode line spec

microcode block spec

abstract microcode block spec

Instruction microcode 
implementation
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Decomposing the Proof

Microcode sequences can be specified and verified 
in steps.

microcode line

microcode line spec

microcode block spec

abstract microcode block spec

instruction

Instruction microcode 
implementation
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Proving the CAPS Correctness Theorem

I - CAPS Instruction Set Model
Start state

End stateStart state

End state

M - CAPS Microarchitecture Model

Single Microcode Line Specs

Abstract Microcode Block Specs

Microcode Block Specs
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CAPS: High-Assurance Processor

� Considerable effort expended on EFM reasoning
– ACL2 enhanced to deal efficiently with single threaded expressions

� Techniques to manage complexity
– Proof libraries 

• Bit vectors
– Using low level model to help define abstract model

• Simplifies abstract specification and proof process
– Proof-generating Macros

• Similar to techniques constructed for JEM1 symbolic simulation
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AAMP7: Intrinsic Partitioning

� Goals
– Verify Security Properties of AAMP Intrinsic Partitioning Mechanism

� Project
– Formalize Security Property in ACL2
– Formalize Intrinsic Partitioning Functionality

• “Instruction Level” Model
• Linear Address Space

– Prove that Intrinsic Partitioning satisfies Security Property

“High-Assurance Intrinsic Partitioning”, HCSS-03



HCSS 03 – April 2003 Page 22Advanced Technology Center

Linear Address Space Reasoning

ACTIVE

CURRENT
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Linear Address Space Reasoning

ACTIVE

CURRENT
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AAMP7: Intrinsic Partitioning

� Reasoning about Linear Address Spaces
– Identify orthogonal functionality

• Techniques that scale
• Make explicit for theorem prover

– Could Leverage Data Flow (Definition/Use) Analysis

� Proof Architecture
– Block structured decomposition

• Similar to CAPS work
– Over function boundaries

• Not Microcode blocks
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Outline

� Motivating History
� Observations
� Future Directions
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Observations

� Advantages to Accurate Low-Level Models
– Model Validation
– Tie to Design Process via Simulation

� Domain knowledge
– Control Flow, Data Flow Analysis
– Can be codified in 3rd party tools

• Results represented in language of theorem prover

� Techniques generalize to
– Different theorem provers (PVS,ACL2)
– Many different processor models
– Different levels of abstraction
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Outline

� Motivating History
� Observations
� Future Directions
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Future Directions

� Extend techniques to larger, more complex problems
– Additional microprocessors in the AAMP/JEM/CAPS family
– Operating System Kernels
– Mathematical and Cryptographic Libraries
– Virtual Machines

� Enable the use of low-level models
– Model validation
– Avoid trusting or reasoning about compilers/abstractions
– Assembly/micro code is not uncommon in these domains

• Performance
• Access to features unavailable in high-level languages

� Encourage continued industrialization of theorem proving 
technology

– More powerful
– More capable
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vFaat: Overview

� Input
– Domain specific: object files, microcode
– Produces device and theorem prover independent representation

� Annotation
– Pre/Post conditions
– Proof Composition

� Analysis
– 3rd party tools automate capture of domain specific knowledge
– Stores results as annotations

� Output
– Generates input for theorem prover
– Isolates 3rd party tools from correctness argument

“A collection of tools and techniques to help
simplify reasoning about complex systems”
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Conclusion

� Rockwell Collins History
– Have 10+ years experience in applying Formal Methods

� Observations
– Low Level Models are useful in a variety of domains
– Domain knowledge can be codified and used in theorem provers
– Effective techniques generalize over domains and theorem provers

� Conclusion
– Combining automated analysis and theorem proving

• Improves productivity
• Continues to provide high-assurance results
• Extends the scope of what is currently feasible


