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Overview

® Rockwell Collins History

— Have 10+ years experience in applying Formal Methods
 Have embraced and extended a variety of techniques

® Observations
— Advantages to Accurate Low-Level Models
 Abstraction can be tedious

— Domain knowledge

« Missing from generic theorem provers
« Can be codified

— Techniques generalize to vFaat: A collection of tools and
- Different Verification Targets techniques to help simplify

* Different Theorem Provers reasoning about complex systems”
® Conclusion

— Judicious use of automation simplifies verification task
* Improve Productivity, Extend Scope
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Outline

e Motivating History
® Observations
® Future Directions
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RC Formal Methods Projects

e AAMPS/AAMP-FV

e JEM1: Symbolic Simulation

e JEM2: Executable Formal Models
® CAPS: High-Assurance Processor
® AAMPY: Intrinsic Partitioning
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AAMPS/AAMP-FV

“Formal Verification of the AAMPS Microprocessor”, NASA Report 1995
“Formal Verification of the AAMP-FV Microcode”, NASA Report 1999

e Goal
— Demonstrate use of Formal Methods in Industrial Setting

® Project
— Sponsored by NASA Langley
— Used PVS and teamed with SRI
— Abstract representation of instruction execution created
— Functionally described Microarchitecture
— Standard Commuting Diagram Proof
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AAMPS/AAMP-FV

® Inspections connected model to implementation
— Found variety of errors in formal specification

® Was there a better way to validate the model?
— Better Integration with design process?

® Verified a number of instructions
— Even found a few bugs

® Brute Force Formalization

— Microcode specified by hand
— “Clock functions” crafted by hand

e Automated microcode specification an obvious next step
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JEM1: Symbolic Simulation

| “Symbolic Simulation of the JEM1 Microprocessor”’, FMCAD-98 |

® Goals

— Integration of Formal Models into Design Process
— Leverage Automated Analysis
— Detect Microcode Errors (Bug Finding)

® Project

— Specified JEM1 Microarchitecture in PVS

— Used PVS to execute symbolically the model
* Generated Symbolic Results for Microcode Basic Blocks

— Analyzed Symbolic Results as part of Microcode Inspections
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JEM1: Symbolic Simulation

® Symbolic Results Difficult to Read

— Good for detecting data-flow errors (Definition/Use)
* Unexpected Side-Effects
* Unexpected Data-Dependencies

® Demonstrated Effective Use of Automation

— Codified knowledge of problem domain

« Control Flow Analysis Dictated Proof Architecture
— Employed Automatic Generation of:

* Function Definitions (uCode)

 Theorems and Theory Structure (Proof Architecture)
« Symbolic Results (batch mode PVS)
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JEM2: Executable Formal Models

| “Efficient Simulation of Formal Processor Models”, FMSD 2002 |

® Goals

— Integration of Formal Models into Design Process

— Improve Model Validation Technique
* Replace Microcode Simulator with Executable Formal Model

® Project

— Modeled JEM2 in logic of ACL2
* Subset of Common Lisp

— Compiled model to C and linked into GUI development environment
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JEM2: Executable Formal Models

® Impressive Results

— Final simulator ran as fast as original
* No penalty to developers for using formal model

— Successfully executed regression tests
* Guaranteed validity of formal model

® Exposed ACL2 tool limitations

— Model was large and complex
— lIs it possible to reason about such models?
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CAPS: High-Assurance Processor

| “Evaluatable, High-Assurance Microprocessors”, HCSS-02 |

® Goals

— Reason about an Executable Formal Model
— Perform Instruction Level Proofs of CAPS processor

® Project

— Modeled Microarchitecture of CAPS in ACL2

— Executed Standard Regression Tests to Validate Model
— Formalized a set of CAPS instructions

— Constructed Instruction Level Proofs
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CAPS Microarchitecture Model
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News for Nerds. Stuff that matters.
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CAPS Correctness Theorem

Start state End stat
| - CAPS Instruction Set Model nd state

M - CAPS Microarchitecture Model

Start state End state
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Decomposing the Proof

Microcode sequences can be specified and verified

in steps.
v
microcode line v
v
¢ Instruction microcode

4 - implementation
v
\ +
o
v
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Decomposing the Proof

Microcode sequences can be specified and verified

in steps.
microcode line Eg
. . I
microcode line spec N Instruction microcode

implementation
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Decomposing the Proof

Microcode sequences can be specified and verified
in steps.

microcode line E;

microcode line spec

Instruction microcode
I implementation

microcode block spec
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Decomposing the Proof

Microcode sequences can be specified and verified

in steps.

microcode line

microcode line spec

microcode block spec

abstract microcode block spec

Advanced Technology Center

Instruction microcode
I implementation
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Decomposing the Proof

Microcode sequences can be specified and verified

in steps.
microcode line E;
. . I
microcode line spec Instruction microcode

I implementation

microcode block spec

abstract microcode block spec

instruction
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Proving the CAPS Correctness Theorem

Start state End stat
| - CAPS Instruction Set Model nd state

Abstract Microcode Block Specs

Microicode Block Specs
. Single I\%/Iicrocode Line Specs

M CAPS Mlcroarchltecture Model

Start state End state
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CAPS: High-Assurance Processor

e Considerable effort expended on EFM reasoning
— ACL2 enhanced to deal efficiently with single threaded expressions

® Techniques to manage complexity

— Proof libraries
* Bit vectors

— Using low level model to help define abstract model
- Simplifies abstract specification and proof process

— Proof-generating Macros
« Similar to techniques constructed for JEM1 symbolic simulation
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AAMPT: Intrinsic Partitioning

“High-Assurance Intrinsic Partitioning”, HCSS-03 |

e Goals
— Verify Security Properties of AAMP Intrinsic Partitioning Mechanism

® Project

— Formalize Security Property in ACL2

— Formalize Intrinsic Partitioning Functionality
* “Instruction Level” Model
« Linear Address Space

— Prove that Intrinsic Partitioning satisfies Security Property
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Linear Address Space Reasoning

Advanced Technology Center

ACTIVE
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Linear Address Space Reasoning

ACTIVE
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AAMPT: Intrinsic Partitioning

® Reasoning about Linear Address Spaces

— ldentify orthogonal functionality
* Techniques that scale
» Make explicit for theorem prover

— Could Leverage Data Flow (Definition/Use) Analysis

® Proof Architecture

— Block structured decomposition
- Similar to CAPS work

— Over function boundaries
* Not Microcode blocks
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Outline

e Motivating History
® Observations
® Future Directions
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Observations

e Advantages to Accurate Low-Level Models
— Model Validation
— Tie to Design Process via Simulation

e Domain knowledge

— Control Flow, Data Flow Analysis

— Can be codified in 3rd party tools
* Results represented in language of theorem prover

® Techniques generalize to

— Different theorem provers (PVS,ACL2)
— Many different processor models
— Different levels of abstraction

Advanced Technology Center HCSS 03 — April 2003 Page 26



Outline

e Motivating History
® Observations
® Future Directions
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Future Directions

® Extend techniques to larger, more complex problems
— Additional microprocessors in the AAMP/JEM/CAPS family
— Operating System Kernels
— Mathematical and Cryptographic Libraries
— Virtual Machines

e Enable the use of low-level models
— Model validation
— Avoid trusting or reasoning about compilers/abstractions

— Assembly/micro code is not uncommon in these domains
* Performance
» Access to features unavailable in high-level languages

® Encourage continued industrialization of theorem proving
technology
— More powerful
— More capable
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vFaat: Overview

“A collection of tools and techniques to help
simplify reasoning about complex systems”

e Input
— Domain specific: object files, microcode
— Produces device and theorem prover independent representation

® Annotation
— Pre/Post conditions
— Proof Composition

® Analysis
— 3rd party tools automate capture of domain specific knowledge
— Stores results as annotations

e Output
— Generates input for theorem prover
— lIsolates 3rd party tools from correctness argument
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Conclusion

® Rockwell Collins History
— Have 10+ years experience in applying Formal Methods

e Observations
— Low Level Models are useful in a variety of domains
— Domain knowledge can be codified and used in theorem provers
— Effective techniques generalize over domains and theorem provers

® Conclusion

— Combining automated analysis and theorem proving
* Improves productivity
« Continues to provide high-assurance results
« Extends the scope of what is currently feasible
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