vFaat: von Neumann Formal Analysis
and Annotation Tool

David Greve
Dr. Matthew Wilding

Rockwell Collins
Advanced Computing Systems
Cedar Rapids, IA

dagreve@rockwellcollins.com
mmwildin@rockwellcollins.com

April 2003

Advanced Technology Center HCSS 03 — April 2003 Page 1

Overview

® Rockwell Collins History

— Have 10+ years experience in applying Formal Methods
 Have embraced and extended a variety of techniques

® Observations
— Advantages to Accurate Low-Level Models
 Abstraction can be tedious

— Domain knowledge

« Missing from generic theorem provers
« Can be codified

— Techniques generalize to vFaat: A collection of tools and
- Different Verification Targets techniques to help simplify

* Different Theorem Provers reasoning about complex systems”
® Conclusion

— Judicious use of automation simplifies verification task
* Improve Productivity, Extend Scope

Advanced Technology Center HCSS 03 — April 2003 Page 2

Outline

e Motivating History
® Observations
® Future Directions

Advanced Technology Center HCSS 03 - April 2003 Page 3

RC Formal Methods Projects

e AAMPS/AAMP-FV

e JEM1: Symbolic Simulation

e JEM2: Executable Formal Models
® CAPS: High-Assurance Processor
® AAMPY: Intrinsic Partitioning

Advanced Technology Center HCSS 03 — April 2003 Page 4

AAMPS/AAMP-FV

“Formal Verification of the AAMPS Microprocessor”, NASA Report 1995
“Formal Verification of the AAMP-FV Microcode”, NASA Report 1999

e Goal
— Demonstrate use of Formal Methods in Industrial Setting

® Project
— Sponsored by NASA Langley
— Used PVS and teamed with SRI
— Abstract representation of instruction execution created
— Functionally described Microarchitecture
— Standard Commuting Diagram Proof

Advanced Technology Center HCSS 03 — April 2003 Page 5

AAMPS/AAMP-FV

® Inspections connected model to implementation
— Found variety of errors in formal specification

® Was there a better way to validate the model?
— Better Integration with design process?

® Verified a number of instructions
— Even found a few bugs

® Brute Force Formalization

— Microcode specified by hand
— “Clock functions” crafted by hand

e Automated microcode specification an obvious next step

Advanced Technology Center HCSS 03 — April 2003 Page 6

JEM1: Symbolic Simulation

| “Symbolic Simulation of the JEM1 Microprocessor”’, FMCAD-98 |

® Goals

— Integration of Formal Models into Design Process
— Leverage Automated Analysis
— Detect Microcode Errors (Bug Finding)

® Project

— Specified JEM1 Microarchitecture in PVS

— Used PVS to execute symbolically the model
* Generated Symbolic Results for Microcode Basic Blocks

— Analyzed Symbolic Results as part of Microcode Inspections

Advanced Technology Center HCSS 03 — April 2003 Page 7

JEM1: Symbolic Simulation

® Symbolic Results Difficult to Read

— Good for detecting data-flow errors (Definition/Use)
* Unexpected Side-Effects
* Unexpected Data-Dependencies

® Demonstrated Effective Use of Automation

— Codified knowledge of problem domain

« Control Flow Analysis Dictated Proof Architecture
— Employed Automatic Generation of:

* Function Definitions (uCode)

 Theorems and Theory Structure (Proof Architecture)
« Symbolic Results (batch mode PVS)

Advanced Technology Center HCSS 03 — April 2003 Page 8

JEM2: Executable Formal Models

| “Efficient Simulation of Formal Processor Models”, FMSD 2002 |

® Goals

— Integration of Formal Models into Design Process

— Improve Model Validation Technique
* Replace Microcode Simulator with Executable Formal Model

® Project

— Modeled JEM2 in logic of ACL2
* Subset of Common Lisp

— Compiled model to C and linked into GUI development environment

Advanced Technology Center HCSS 03 — April 2003 Page 9

JEM2: Executable Formal Models

® Impressive Results

— Final simulator ran as fast as original
* No penalty to developers for using formal model

— Successfully executed regression tests
* Guaranteed validity of formal model

® Exposed ACL2 tool limitations

— Model was large and complex
— lIs it possible to reason about such models?

Advanced Technology Center HCSS 03 — April 2003 Page 10

CAPS: High-Assurance Processor

| “Evaluatable, High-Assurance Microprocessors”, HCSS-02 |

® Goals

— Reason about an Executable Formal Model
— Perform Instruction Level Proofs of CAPS processor

® Project

— Modeled Microarchitecture of CAPS in ACL2

— Executed Standard Regression Tests to Validate Model
— Formalized a set of CAPS instructions

— Constructed Instruction Level Proofs

Advanced Technology Center HCSS 03 — April 2003 Page 11

CAPS Microarchitecture Model

The ACL2 CAPS uarch model | Lk : TACATE T aE
uoad | Reset | clkCuc | micCus | nmapCuc | backstep | | Refresh | 0 i
- —Current ———— —Previous ————] —uControl — —Status r—ulhstruction Decode—
replaces the C mOdel |n the 54156 0000 7009 54155 0000 7009 uwilR OBz || ZEROD O CONT UATR 05a |F'HMP1 Halted Bus:i Halted | ‘T5Slm’- USIM Instr / Sec 20.0 MHz
52153 0000 0915 52:53 0000 0915 uwPC 05z [[SIGN 1 ZERD
CAPS H d H lat 50151 beef 0109 | (50351 besf 0109 || SAVE 001 ||CARRY 0 | |mav Go | Halt | Resst | Run | Preview | U |
microcoadae simuilator. R3 Q000 (OG0 R3 0000 G000 CONST Q00 | |W16 O R<-A IStep | IStep Ow | BackTrace | History | Mext | Doun |
R2 0000 0022 R2 0000 0022 MIEL 0 Vszi 5¢-0 : =
The replacement is not R R UEE R e [Me Saurce File | [P = ooozde.L
RO 0000 0000 RO 0000 0000 026k O LM 0 BF :
Tdiagl-> — patch MACH,ROM
@ 000 7Rl ||@ 0000 Foel | (010s O IMR O ||mA<gTkz fdiogl-> set 900 33
observable to use rs PAGE 0000 d44% PAGE D000 449 0203 0 SKMT © B{-GTHL #xx% BREAKPOINT OCCURRED sxss
. TOS 0000 7061 TOS 0000 7051 0102 0 PC23 0 dats adr = 0 ESCAPE key pressed
LEMY 0000 7OES LEMY D000 7085 0loz O MODE © NOE LNKO
PC 0000 0430 PC 0000 (43 | (0102 O Lok © EXCLUDE uCycle oy 1500024928160 L00J 200 ns tdt)
Bout besf 01c9 Bout beef 0lc9 0006 O OvR 0 E:ngt: o1 :ig;ggUgl:
Aout 0109 0000 Aout 0109 (OO0 | (0007 0O z i OPC Ca OCC 4 o
Sin 0000 0000 Sin 0000 0000 | 0058 0 cc | B (L = P i 0 E.007009=0000 R [001 300 ns (6t)
Rin 01c3 0000 Rin 01c3 0000 o053 o INTx 00 ||CAP 00 |FM 10 Executed 1 microcycle
Fout 01c9 0000 Fout 01c9 0000 008a O [T MASK FF T CNT O
Bin 01c9 0000 Bin 01c3 0000 Elinea Bl oY 7 INTR 0 HCB 0 £ tOd 1E~90024ﬂ=?960 [00] 200 ns tdt}
HECUTE microcycle
e tipalt Lo fidgs Executed 1 microcycle
0000 0000 301F 3880| BUS:0 HRO:0 HAK:O IR;150a IHi;00 OP;0a DR:01c3 DBW;01c9
S i DEN:O DIF:0 CEF:0 CEN:d1 uCuctl mapi® WD: 0000 RD: 150a Eronutod 1 nicrosusle E.000300=01C3 R [001 300 n= (6t)
; : E.00024B=0915 [00] 200 ns (4t}
Executed 1 microcycle
— xterm -]

0 E,00024C=0900 [007 200 ne (4t}
g| Executed 1 microcycle

Jabhe cvelel =
fcp_ext: set _reset(l)

(FCPzk_UENG_RESET . 0 E,000240=0000 [00] 200 ms (dt)
seq_do_reset() Filter Executed 1 microcycls

FCP2K_CSTORE_LOAD_CS |ACL/Fcp2k2/51‘m;‘* sod

stub: FCP2K_PPROM._LOAD . 0 E.Q0024E=150R [00] 200 ns (4t}
fep_ext: ‘se¥ rese?(ﬂ 5 o Executed 1 microcycle

R o irectories iles Executed 1 microcucle
Stub: :FCPEK,UENG,RESET Executed 1 microcycle
useq: (useq_do_reset() Executed 1 microcycle
fcp_ext: iset_resetdl)
stub: : FCPZK_UENG_RESET 0 E.Q0F061=BEEF W L[00] 500 ns (10t}

Executed 1 microcycle
Executed 1 microcycle

useq: (useq_do_resst()
fop_ext: set_reset{1) ‘sindmen
stub: FCP2K_UEWNG_RESET ‘simdpre

diag_um,sod

seq_do_reset() faindsyn faz0d
stub; : FCPZK_CSTORE_LOAD_CS ‘sinstests gl {Fixrs.sod
stub: : FCP2K_PFROM_LOAD N T T Conmand: ¥
focp_ext: set_reset(0) : b
intfc S Select command file to execute: I
cycle |/Fcp2k2/sﬂ‘m/d1‘ag.sod

cycle = 1000

Ok Filter Cancsl

News for Nerds. Stuff that matters.

Advanced Technology Center HCSS 03 — April 2003 Page 12

CAPS Correctness Theorem

Start state End stat
| - CAPS Instruction Set Model nd state

M - CAPS Microarchitecture Model

Start state End state

Advanced Technology Center HCSS 03 — April 2003 Page 13

Decomposing the Proof

Microcode sequences can be specified and verified

in steps.
v
microcode line v
v
¢ Instruction microcode

4 - implementation
v
\ +
o
v

Advanced Technology Center HCSS 03 - April 2003 Page 14

Decomposing the Proof

Microcode sequences can be specified and verified

in steps.
microcode line Eg
. . I
microcode line spec N Instruction microcode

implementation

Advanced Technology Center HCSS 03 - April 2003 Page 15

Decomposing the Proof

Microcode sequences can be specified and verified
in steps.

microcode line E;

microcode line spec

Instruction microcode
I implementation

microcode block spec

Advanced Technology Center HCSS 03 - April 2003 Page 16

Decomposing the Proof

Microcode sequences can be specified and verified

in steps.

microcode line

microcode line spec

microcode block spec

abstract microcode block spec

Advanced Technology Center

Instruction microcode
I implementation

HCSS 03 — April 2003 Page 17

Decomposing the Proof

Microcode sequences can be specified and verified

in steps.
microcode line E;
. . I
microcode line spec Instruction microcode

I implementation

microcode block spec

abstract microcode block spec

instruction

Advanced Technology Center HCSS 03 - April 2003 Page 18

Proving the CAPS Correctness Theorem

Start state End stat
| - CAPS Instruction Set Model nd state

Abstract Microcode Block Specs

Microicode Block Specs
. Single I\%/Iicrocode Line Specs

M CAPS Mlcroarchltecture Model

Start state End state

Advanced Technology Center HCSS 03 - April 2003 Page 19

CAPS: High-Assurance Processor

e Considerable effort expended on EFM reasoning
— ACL2 enhanced to deal efficiently with single threaded expressions

® Techniques to manage complexity

— Proof libraries
* Bit vectors

— Using low level model to help define abstract model
- Simplifies abstract specification and proof process

— Proof-generating Macros
« Similar to techniques constructed for JEM1 symbolic simulation

Advanced Technology Center HCSS 03 — April 2003 Page 20

AAMPT: Intrinsic Partitioning

“High-Assurance Intrinsic Partitioning”, HCSS-03 |

e Goals
— Verify Security Properties of AAMP Intrinsic Partitioning Mechanism

® Project

— Formalize Security Property in ACL2

— Formalize Intrinsic Partitioning Functionality
* “Instruction Level” Model
« Linear Address Space

— Prove that Intrinsic Partitioning satisfies Security Property

Advanced Technology Center HCSS 03 — April 2003 Page 21

Linear Address Space Reasoning

Advanced Technology Center

ACTIVE

HCSS 03 — April 2003

Page 22

Linear Address Space Reasoning

ACTIVE

Advanced Technology Center HCSS 03 - April 2003 Page 23

AAMPT: Intrinsic Partitioning

® Reasoning about Linear Address Spaces

— ldentify orthogonal functionality
* Techniques that scale
» Make explicit for theorem prover

— Could Leverage Data Flow (Definition/Use) Analysis

® Proof Architecture

— Block structured decomposition
- Similar to CAPS work

— Over function boundaries
* Not Microcode blocks

Advanced Technology Center HCSS 03 — April 2003 Page 24

Outline

e Motivating History
® Observations
® Future Directions

Advanced Technology Center HCSS 03 - April 2003 Page 25

Observations

e Advantages to Accurate Low-Level Models
— Model Validation
— Tie to Design Process via Simulation

e Domain knowledge

— Control Flow, Data Flow Analysis

— Can be codified in 3rd party tools
* Results represented in language of theorem prover

® Techniques generalize to

— Different theorem provers (PVS,ACL2)
— Many different processor models
— Different levels of abstraction

Advanced Technology Center HCSS 03 — April 2003 Page 26

Outline

e Motivating History
® Observations
® Future Directions

Advanced Technology Center HCSS 03 - April 2003 Page 27

Future Directions

® Extend techniques to larger, more complex problems
— Additional microprocessors in the AAMP/JEM/CAPS family
— Operating System Kernels
— Mathematical and Cryptographic Libraries
— Virtual Machines

e Enable the use of low-level models
— Model validation
— Avoid trusting or reasoning about compilers/abstractions

— Assembly/micro code is not uncommon in these domains
* Performance
» Access to features unavailable in high-level languages

® Encourage continued industrialization of theorem proving
technology
— More powerful
— More capable

Advanced Technology Center HCSS 03 — April 2003 Page 28

vFaat: Overview

“A collection of tools and techniques to help
simplify reasoning about complex systems”

e Input
— Domain specific: object files, microcode
— Produces device and theorem prover independent representation

® Annotation
— Pre/Post conditions
— Proof Composition

® Analysis
— 3rd party tools automate capture of domain specific knowledge
— Stores results as annotations

e Output
— Generates input for theorem prover
— lIsolates 3rd party tools from correctness argument

Advanced Technology Center HCSS 03 — April 2003 Page 29

Conclusion

® Rockwell Collins History
— Have 10+ years experience in applying Formal Methods

e Observations
— Low Level Models are useful in a variety of domains
— Domain knowledge can be codified and used in theorem provers
— Effective techniques generalize over domains and theorem provers

® Conclusion

— Combining automated analysis and theorem proving
* Improves productivity
« Continues to provide high-assurance results
« Extends the scope of what is currently feasible

Advanced Technology Center HCSS 03 — April 2003 Page 30

