The 2021 T-Mobile breach conducted by John Erin Binns resulted in the theft of 54 million customers' personal data. The attacker gained entry into T-Mobile's systems through an unprotected router and used brute force techniques to access the sensitive information stored on the internal servers. The data stolen included names, addresses, Social Security Numbers, birthdays, driver's license numbers, ID information, IMEIs, and IMSIs. We analyze the data breach and how it opens the door to identity theft and many other forms of hacking such as SIM Hijacking. SIM Hijacking is a form of hacking in which bad actors can take control of a victim's phone number allowing them means to bypass additional safety measures currently in place to prevent fraud. This paper thoroughly reviews the attack methodology, impact, and attempts to provide an understanding of important measures and possible defense solutions against future attacks. We also detail other social engineering attacks that can be incurred from releasing the leaked data.
Authored by Christopher Faircloth, Gavin Hartzell, Nathan Callahan, Suman Bhunia
Recently, a mechanism that randomly shuffles the data sent and allows securing the communication without the need to encrypt all the information has been proposed. This proposal is ideal for IoT systems with low computational capacity. In this work, we analyze the strength of this proposal from a brute-force attack approach to obtain the original message without knowledge of the applied disordering. It is demonstrated that for a set of 10x10 16-bit data, the processing time and the required memory are unfeasible with current technology. Therefore, it is safe.
Authored by Francisco Alcaraz-Velasco, José Palomares, Joaquín Olivares
The consensus-based frequency control relying on a communication system is used to restore the frequency deviations introduced by the primary droop control in an islanded AC microgrid, a typical cyber-physical power system(CPPS). This paper firstly studies the performance of the CPPS under two types of Distributed Denial of Service (DDoS ) attacks, finds that the intelligent attacks may cause more damage than the brute force attacks, and analyzes some potential defense strategies of the CPPS from two points of view. Some simulation results are also given to show the performance of both the physical and cyber system of the CPPS under different operation conditions.
Authored by Bingyu Wang, Qiuye Sun, Fang Fang
In this work, we discuss data breaches based on the “2012 SocialArks data breach” case study. Data leakage refers to the security violations of unauthorized individuals copying, transmitting, viewing, stealing, or using sensitive, protected, or confidential data. Data leakage is becoming more and more serious, for those traditional information security protection methods like anti-virus software, intrusion detection, and firewalls have been becoming more and more challenging to deal with independently. Nevertheless, fortunately, new IT technologies are rapidly changing and challenging traditional security laws and provide new opportunities to develop the information security market. The SocialArks data breach was caused by a misconfiguration of ElasticSearch Database owned by SocialArks, owned by “Tencent.” The attack methodology is classic, and five common Elasticsearch mistakes discussed the possibilities of those leakages. The defense solution focuses on how to optimize the Elasticsearch server. Furthermore, the ElasticSearch database’s open-source identity also causes many ethical problems, which means that anyone can download and install it for free, and they can install it almost anywhere. Some companies download it and install it on their internal servers, while others download and install it in the cloud (on any provider they want). There are also cloud service companies that provide hosted versions of Elasticsearch, which means they host and manage Elasticsearch clusters for their customers, such as Company Tencent.
Authored by Jun Qian, Zijie Gan, Jie Zhang, Suman Bhunia
In recent decennium, hardware security has gained a lot of attention due to different types of attacks being launched, such as IP theft, reverse engineering, counterfeiting, etc. The critical testing infrastructure incorporated into ICs is very popular among attackers to mount side-channel attacks. The IEEE standard 1687 (IJTAG) is one such testing infrastructure that is the focus of attackers these days. To secure access to the IJTAG network, various techniques based on Locking SIB (LSIB) have been proposed. One such very effective technique makes use of Security Linear Feedback Shift Register (SLFSR) along with LSIB. The SLFSR obfuscates the scan chain information from the attacker and hence makes the brute-force attack against LSIB ineffective.In this work, it is shown that the SLFSR based Locking SIB is vulnerable to side-channel attacks. A power analysis attack along with known-plaintext attack is used to determine the IJTAG network structure. First, the known-plaintext attack is used to retrieve the SLFSR design information. This information is further used along with power analysis attack to determine the exact length of the scan chain which in turn breaks the whole security scheme. Further, a countermeasure is proposed to prevent the aforementioned hybrid attack.
Authored by Gaurav Kumar, Anjum Riaz, Yamuna Prasad, Satyadev Ahlawat
The development of IoT has penetrated various sectors. The development of IoT devices continues to increase and is predicted to reach 75 billion by 2025. However, the development of IoT devices is not followed by security developments. Therefore, IoT devices can become gateways for cyber attacks, including brute force and sniffing attacks. Authentication mechanisms can be used to ward off attacks. However, the implementation of authentication mechanisms on IoT devices is challenging. IoT devices are dominated by constraint devices that have limited computing. Thus, conventional authentication mechanisms are not suitable for use. Two-factor authentication using RFID and fingerprint can be a solution in providing an authentication mechanism. Previous studies have proposed a two-factor authentication mechanism using RFID and fingerprint. However, previous research did not pay attention to message exchange security issues and did not provide mutual authentication. This research proposes a secure mutual authentication protocol using two-factor RFID and fingerprint using MQTT protocol. Two processes support the authentication process: the registration process and authentication. The proposed protocol is tested based on biometric security by measuring the false acceptance rate (FAR) and false rejection rate (FRR) on the fingerprint, measuring brute force attacks, and measuring sniffing attacks. The test results obtained the most optimal FAR and FRR at the 80% threshold. Then the equal error rate (ERR) on FAR and FRR is around 59.5%. Then, testing brute force and sniffing attacks found that the proposed protocol is resistant to both attacks.
Authored by Rizka Pahlevi, Vera Suryani, Hilal Nuha, Rahmat Yasirandi
The exponential rise of online services has heightened awareness of safeguarding the various applications that cooperate with and provide Internet users. Users must present their credentials, such as user name and secret code, to the servers to be authorized. This sensitive data should be secured from being exploited due to numerous security breaches, resulting in criminal activity. It is vital to secure systems against numerous risks. This article offers a novel approach to protecting against brute force attacks. A solution is presented where the user obtains the keypad on each occurrence. Following the establishment of the keypad, the webserver produces an encrypted password for the user's Computer/device authentication. The encrypted password will be used for authentication; users must type the amended one-time password (OTP) every time they access the website. This research protects passwords using reformation-based encryption and decryption and optimal honey encryption (OH-E) and decryption.
Authored by Nirmalraj T, J. Jebathangam
Blockchain smart contracts are prevalent nowadays as numerous applications are developed based on this feature. Though smart contracts are important and widely used, they contain certain vulnerabilities. This paper discusses various security issues that arise in smart contract applications. They are categorized in the smart contract platform, the applications that integrate with the Blockchain, and the vulnerabilities in smart contract code. A detailed study of smart contract-specific vulnerabilities and the defense against those vulnerabilities are presented in this article. Because of certain limitations of platforms or programming language used to write smart contract, there are possibilities of attacks on smart contracts. Hence different security measures or precautions to be taken while writing the smart contract code is discussed in this article. This will prevent the potential attacks happening on Blockchain distributed applications.
Authored by Rohini Pise, Sonali Patil
Virtual power plants are among the promising ways that variable generation and flexible demand may be optimally balanced in the future. The virtual power plant is an important branch of the energy internet, and it plays an important role in the aggregation of distributed power generation resources and the establishment of virtual power resource transactions. However, in the existing virtual power plant model, the following problems are becoming increasingly prominent, such as safeguard, credit rating system, privacy protection, benefit distribution. Firstly, the operation and transaction mechanism of the virtual power plant was introduced. Then, the blockchain technology is introduced into the virtual power plant transaction to make it more conducive to the information transparent, stable dispatch system, data security, and storage security. Finally, the operation and transaction system based on blockchain technology for the virtual power plant was design.
Authored by Da Li, Qinglei Guo, Desheng Bai, Wei Zhang
Blockchain is a relatively new technology, a distributed database used for sharing between nodes of computer networks. A blockchain stores all information in automated digital format as a database. Blockchain innovation ensures the accuracy and security of the data record and generates trust without the need for a trusted third party. The objectives of this paper are to determine the security risk of the blockchain systems, analyze the vulnerabilities exploited on the blockchain, and identify recent security challenges that the blockchain faces. This review paper presents some of the previous studies of the security threats that blockchain faces and reviews the security enhancement solutions for blockchain vulnerabilities. There are some studies on blockchain security issues, but there is no systematic examination of the problem, despite the blockchain system’s security threats. An observational research methodology was used in this research. Through this methodology, many research related to blockchain threats and vulnerabilities obtained. The outcomes of this research are to Identify the most important security threats faced by the blockchain and consideration of security recently vulnerabilities. Processes and methods for dealing with security concerns are examined. Intelligent corporate security academic challenges and limitations are covered throughout this review. The goal of this review is to serve as a platform as well as a reference point for future work on blockchain-based security.
Authored by Aysha AlFaw, Wael Elmedany, Mhd Sharif
With the rapid development of blockchain technology, it provides a new technical solution for secure storage of data and trusted computing. However, in the actual application of data traceability, blockchain technology has an obvious disadvantage: the large amount of data stored in the blockchain system will lead to a long response time for users to query data. Higher query delay severely restricts the development of block chain technology in the traceability system. In order to solve this problem, we propose an efficient, secure and low storage overhead blockchain query scheme. Specifically, we design an index structure independent of Merkle tree to support efficient intra-block query, and create new fields in the block header to optimize inter-block query. Compared with several existing schemes, our scheme ensures the security of data. Finally, we simulate and evaluate our proposed scheme. The results show that the proposed scheme has better execution efficiency while reducing additional overhead.
Authored by Chengzhe Lai, Yinzhen Wang
CP-ABE (Ciphertext-policy attribute based encryption) is considered as a secure access control for data sharing. However, the SK(secret key) in most CP-ABE scheme is generated by Centralized authority(CA). It could lead to the high cost of building trust and single point of failure. Because of the characters of blockchain, some schemes based on blockchain have been proposed to prevent the disclosure and protect privacy of users' attribute. Thus, a new CP-ABE identity-attribute management(IAM) data sharing scheme is proposed based on blockchain, i.e. IAM-BDSS, to guarantee privacy through the hidden policy and attribute. Meanwhile, we define a transaction structure to ensure the auditability of parameter transmission on blockchain system. The experimental results and security analysis show that our IAM-BDSS is effective and feasible.
Authored by Zhentai Duan, Jie Zhu, Jin Zhao
IoT has been an efficient technology for interconnecting different physical objects with the internet. Several cyber-attacks have resulted in compromise in security. Blockchain distributed ledger provide immutability that can answer IoT security concerns. The paper aims at highlighting the challenges & problems currently associated with IoT implementation in real world and how these problems can be minimized by implementing Blockchain based solutions and smart contracts. Blockchain helps in creation of new highly robust IoT known as Blockchain of Things(BCoT). We will also examine presently employed projects working with integrating Blockchain & IoT together for creating desired solutions. We will also try to understand challenges & roadblocks preventing the further implementation of both technologies merger.
Authored by Abhay Yadav, Virendra Vishwakarma
Nowadays, network information security is of great concern, and the measurement of the trustworthiness of terminal devices is of great significance to the security of the entire network. The measurement method of terminal device security trust still has the problems of high complexity, lack of universality. In this paper, the device fingerprint library of device access network terminal devices is first established through the device fingerprint mixed collection method; Secondly, the software and hardware features of the device fingerprint are used to increase the uniqueness of the device identification, and the multi- dimensional standard metric is used to measure the trustworthiness of the terminal device; Finally, Block chain technology is used to store the fingerprint and standard model of network access terminal equipment on the chain. To improve the security level of network access devices, a device access method considering the trust of terminal devices from multiple perspectives is implemented.
Authored by Jiaqi Peng, Ke Yang, Jiaxing Xuan, Da Li, Lei Fan
User privacy is an attractive and valuable task to the success of blockchain systems. However, user privacy protection's performance and data capacity have not been well studied in existing access control models of blockchain systems because of traceability and openness of the P2P network. This paper focuses on investigating performance and data capacity from a blockchain infrastructure perspective, which adds secondary encryption to shield confidential information in a non-invasive way. First, we propose an efficient asymmetric encryption scheme by combining homomorphic encryption and state-of-the-art multi-signature key aggregation to preserve privacy. Second, we use smart contracts and CA infrastructure to achieve attribute-based access control. Then, we use the non-interactive zero-knowledge proof scheme to achieve secondary confidentiality explicitly. Finally, experiments show our scheme succeeds better performance in data capacity and system than other schemes. This scheme improves availability and robust scalability, solves the problem of multi-signature key distribution and the unlinkability of transactions. Our scheme has established a sound security cross-chain system and privacy confidentiality mechanism and that has more excellent performance and higher system computing ability than other schemes.
Authored by Xiling Li, Zhaofeng Ma, Shoushan Luo
Aiming at the current troubles encountered by enterprise employees in their daily work when operating business systems due to web compatibility issues, a dual-core secure browser is designed and developed in the paper based on summarizing the current development status of multi-core browsers, key difficulties and challenges in the field. Based on the Chromium open-source project, the design of a dual-core browser auto-adaptation method is carried out. Firstly, dual-core encapsulation technology is implemented, followed by a study of the core auto-adaptation algorithm, and then a core cookie sharing function is developed based on Hook technology. In addition, the security of the browser is reinforced by designing a cookie manager, adding behavior monitoring functions, and unified platform control to enhance confidentiality and security, providing a safe and secure interface for employees' work and ubiquitous IoT access. While taking security into account, the browser realizes the need for a single browser compatible with all business system web pages of the enterprise, enhancing the operating experience of the client. Finally, the possible future research directions in this field are summarized and prospected.
Authored by Xu Mingsheng, Li Chunxia, Du Wenhui
Structured Query Language Injection (SQLi) is a client-side application vulnerability that allows attackers to inject malicious SQL queries with harmful intents, including stealing sensitive information, bypassing authentication, and even executing illegal operations to cause more catastrophic damage to users on the web application. According to OWASP, the top 10 harmful attacks against web applications are SQL Injection attacks. Moreover, based on data reports from the UK's National Fraud Authority, SQL Injection is responsible for 97% of data exposures. Therefore, in order to prevent the SQL Injection attack, detection SQLi system is essential. The contribution of this research is securing web applications by developing a browser extension for Google Chrome using Long Short-Term Memory (LSTM), which is a unique kind of RNN algorithm capable of learning long-term dependencies like SQL Injection attacks. The results of the model will be deployed in static analysis in a browser extension, and the LSTM algorithm will learn to identify the URL that has to be injected into Damn Vulnerable Web Application (DVWA) as a sample-tested web application. Experimental results show that the proposed SQLi detection model based on the LSTM algorithm achieves an accuracy rate of 99.97%, which means that a reliable client-side can effectively detect whether the URL being accessed contains a SQLi attack or not.
Authored by Togu Turnip, Hotma Aruan, Anita Siagian, Leonardo Siagian
Cyber security is everybody's responsibility. It is the capability of the person to protect or secure the use of cyberspace from cyber-attacks. Cyber security awareness is the combination of both knowing and doing to safeguard one's personal information or assets. Online threats continue to rise in the Philippines which is the focus of this study, to identify the level of cyber security awareness among the students and teachers of Occidental Mindoro State College (OMSC) Philippines. Results shows that the level of cyber security awareness in terms of Knowledge, majority of the students and teachers got the passing score and above however there are almost fifty percent got below the passing score. In terms of Practices, both the teachers and the students need to strengthen the awareness of system and browser updates to boost the security level of the devices used. More than half of the IT students are aware of the basic cyber security protocol but there is a big percentage in the Non-IT students which is to be considered. Majority of the teachers are aware of the basic cyber security protocols however the remaining number must be looked into. There is a need to intensity the awareness of the students in the proper etiquette in using the social media. Boost the basic cyber security awareness training to all students and teachers to avoid cybercrime victims.
Authored by Ailen Garcia, Shaina Bongo
Browsers are one of the most widely used types of software around the world. This prevalence makes browsers a prime target for cyberattacks. To mitigate these threats, users can practice safe browsing habits and take advantage of the security features available to browsers. These protections, however, could be severely crippled if the browser itself were malicious. Presented in this paper is the concept of the evil-twin browser (ETB), a clone of a legitimate browser that looks and behaves identically to the original browser, but discreetly performs other tasks that harm a user's security. To better understand the concept of the evil-twin browser, a prototype ETB named ChroNe was developed. The creation and installation process of ChroN e is discussed in this paper. This paper also explores the motivation behind creating such a browser, examines existing relevant work, inspects the open-source codebase Chromium that assisted in ChroNe's development, and discusses relevant topics like ways to deliver an ETB, the capabilities of an ETB, and possible ways to defend against ETBs.
Authored by Mathew Salcedo, Mehdi Abid, Yoohwan Kim, Ju-Yeon Jo
In the recent development of the online cryptocurrency mining platform, Coinhive, numerous websites have employed “Cryptojacking.” They may need the unauthorized use of CPU resources to mine cryptocurrency and replace advertising income. Web cryptojacking technologies are the most recent attack in information security. Security teams have suggested blocking Cryptojacking scripts by using a blacklist as a strategy. However, the updating procedure of the static blacklist has not been able to promptly safeguard consumers because of the sharp rise in “Cryptojacking kidnapping”. Therefore, we propose a Cryptojacking identification technique based on analyzing the user's computer resources to combat the assault technology known as “Cryptojacking kidnapping.” Machine learning techniques are used to monitor changes in computer resources such as CPU changes. The experiment results indicate that this method is more accurate than the blacklist system and, in contrast to the blacklist system, manually updates the blacklist regularly. The misuse of online Cryptojacking programs and the unlawful hijacking of users' machines for Cryptojacking are becoming worse. In the future, information security undoubtedly addresses the issue of how to prevent Cryptojacking and abduction. The result of this study helps to save individuals from unintentionally becoming miners.
Authored by Min-Hao Wu, Jian-Hung Huang, Jian-Xin Chen, Hao-Jyun Wang, Chen-Yu Chiu
Key challenges faced in the Internet today can be enumerated as follows: (1) complex route discovery mechanisms (2) latency and instability during link or device failure recovery (3) inadequacy in extending routing and addressing to limited domains, (4) complex interworking of multiple routing protocols at border routers. Routing table sizes increase with increasing number of networks indicating a scalability issue. One approach to address this spiraling complexity and performance challenges is to start fresh and re-think Internet routing and addressing. The Expedited Internet Bypass protocol (EIBP) is such a clean slate approach. In the interim, EIBP works in parallel with IP and has no dependency on layer 3 protocols. We demonstrated EIBP for routing and forwarding in an Autonomous system (AS) in our earlier work. In this article, we demonstrate EIBP for inter-AS routing. We compare EIBP's inter-AS operations and performance to Open Shortest Path First (OSPF) and Border Gateway Protocol (BGP) deployed in an intra-AS, inter-AS communications scenario with two AS.
Authored by Nirmala Shenoy, Shreyas Chandraiah, Peter Willis
The strategy of permanently allocating a frequency band in a wireless communication network to one application has led to exceptionally low utilization of the vacant spectrum. By utilizing the unused licensed spectrum along with the unlicensed spectrum, Cognitive Radio Sensor Network (CRSNs) ensures the efficiency of spectrum management. To utilize the spectrum dynamically it is important to safeguard the spectrum sensing. Cooperative Spectrum Sensing (CSS) is recommended for this task. CSS aims to provide reliable spectrum sensing. However, there are various vulnerabilities experienced in CSS which can influence the performance of the network. In this work, the focus is on the Byzantine attack in CSS and current security solutions available to avoid the Byzantines in CRSN.
Authored by Siddarama Patil, Rajashree Rajashree, Jayashree Agarkhed
This paper investigates the secrecy outage performance of Multiple Input Multiple Output (MIMO) secondary nodes for underlay Cognitive Radio Network (CRN) over α–μ fading channel. Here, the proposed system consists of one active eavesdropper and two primary nodes each with a single antenna. The power of the secondary transmitter depends on the harvested energy from the primary transmitter to save more energy and spectrum. Moreover, a Transmit Antenna Selection (TAS) scheme is adopted at the secondary source, while the Maximal Ratio Combining (MRC) technique is employed at the secondary receiver to optimize the quality of the signal. A lower bound closed-form phrase for the secrecy outage performance is derived to demonstrate the effects of the channel parameters. In addition, numerical results illustrate that the number of source transmit antennas, destination received antenna, and the eavesdropper received antenna have significant effects on improving the secrecy performance.
Authored by Mahmoud Khodeir, Saja Alquran
Cognitive radio (CR) networks are an emerging and promising technology to improve the utilization of vacant bands. In CR networks, security is a very noteworthy domain. Two threatening attacks are primary user emulation (PUE) and spectrum sensing data falsification (SSDF). A PUE attacker mimics the primary user signals to deceive the legitimate secondary users. The SSDF attacker falsifies its observations to misguide the fusion center to make a wrong decision about the status of the primary user. In this paper, we propose a scheme based on clustering the secondary users to counter SSDF attacks. Our focus is on detecting and classifying each cluster as reliable or unreliable. We introduce two different methods using an artificial neural network (ANN) for both methods and five more classifiers such as support vector machine (SVM), random forest (RF), K-nearest neighbors (KNN), logistic regression (LR), and decision tree (DR) for the second one to achieve this goal. Moreover, we consider deterministic and stochastic scenarios with white Gaussian noise (WGN) for attack strategy. Results demonstrate that our method outperforms a recently suggested scheme.
Authored by Nazanin Parhizgar, Ali Jamshidi, Peyman Setoodeh
There has been a significant rise in the use of wireless sensor networks (WSNs) in the past few years. It is evident that WSNs operate in unlicensed spectrum bands [1]. But due to the increasing usage in unlicensed spectrum band this band is getting overcrowded. The recent development of cognitive radio technology [2, 3] has made possible the utilization of licensed spectrum band in an opportunistic manner. This paper studies an introduction to Cognitive Radio Technology, Cognitive Radio Wireless Sensor Networks, its Advantages & Challenges, Cognitive Radio Technology Applications and a comparative analysis of node clustering techniques in CWSN.
Authored by Ranjita Joon, Parul Tomar