Network Reconnaissance - Web applications are frequent targets of attack due to their widespread use and round the clock availability. Malicious users can exploit vulnerabilities in web applications to steal sensitive information, modify and destroy data as well as deface web applications. The process of exploiting web applications is a multi-step process and the first step in an attack is reconnaissance, in which the attacker tries to gather information about the target web application. In this step, the attacker uses highly efficient automated scanning tools to scan web applications. Following reconnaissance, the attacker proceeds to vulnerability scanning and subsequently attempts to exploit the vulnerabilities discovered to compromise the web application. Detection of reconnaissance scans by malicious users can be combined with other traditional intrusion detection and prevention systems to improve the security of web applications. In this paper, a method for detecting reconnaissance scans through analysis of web server access logs is proposed. The proposed approach uses an LSTM network based deep learning approach for detecting reconnaissance scans. Experiments conducted show that the proposed approach achieves a mean precision, recall and f1-score of 0.99 over three data sets and precision, recall and f1-score of 0.97, 0.96 and 0.96 over the combined dataset.
Authored by Bronjon Gogoi, Rahul Deka, Suchitra Pyarelal
Network Reconnaissance - Reconnaissance (Recon) is an essential step in exploring an area to steal information gathering, and it also plays a crucial role in penetration testing. This paper aims to automate the reconnaissance process of bug hunting on a target using python programming. Information gathering is an essential step for any recon process, and it helps us to identify the targets as well as helps us to list out the areas where the user can work to exploit them. The main emphasis of this paper is on bug bounty and bug hunting – the former being the result/reward of performing the latter. This paper is purposely written for penetration testers to make it easy for them and automate the process of Information gathering, which is the very crucial phase of Penetration testing.
Authored by Keshav Kaushik, Suman Yadav, Vikas Chauhan, Aditya Rana
Network Reconnaissance - Footprinting and Reconnaissance is a vital part of every process that has existed existing on earth. The report introduces footprinting and reconnaissance, the types of footprinting and reconnaissance methods, their impacts, and ways to prevent the risks to raise awareness for possible threats from footprinting and reconnaissance. Comparison has been made between the different types of footprinting and reconnaissance and discussions on scenarios that should be used is being made as well. Examples of different types of footprinting and reconnaissance methods and tools have been listed for better understandings of the difference in types. Real-life scenarios and examples are being provided to show the impacts of footprinting and reconnaissance. The report contains demonstrations of two simple passive reconnaissance tools, theHarvester and Wayback Machine. Discussions and analysis of how the tools could be used to gain precious information from their targets and the possible impacts from information gained through the tools are being made. Possible solutions to protect the users from footprinting and reconnaissance have been provided and discussed. Critical analysis of the report and the topic by the author is being made right by the end of the conclusion. Conclusion of how the author has thought about footprinting and reconnaissance and information through researching about the topic had been mentioned in the end.
Authored by Kek Lianq, Vinesha Selvarajah
Network Reconnaissance - For the evaluation of UAV reconnaissance effectiveness under multiple conditions, an UAV reconnaissance effectiveness evaluation method based on rough set and neural network is proposed. In the method, the influencing factors are determined to construct the UAV reconnaissance effectiveness index system, then the redundant factors are removed combined with rough set theory, finally on the basis of the simplified factors BP neural network optimized through genetic algorithm is used to build an evaluation model of UAV reconnaissance effectiveness for improving the prediction accuracy. The simulation result shows that the method can not only overcome the shortcomings of the traditional BP neural network, such as poor fault tolerance and slow convergence speed, but also better evaluate the UAV reconnaissance effectiveness.
Authored by Wang Minghua, Zhang Yingzhuo, Zhang Longgang, Gan Xusheng
Network Reconnaissance - Network reconnaissance is a core security functionality, which can be used to detect hidden unauthorized devices or to identify missing devices. Currently, there is a lack of network reconnaissance tools capable of discovering Internet of Things (IoT) devices across multiple protocols. To bridge this gap, we introduce IoT-Scan, an extensible IoT network reconnaissance tool. IoT-Scan is based on softwaredefined radio (SDR) technology, which allows for a flexible implementation of radio protocols. We propose passive, active, multi-channel, and multi-protocol scanning algorithms to speed up the discovery of devices with IoT-Scan. We implement the scanning algorithms and compare their performance with four popular IoT protocols: Zigbee, Bluetooth LE, Z-Wave, and LoRa. Through experiments with dozens of IoT devices, we demonstrate that our implementation experiences minimal packet losses, and achieves performance near a theoretical benchmark.
Authored by Stefan Gvozdenovic, Johannes Becker, John Mikulskis, David Starobinski
Network Reconnaissance - Short-wave band signal density, complex electromagn-etic environment and relatively limited detection equipment often lead to low detection efficiency. Aiming at this situation, a scheduling method of short-wave detection equipment based on Hopfield neural network is proposed to carry out cooperative detection of short-wave signals. In this paper, the definition of effective detection probability is given, the constraints of effective detection are sorted out, and the mathematical model of detection equipment scheduling is designed, which is realized by Hopfield neural network. This method uses the global optimization technology to schedule multiple detection sensors, so that different detection sensors can cooperate reasonably and maximize the overall benefit of detection system. Simulation results show the feasibility and effectiveness of the proposed method.
Authored by Hang Zhang, Yang Liu, Fei Wen
Network Reconnaissance - In the battlefield reconnaissance and monitoring environment, the application of Wireless Sensor Network (WSN) requires high timeliness and reliability of data transmission. To meet the battlefield demand, a transmission protocol is designed in this paper. This protocol combines network coding technology to fully play the function of node collaboration in the transmission process and use the channel broadcast characteristics. The data is transmitted in real-time and reliably through the aggregation node to the command control center, providing a real-time update database for the battlefield commander. Through theoretical and simulation analysis, this protocol can meet the requirements of the battlefield reconnaissance and monitoring environmental log, and the system can still maintain better network performance in the condition of low probability of transmission of battlefield environment.
Authored by Gang Qi, Wei Xia, Ronggen Zhao, Jiangbo Zhao
Network Control Systems Security - This study focuses on the stability issue of network control systems (NCSs) under possible hybrid attacks (HAs), which has important research value in network security. Firstly, the HAs method of deception cyber attacks (CAs) and random CAs are studied, which broadly consider the complexity of the types of attacks. Secondly, a novel time-delay-product boundary looped function (BLF) is developed, fully considering the delay and sampling information. In addition, the initial constraints of the criterion on the matrices are effectively relaxed. Then, a new dynamic memory sample data (DMSD) controller under HAs is constructed to control the asymptotical stable (AS) of NCSs. Finally, a numerical experiment is presented to verify the correctness and feasibility of the theory.
Authored by Xiao Cai, Kun She, PooGyeon Park, Kaibo Shi, Yeng Soh
Network Control Systems Security - The huge advantages of cloud computing technology and the bottlenecks in the development of traditional network control systems have prompted the birth of cloud control systems to address the shortcomings of traditional network control systems in terms of bandwidth and performance. However, the information security issues faced by cloud control systems are more complex, and distributed denial-of-service (DDoS) attacks are a typical class of attacks that may lead to problems such as latency in cloud control systems and seriously affect the performance of cloud control systems. In this paper, we build a single-capacity water tank cloud control semi-physical simulation system with heterogeneous controllers and propose a DDoS attack detection method for cloud control systems based on bidirectional long short-term memory neural network (BiLSTM), study the impact of DDoS attacks on cloud control systems. The experimental results show that the BiLSTM algorithm can effectively detect the DDoS attack on the cloud control system.
Authored by Shengliang Xu, Song Zheng
Network Control Systems Security - Machine tool is known as the mother of industry. CNC machine tool is the embodiment of modern automatic control productivity. In the context of the rapid development of the industrial Internet, a large number of equipment and systems are interconnected through the industrial Internet, realizing the flexible adaptation from the supply side to the demand side. As the a typical core system of industrial Internet, CNC system is facing the threat of industrial virus and network attack. The problem of information security is becoming more and more prominent. This paper analyzes the security risks of the existing CNC system from the aspects of terminal security, data security and network security. By comprehensively using the technologies of data encryption, identity authentication, digital signature, access control, secure communication and key management, this paper puts forward a targeted security protection and management scheme, which effectively strengthens the overall security protection ability.
Authored by Xuehong Chen, Zi Wang, Shuaifeng Yang
Network Control Systems Security - This paper is concerned with the observer-based control design for a continuous linear networked control systems under denial of service attacks. In order to save network communication resources, a new flexible event-triggered control strategy is designed on the premise that denial of service attacks are power-limited pulse width modulation interference. Considering this influence of denial of service attacks on event-triggered state, the maximum system performance lost is calculated. The sufficient conditions of system stability are derived by using the Lyapunov functional method. The constructive design of the controller is expressed in terms of linear matrix inequalities. Finally, the theoretical results are verified by a simulation example.
Authored by Jiajia Hu, Feng Zhou, Yi Zhang
Network Control Systems Security - With the rapid development of mobile communication technology and broadband wireless access technology, various wireless communication technologies emerge in an endless stream. Different technologies differ in network performance indicators and service features. Therefore, a single communication technology cannot be applied to various complex application scenarios. This paper mainly studies the design of security monitoring and management system of heterogeneous ATC network based on association algorithm. This paper designs and implements a security monitoring management system for network security perception. Based on the above research results and according to the data characteristics and scene requirements of the air traffic control system, the data organization method and monitoring management technology oriented to network security perception are combined with the air traffic control system to carry out the ground application and reverse verification of the feasibility of the scheme.
Authored by Chongxiao Yao, Xiangxi Wen
Network Control Systems Security - With the development of computer and network technology, industrial control systems are connecting with the Internet and other public networks in various ways, viruses, trojans and other threats are spreading to industrial control systems, industrial control system information security issues are becoming increasingly prominent. Under this background, it is necessary to construct the network security evaluation model of industrial control system based on the safety evaluation criteria and methods, and complete the safety evaluation of the industrial control system network according to the design scheme. Based on back propagation (BP) neural network’s evaluation of the network security status of industrial control system, this paper determines the number of neurons in BP neural network input layer, hidden layer and output layer by analyzing the actual demand, empirical equation calculation and experimental comparison, and designs the network security evaluation index system of industrial control system according to factors affecting industrial control safety, and constructs a safety rating table. Finally, by comparing the performance of BP neural network and multilinear regression to the evaluation of the network security status of industrial control system through experimental simulation, it can be found that BP neural network has higher accuracy for the evaluation of network security status of industrial control system.
Authored by Daojuan Zhang, Peng Zhang, Wenhui Wang, Minghui Jin, Fei Xiao
Network Control Systems Security - Plaintext transmission is the major way of communication in the existing security and stability control (SSC) system of power grid. Such type of communication is easy to be invaded, camouflaged and hijacked by a third party, leading to a serious threat to the safe and stable operation of power system. Focusing on the communication security in SSC system, the authors use asymmetric encryption algorithm to encrypt communication messages, to generate random numbers through random noise of electrical quantities, and then use them to generate key pairs needed for encryption, at the same time put forward a set of key management mechanism for engineering application. In addition, the field engineering test is performed to verify that the proposed encryption method and management mechanism can effectively improve the communication in SSC system while ensuring the high-speed and reliable communication.
Authored by Xinghua Chen, Lixian Huang, Dan Zheng, Jinchang Chen, Xinchao Li
Network Control Systems Security - The analysis shows how important Power Network Measuring and Characterization (PSMC) is to the plan. Networks planning and oversight for the transmission of electrical energy is becoming increasingly frequent. In reaction to the current contest of assimilating trying to cut charging in the crate, estimation, information sharing, but rather govern into PSMC reasonable quantities, Electrical Transmit Monitoring and Management provides a thorough outline of founding principles together with smart sensors for domestic spying, security precautions, and control of developed broadening power systems.
Authored by Dharam Buddhi, Prabhu A, Abdulsattar Hamad, Atul Sarojwal, Joel Alanya-Beltran, Kalyan Chakravarthi
Network Control Systems Security - With the development of industrial informatization, information security in the power production industry is becoming more and more important. In the power production industry, as the critical information egress of the industrial control system, the information security of the Networked Control System is particularly important. This paper proposes a construction method for an information security platform of Networked Control System, which is used for research, testing and training of Networked Control System information security.
Authored by Deng Zhang, Jiang Zhao, Dingding Ding, Hanjun Gao
Network on Chip Security - With the advancements in VLSI technology, Tiled Chip Multicore Processors (TCMP) with packet switched Network-on-Chip (NoC) have emerged as the backbone of the modern data intensive parallel multi-core systems. Tight timeto-market and cost constraints have forced chip manufacturers to use third-party IPs in sophisticated TCMP designs. This dependence over third party IPs has instigated security vulnerabilities in inter-tile communication that cannot be detected at manufacturing and testing phases. This includes possibility of having malicious circuits like Hardware Trojans (HT). NoC is the likely target of HT insertion due to its significance and positional advantage from system and communication standpoints. Recent research shows that HTs can manipulate control fields of NoC packets and leads to dead flit attacks that has the potential to disrupt the on-chip communication resulting in application level stalling. In this paper, we propose run time detection of such dead flit attacks by analyzing packet movement behaviours. We also propose a cost effective mitigation mechanism by re-routing the packets around the HT infected router. Our experimental study with real benchmarks on 8x8 mesh TCMP evaluates the effectiveness of the proposed solution.
Authored by Mohammad Khan, Ruchika Gupta, Vedika Kulkarni, John Jose, Sukumar Nandi
Network on Chip Security - Due to the increasing complexity of modern heterogeneous System-on-Chips (SoC) and the growing vulnerabilities, security risk assessment and quantification is required to measure the trustworthiness of a SoC. This paper describes a systematic approach to model the security risk of a system for malicious hardware attacks. The proposed method uses graph analysis to assess the impact of an attack and the Common Vulnerability Scoring System (CVSS) is used to quantify the security level of the system. To demonstrate the applicability of the proposed metric, we consider two open source SoC benchmarks with different architectures. The overall risk is calculated using the proposed metric by computing the exploitability and impact of attack on critical components of a SoC.
Authored by Sujan Saha, Joel Mbongue, Christophe Bobda
Network on Chip Security - In recent times, Network-on-Chip (NoC) has become state of the art for communication in Multiprocessor Systemon-Chip due to the existing scalability issues in this area. However, these systems are exposed to security threats such as extraction of secret information. Therefore, the need for secure communication arises in such environments. In this work, we present a communication protocol based on authenticated encryption with recovery mechanisms to establish secure end-to-end communication between the NoC nodes. In addition, a selected key agreement approach required for secure communication is implemented. The security functionality is located in the network adapter of each processing element. If data is tampered with or deleted during transmission, recovery mechanisms ensure that the corrupted data is retransmitted by the network adapter without the need of interference from the processing element. We simulated and implemented the complete system with SystemC TLM using the NoC simulation platform PANACA. Our results show that we can keep a high rate of correctly transmitted information even when attackers infiltrated the NoC system.
Authored by Julian Haase, Sebastian Jaster, Elke Franz, Diana Göhringer
Network on Chip Security - Without secure wrappers, it is impossible to protect the integrity of embedded IP cores for NoC-based SoC. This paper describes an IEEE 1500 compatible secure test wrapper NoC based on low-cost PUF circuit. The original key generated by LFSR is encrypted into a stream cipher by the PUF module, and the input key string should be equal to this cryptograph unless the wrapper is locked, which provides effective on-line authentication.
Authored by Ying Zhang, Yuanxiang Li, Xin Chen, Jizhong Yang, Yifeng Hua, Jiaoyan Yao
Network on Chip Security - This paper designs a network security protection system based on artificial intelligence technology from two aspects of hardware and software. The system can simultaneously collect Internet public data and secret-related data inside the unit, and encrypt it through the TCM chip solidified in the hardware to ensure that only designated machines can read secret-related materials. The data edgecloud collaborative acquisition architecture based on chip encryption can realize the cross-network transmission of confidential data. At the same time, this paper proposes an edge-cloud collaborative information security protection method for industrial control systems by combining endaddress hopping and load balancing algorithms. Finally, using WinCC, Unity3D, MySQL and other development environments comprehensively, the feasibility and effectiveness of the system are verified by experiments.
Authored by Xiuyun Lu, Wenxing Zhao, Yuquan Zhu
Network on Chip Security - Soft real-time applications, including multimedia, gaming, and smart appliances, rely on specific architectural characteristics to deliver output in a time-constrained fashion. Any violation of application deadlines can lower the Quality-of-Service (QoS). The data sets associated with these applications are distributed over cores that communicate via Network-on-Chip (NoC) in multi-core systems. Accordingly, the response time of such applications depends on the worst-case latency of request/reply packets. A malicious implant such as Hardware Trojan (HT) that initiates a delay-of-service attack can tamper with the system performance. We model an HT that mounts a time-delay attack in the system by violating the path selection strategy used by the adaptive NoC router. Our analysis shows that once activated, the proposed HT increases the packet latency by 17\% and degrades the system performance (IPC) by 18\% over the Baseline. Furthermore, we propose an HT detection framework that uses packet traffic analysis and path monitoring to localise the HT. Experiment results show that the proposed detection framework exhibits 4.8\% less power consumption and 6.4\% less area than the existing technique.
Authored by Manju Rajan, Mayank Choksey, John Jose
Network on Chip Security - IoT technology is finding new applications every day and everywhere in our daily lives. With that, come new use cases with new challenges in terms of device and data security. One of such challenges arises from the fact that many IoT devices/nodes are no longer being deployed on owners’ premises, but rather on public or private property other than the owner’s. With potential physical access to the IoT node, adversaries can launch many attacks that circumvent conventional protection methods. In this paper, we propose Secure SoC (SecSoC), a secure system-on-chip architecture that mitigates such attacks. This include logical memory dump attacks, bus snooping attacks, and compromised operating systems. SecSoC relies on two main mechanisms, (1) providing security extensions to the compute engine that runs the user application without changing its instruction set, (2) adding a security management unit (SMU) that provide HW security primitives for encryption, hashing, random number generators, and secrets store (keys, certificates, etc.). SecSoC ensures that no secret or sensitive data can leave the SoC IC in plaintext. SecSoC is being implemented in Bluespec SystemVerilog. The experimental results will reveal the area, power, and cycle time overhead of these security extensions. Overall performance (total execution time) will also be evaluated using IoT benchmarks.
Authored by Ayman Hroub, Muhammad Elrabaa
Network on Chip Security - The Network-on-Chip (NoC) is the communication heart in Multiprocessors System-on-Chip (MPSoC). It offers an efficient and scalable interconnection platform, which makes it a focal point of potential security threats. Due to outsourcing design, the NoC can be infected with a malicious circuit, known as Hardware Trojan (HT), to leak sensitive information or degrade the system’s performance and function. An HT can form a security threat by consciously dropping packets from the NoC, structuring a Black Hole Router (BHR) attack. This paper presents an end-to-end secure interconnection network against the BHR attack. The proposed scheme is energy-efficient to detect the BHR in runtime with 1\% and 2\% average throughput and energy consumption overheads, respectively.
Authored by Luka Daoud, Nader Rafla
Network on Chip Security - Coarse-Grained Reconfigurable Arrays (CGRA) implemented using FPGA are widely applied due to the portability and compatibility. As an evolvable hardware (EHW) platform, it also faces hardware security problems, among which hardware Trojans (HTs) is the most prominent threat. HTs are malicious hardware components. Once implanted in the route units (RUs) of the network-on-chip (NoC) in CGRA, it will leak confidential information or destroy the entire system. However, few studies have focused on HT mitigation in RUs of NoC in CGRA. To this end, we present an evolutionary algorithm (EA)-based method to mitigate HT attacks in NoC of CGRA. Specifically, we employ the EA to explore generating the circuit structures that do not contain HT-infected RUs. In the simulation experiments built using Python, this paper reports the experimental results for two target evolutionary circuits in NoC and outlines the effectiveness of the proposed method.
Authored by Zeyu Li, Junjie Wang, Zhao Huang, Quang Wang