Signals get sampled using Nyquist rate in conventional sampling method, but in compressive sensing the signals sampled below Nyquist rate by randomly taking the signal projections and reconstructing it out of very few estimations. But in case of recovering the image by utilizing compressive measurements with the help of multi-resolution grid where the image has certain region of interest (RoI) that is more important than the rest, it is not efficient. The conventional Cartesian sampling cannot give good result in motion image sensing recovery and is limited to stationary image sensing process. The proposed work gives improved results by using Radial sampling (a type of compression sensing). This paper discusses the approach of Radial sampling along with the application of Sparse Fourier Transform algorithms that helps in reducing acquisition cost and input/output overhead.
Authored by Tesu Nema, M. Parsai
Mid-infrared spectroscopic imaging (MIRSI) is an emerging class of label-free, biochemically quantitative technologies targeting digital histopathology. Conventional histopathology relies on chemical stains that alter tissue color. This approach is qualitative, often making histopathologic examination subjective and difficult to quantify. MIRSI addresses these challenges through quantitative and repeatable imaging that leverages native molecular contrast. Fourier transform infrared (FTIR) imaging, the best-known MIRSI technology, has two challenges that have hindered its widespread adoption: data collection speed and spatial resolution. Recent technological breakthroughs, such as photothermal MIRSI, provide an order of magnitude improvement in spatial resolution. However, this comes at the cost of acquisition speed, which is impractical for clinical tissue samples. This paper introduces an adaptive compressive sampling technique to reduce hyperspectral data acquisition time by an order of magnitude by leveraging spectral and spatial sparsity. This method identifies the most informative spatial and spectral features, integrates a fast tensor completion algorithm to reconstruct megapixel-scale images, and demonstrates speed advantages over FTIR imaging while providing spatial resolutions comparable to new photothermal approaches.
Authored by Mahsa Lotfollahi, Nguyen Tran, Chalapathi Gajjela, Sebastian Berisha, Zhu Han, David Mayerich, Rohith Reddy
A power amplifier(PA) is inherently nonlinear device and is used in a communication system widely. Due to the nonlinearity of PA, the communication system is hard to work well. Digital predistortion (DPD) is the way to solve this problem. Using Volterra function to fit the PA is what most DPD solutions do. However, when it comes to wideband signal, there is a deduction on the performance of the Volterra function. In this paper, we replace the Volterra function with B-spline function which performs better on fitting PA at wideband signal. And the other benefit is that the orthogonality of coding matrix A could be improved, enhancing the stability of computation. Additionally, we use compressive sampling to reduce the complexity of the function model.
Authored by Cen Liu, Laiwei Luo, Jun Wang, Chao Zhang, Changyong Pan
Communication systems across a variety of applications are increasingly using the angular domain to improve spectrum management. They require new sensing architectures to perform energy-efficient measurements of the electromagnetic environment that can be deployed in a variety of use cases. This paper presents the Directional Spectrum Sensor (DSS), a compressive sampling (CS) based analog-to-information converter (CS-AIC) that performs spectrum scanning in a focused beam. The DSS offers increased spectrum sensing sensitivity and interferer tolerance compared to omnidirectional sensors. The DSS implementation uses a multi-antenna beamforming architecture with local oscillators that are modulated with pseudo random waveforms to obtain CS measurements. The overall operation, limitations, and the influence of wideband angular effects on the spectrum scanning performance are discussed. Measurements on an experimental prototype are presented and highlight improvements over single antenna, omnidirectional sensing systems.
Authored by Petar Barac, Matthew Bajor, Peter Kinget
The camera constructed by a megahertz range intensity modulation active light source and a kilo-frame rate range fast camera based on compressive sensing (CS) technique for three-dimensional (3D) image acquisition was proposed in this research.
Authored by Quang Pham, Yoshio Hayasaki
The compressed sensing (CS) method can reconstruct images with a small amount of under-sampling data, which is an effective method for fast magnetic resonance imaging (MRI). As the traditional optimization-based models for MRI suffered from non-adaptive sampling and shallow” representation ability, they were unable to characterize the rich patterns in MRI data. In this paper, we propose a CS MRI method based on iterative shrinkage threshold algorithm (ISTA) and adaptive sparse sampling, called DSLS-ISTA-Net. Corresponding to the sampling and reconstruction of the CS method, the network framework includes two folders: the sampling sub-network and the improved ISTA reconstruction sub-network which are coordinated with each other through end-to-end training in an unsupervised way. The sampling sub-network and ISTA reconstruction sub-network are responsible for the implementation of adaptive sparse sampling and deep sparse representation respectively. In the testing phase, we investigate different modules and parameters in the network structure, and perform extensive experiments on MR images at different sampling rates to obtain the optimal network. Due to the combination of the advantages of the model-based method and the deep learning-based method in this method, and taking both adaptive sampling and deep sparse representation into account, the proposed networks significantly improve the reconstruction performance compared to the art-of-state CS-MRI approaches.
Authored by Wenwei Huang, Chunhong Cao, Sixia Hong, Xieping Gao
Scanning Transmission Electron Microscopy (STEM) offers high-resolution images that are used to quantify the nanoscale atomic structure and composition of materials and biological specimens. In many cases, however, the resolution is limited by the electron beam damage, since in traditional STEM, a focused electron beam scans every location of the sample in a raster fashion. In this paper, we propose a scanning method based on the theory of Compressive Sensing (CS) and subsampling the electron probe locations using a line hop sampling scheme that significantly reduces the electron beam damage. We experimentally validate the feasibility of the proposed method by acquiring real CS-STEM data, and recovering images using a Bayesian dictionary learning approach. We support the proposed method by applying a series of masks to fully-sampled STEM data to simulate the expectation of real CS-STEM. Finally, we perform the real data experimental series using a constrained-dose budget to limit the impact of electron dose upon the results, by ensuring that the total electron count remains constant for each image.
Authored by D. Nicholls, A. Robinson, J. Wells, A. Moshtaghpour, M. Bahri, A. Kirkland, N. Browning
Compressive radar receiver has attracted a lot of research interest due to its capability to keep balance between sub-Nyquist sampling and high resolution. In evaluating the performance of compressive time delay estimator, Cramer-Rao bound (CRB) has been commonly utilized for lower bounding the mean square error (MSE). However, behaving as a local bound, CRB is not tight in the a priori performance region. In this paper, we introduce the Ziv-Zakai bound (ZZB) methodology into compressive sensing framework, and derive a deterministic ZZB for compressive time delay estimators as a function of the compressive sensing kernel. By effectively incorporating the a priori information of the unknown time delay, the derived ZZB performs much tighter than CRB especially in the a priori performance region. Simulation results demonstrate that the derived ZZB outperforms the Bayesian CRB over a wide range of signal-to-noise ratio, where different types of a priori distribution of time delay are considered.
Authored by Zongyu Zhang, Chengwei Zhou, Chenggang Yan, Zhiguo Shi
Topic modeling algorithms from the natural language processing (NLP) discipline have been used for various applications. For instance, topic modeling for the product recommendation systems in the e-commerce systems. In this paper, we briefly reviewed topic modeling applications and then described our proposed idea of utilizing topic modeling approaches for cyber threat intelligence (CTI) applications. We improved the previous work by implementing BERTopic and Top2Vec approaches, enabling users to select their preferred pre-trained text/sentence embedding model, and supporting various languages. We implemented our proposed idea as the new topic modeling module for the Open Web Application Security Project (OWASP) Maryam: Open-Source Intelligence (OSINT) framework. We also described our experiment results using a leaked hacker forum dataset (nulled.io) to attract more researchers and open-source communities to participate in the Maryam project of OWASP Foundation.
Authored by Hatma Suryotrisongko, Hari Ginardi, Henning Ciptaningtyas, Saeed Dehqan, Yasuo Musashi
Nowadays big shopping marts are expanding their business all over the world but not all marts are fully protected with the advanced security system. Very often we come across cases where people take the things out of the mart without billing. These marts require some advanced features-based security system for them so that they can run an efficient and no-loss business. The idea we are giving here can not only be implemented in marts to enhance their security but can also be used in various other fields to cope up with the incompetent management system. Several issues of the stores like regular stock updating, placing orders for new products, replacing products that have expired can be solved with the idea we present here. We also plan on making the slow processes of billing and checking out of the mart faster and more efficient that would result in customer satisfaction.
Authored by Shubh Khandelwal, Shreya Sharma, Sarthak Vishnoi, Ms Ashi Agarwal
Artificial intelligence (AI) was engendered by the rapid development of high and new technologies, which altered the environment of business financial audits and caused problems in recent years. As the pioneers of enterprise financial monitoring, auditors must actively and proactively adapt to the new audit environment in the age of AI. However, the performances of the auditors during the adaptation process are not so favorable. In this paper, methods such as data analysis and field research are used to conduct investigations and surveys. In the process of applying AI to the financial auditing of a business, a number of issues are discovered, such as auditors' underappreciation, information security risks, and liability risk uncertainty. On the basis of the problems, related suggestions for improvement are provided, including the cultivation of compound talents, the emphasis on the value of auditors, and the development of a mechanism for accepting responsibility.
Authored by Wenfeng Xiao
Network intrusion detection technology has been a popular application technology for current network security, but the existing network intrusion detection technology in the application process, there are problems such as low detection efficiency, low detection accuracy and other poor detection performance. To solve the above problems, a new treatment combining artificial intelligence with network intrusion detection is proposed. Artificial intelligence-based network intrusion detection technology refers to the application of artificial intelligence techniques, such as: neural networks, neural algorithms, etc., to network intrusion detection, and the application of these artificial intelligence techniques makes the automatic detection of network intrusion detection models possible.
Authored by Chaofan Lu
Artificial intelligence (AI) and machine learning (ML) have been used in transforming our environment and the way people think, behave, and make decisions during the last few decades [1]. In the last two decades everyone connected to the Internet either an enterprise or individuals has become concerned about the security of his/their computational resources. Cybersecurity is responsible for protecting hardware and software resources from cyber attacks e.g. viruses, malware, intrusion, eavesdropping. Cyber attacks either come from black hackers or cyber warfare units. Artificial intelligence (AI) and machine learning (ML) have played an important role in developing efficient cyber security tools. This paper presents Latest Cyber Security Tools Based on Machine Learning which are: Windows defender ATP, DarckTrace, Cisco Network Analytic, IBM QRader, StringSifter, Sophos intercept X, SIME, NPL, and Symantec Targeted Attack Analytic.
Authored by Taher Ghazal, Mohammad Hasan, Raed Zitar, Nidal Al-Dmour, Waleed Al-Sit, Shayla Islam
Document scanning aims to transfer the captured photographs documents into scanned document files. However, current methods based on traditional or key point detection have the problem of low detection accuracy. In this paper, we were the first to propose a document processing system based on semantic segmentation. Our system uses OCRNet to segment documents. Then, perspective transformation and other post-processing algorithms are used to obtain well-scanned documents based on the segmentation result. Meanwhile, we optimized OCRNet's loss function and reached 97.25 MIoU on the test dataset.
Authored by Ziqi Shan, Yuying Wang, Shunzhong Wei, Xiangmin Li, Haowen Pang, Xinmei Zhou
The latest, modern security camera systems record numerous data at once. With the utilization of artificial intelligence, these systems can even compose an online attendance register of students present during the lectures. Data is primarily recorded on the hard disk of the NVR (Network Video Recorder), and in the long term, it is recommended to save the data in the blockchain. The purpose of the research is to demonstrate how university security cameras can be securely connected to the blockchain. This would be important for universities as this is sensitive student data that needs to be protected from unauthorized access. In my research, as part of the practical implementation, I therefore also use encryption methods and data fragmentation, which are saved at the nodes of the blockchain. Thus, even a DDoS (Distributed Denial of Service) type attack may be easily repelled, as data is not concentrated on a single, central server. To further increase security, it is useful to constitute a blockchain capable of its own data storage at the faculty itself, rather than renting data storage space, so we, ourselves may regulate the conditions of operation, and the policy of data protection. As a practical part of my research, therefore, I created a blockchain called UEDSC (Universities Data Storage Chain) where I saved the student's data.
Authored by Krisztián Bálint
Vulnerability assessment is an important process for network security. However, most commonly used vulnerability assessment methods still rely on expert experience or rule-based automated scripts, which are difficult to meet the security requirements of increasingly complex network environment. In recent years, although scientists and engineers have made great progress on artificial intelligence in both theory and practice, it is a challenging to manufacture a mature high-quality intelligent products in the field of network security, especially in penetration testing based vulnerability assessment for enterprises. Therefore, in order to realize the intelligent penetration testing, Vul.AI with its rich experience in cyber attack and defense for many years has designed and developed a set of intelligent penetration and attack simulation system Ai.Scan, which is based on attack chain, knowledge graph and related evaluation algorithms. In this paper, the realization principle, main functions and application scenarios of Ai.Scan are introduced in detail.
Authored by Wei Hao, Chuanbao Shen, Xing Yang, Chao Wang
The heterogeneity of network traffic features brings quantitative calculation problems to the matching between network data. In order to solve the above fuzzy matching problem between the heterogeneous network feature data, a quantitative matching method for network traffic features is proposed in this paper. By constructing the numerical expression method of network traffic features, the numerical expression of key features of network data is realized. By constructing the suitable section calculation methods for the similarity of different network traffic features, the personalized quantitative matching for heterogeneous network data features is realized according to the actual meaning of different features. By defining the weight of network traffic features, the quantitative importance value of different features is realized. The weighted sum mathematical method is used to accurately calculate the overall similarity value between network data. The effectiveness of the proposed method through experiments is verified. The experimental results show that the proposed matching method can be used to calculate the similarity value between network data, and the quantitative calculation purpose of network traffic feature matching with heterogeneous features is realized.
Authored by Zhihui Hu, Caiming Liu
This paper proposes a vehicle violation determination system based on improved YOLOv5 algorithm, which performs vehicle violation determination on a single unit at a single intersection, and displays illegal photos and license plates of illegal vehicles on the webpage. Using the network structure of YOLOv5, modifying the vector output of the Head module, and modifying the rectangular frame detection of the target object to quadrilateral detection, the system can identify vehicles and lane lines with more flexibilities.
Authored by Xiaohan Sun, Yanju Zhang, Xiaobin Huang, Fangzhou Wang, Zugang Mo
With the development of computer technology and information security technology, computer networks will increasingly become an important means of information exchange, permeating all areas of social life. Therefore, recognizing the vulnerabilities and potential threats of computer networks as well as various security problems that exist in reality, designing and researching computer quality architecture, and ensuring the security of network information are issues that need to be resolved urgently. The purpose of this article is to study the design and realization of information security technology and computer quality system structure. This article first summarizes the basic theory of information security technology, and then extends the core technology of information security. Combining the current status of computer quality system structure, analyzing the existing problems and deficiencies, and using information security technology to design and research the computer quality system structure on this basis. This article systematically expounds the function module data, interconnection structure and routing selection of the computer quality system structure. And use comparative method, observation method and other research methods to design and research the information security technology and computer quality system structure. Experimental research shows that when the load of the computer quality system structure studied this time is 0 or 100, the data loss rate of different lengths is 0, and the correct rate is 100, which shows extremely high feasibility.
Authored by Yuanyuan Hu, Xiaolong Cao, Guoqing Li
This paper has a new network security evaluation method as an absorbing Markov chain-based assessment method. This method is different from other network security situation assessment methods based on graph theory. It effectively refinement issues such as poor objectivity of other methods, incomplete consideration of evaluation factors, and mismatching of evaluation results with the actual situation of the network. Firstly, this method collects the security elements in the network. Then, using graph theory combined with absorbing Markov chain, the threat values of vulnerable nodes are calculated and sorted. Finally, the maximum possible attack path is obtained by blending network asset information to determine the current network security status. The experimental results prove that the method fully considers the vulnerability and threat node ranking and the specific case of system network assets, which makes the evaluation result close to the actual network situation.
Authored by Hongbin Gao, Shangxing Wang, Hongbin Zhang, Bin Liu, Dongmei Zhao, Zhen Liu
As the cyberspace structure becomes more and more complex, the problems of dynamic network space topology, complex composition structure, large spanning space scale, and a high degree of self-organization are becoming more and more important. In this paper, we model the cyberspace elements and their dependencies by combining the knowledge of graph theory. Layer adopts a network space modeling method combining virtual and real, and level adopts a spatial iteration method. Combining the layer-level models into one, this paper proposes a fast modeling method for cyberspace security structure model with network connection relationship, hierarchical relationship, and vulnerability information as input. This method can not only clearly express the individual vulnerability constraints in the network space, but also clearly express the hierarchical relationship of the complex dependencies of network individuals. For independent network elements or independent network element groups, it has flexibility and can greatly reduce the computational complexity in later applications.
Authored by Yuwen Zhu, Lei Yu
Aiming at the single hopping strategy in the terminal information hopping active defense technology, a variety of heterogeneous hopping modes are introduced into the terminal information hopping system, the definition of the terminal information is expanded, and the adaptive adjustment of the hopping strategy is given. A network adversarial training simulation system is researched and designed, and related subsystems are discussed from the perspective of key technologies and their implementation, including interactive adversarial training simulation system, adversarial training simulation support software system, adversarial training simulation evaluation system and adversarial training Mock Repository. The system can provide a good environment for network confrontation theory research and network confrontation training simulation, which is of great significance.
Authored by Man Wang
Online information security labs intended for training and facilitating hands-on learning for distance students at master’s level are not easy to develop and administer. This research focuses on analyzing the results of a DSR project for design, development, and implementation of an InfoSec lab. This research work contributes to the existing research by putting forth an initial outline of a generalized model for design theory for InfoSec labs aimed at hands-on education of students in the field of information security. The anatomy of design theory framework is used to analyze the necessary components of the anticipated design theory for InfoSec labs in future.
Authored by Sarfraz Iqbal
The digital transformation brought on by 5G is redefining current models of end-to-end (E2E) connectivity and service reliability to include security-by-design principles necessary to enable 5G to achieve its promise. 5G trustworthiness highlights the importance of embedding security capabilities from the very beginning while the 5G architecture is being defined and standardized. Security requirements need to overlay and permeate through the different layers of 5G systems (physical, network, and application) as well as different parts of an E2E 5G architecture within a risk-management framework that takes into account the evolving security-threats landscape. 5G presents a typical use-case of wireless communication and computer networking convergence, where 5G fundamental building blocks include components such as Software Defined Networks (SDN), Network Functions Virtualization (NFV) and the edge cloud. This convergence extends many of the security challenges and opportunities applicable to SDN/NFV and cloud to 5G networks. Thus, 5G security needs to consider additional security requirements (compared to previous generations) such as SDN controller security, hypervisor security, orchestrator security, cloud security, edge security, etc. At the same time, 5G networks offer security improvement opportunities that should be considered. Here, 5G architectural flexibility, programmability and complexity can be harnessed to improve resilience and reliability. The working group scope fundamentally addresses the following: •5G security considerations need to overlay and permeate through the different layers of the 5G systems (physical, network, and application) as well as different parts of an E2E 5G architecture including a risk management framework that takes into account the evolving security threats landscape. •5G exemplifies a use-case of heterogeneous access and computer networking convergence, which extends a unique set of security challenges and opportunities (e.g., related to SDN/NFV and edge cloud, etc.) to 5G networks. Similarly, 5G networks by design offer potential security benefits and opportunities through harnessing the architecture flexibility, programmability and complexity to improve its resilience and reliability. •The IEEE FNI security WG's roadmap framework follows a taxonomic structure, differentiating the 5G functional pillars and corresponding cybersecurity risks. As part of cross collaboration, the security working group will also look into the security issues associated with other roadmap working groups within the IEEE Future Network Initiative.
Authored by Ashutosh Dutta, Eman Hammad, Michael Enright, Fawzi Behmann, Arsenia Chorti, Ahmad Cheema, Kassi Kadio, Julia Urbina-Pineda, Khaled Alam, Ahmed Limam, Fred Chu, John Lester, Jong-Geun Park, Joseph Bio-Ukeme, Sanjay Pawar, Roslyn Layton, Prakash Ramchandran, Kingsley Okonkwo, Lyndon Ong, Marc Emmelmann, Omneya Issa, Rajakumar Arul, Sireen Malik, Sivarama Krishnan, Suresh Sugumar, Tk Lala, Matthew Borst, Brad Kloza, Gunes Kurt
Cloud security has become a serious challenge due to increasing number of attacks day-by-day. Intrusion Detection System (IDS) requires an efficient security model for improving security in the cloud. This paper proposes a game theory based model, named as Game Theory Cloud Security Deep Neural Network (GT-CSDNN) for security in cloud. The proposed model works with the Deep Neural Network (DNN) for classification of attack and normal data. The performance of the proposed model is evaluated with CICIDS-2018 dataset. The dataset is normalized and optimal points about normal and attack data are evaluated based on the Improved Whale Algorithm (IWA). The simulation results show that the proposed model exhibits improved performance as compared with existing techniques in terms of accuracy, precision, F-score, area under the curve, False Positive Rate (FPR) and detection rate.
Authored by Ashima Jain, Khushboo Tripathi, Aman Jatain, Manju Chaudhary