This paper presents a novel authentication method based on a distributed version of Kerberos for UAVs. One of the major problems of UAVs in recent years has been cyber-attacks which allow attackers to control the UAV or access its information. The growing use of UAVs has encouraged us to investigate the methods of their protection especially authentication of their users. In the past, the Kerberos system was rarely used for authentication in UAV systems. In our proposed method, based on a distributed version of Kerberos, we can authenticate multiple ground stations, users, and controllers for one or more UAVs. This method considers most of the security aspects to protect UAV systems mainly in the authentication phase and improves the security of UAVs and ground control stations and their communications considerably.
Authored by Seyed Ayati, Hamid Naji
An often overlooked but equally important aspect of unmanned aerial system (UAS) design is the security of their networking protocols and how they deal with cyberattacks. In this context, cyberattacks are malicious attempts to monitor or modify incoming and outgoing data from the system. These attacks could target anywhere in the system where a transfer of data occurs but are most common in the transfer of data between the control station and the UAS. A compromise in the networking system of a UAS could result in a variety of issues including increased network latency between the control station and the UAS, temporary loss of control over the UAS, or a complete loss of the UAS. A complete loss of the system could result in the UAS being disabled, crashing, or the attacker overtaking command and control of the platform, all of which would be done with little to no alert to the operator. Fortunately, the majority of higher-end, enterprise, and government UAS platforms are aware of these threats and take actions to mitigate them. However, as the consumer market continues to grow and prices continue to drop, network security may be overlooked or ignored in favor of producing the lowest cost product possible. Additionally, these commercial off-the-shelf UAS often use uniform, standardized frequency bands, autopilots, and security measures, meaning a cyberattack could be developed to affect a wide variety of models with minimal changes. This paper will focus on a low-cost educational-use UAS and test its resilience to a variety of cyberattack methods, including man-in-the-middle attacks, spoofing of data, and distributed denial-of-service attacks. Following this experiment will be a discussion of current cybersecurity practices for counteracting these attacks and how they can be applied onboard a UAS. Although in this case the cyberattacks were tested against a simpler platform, the methods discussed are applicable to any UAS platform attempting to defend against such cyberattack methods.
Authored by Jamison Colter, Matthew Kinnison, Alex Henderson, Stephen Schlager, Samuel Bryan, Katherine O’Grady, Ashlie Abballe, Steven Harbour
Ubiquitous environment embedded with artificial intelligent consist of heterogenous smart devices communicating each other in several context for the computation of requirements. In such environment the trust among the smart users have taken as the challenge to provide the secure environment during the communication in the ubiquitous region. To provide the secure trusted environment for the users of ubiquitous system proposed approach aims to extract behavior of smart invisible entities by retrieving their behavior of communication in the network and applying the recommendation-based filters using Deep learning (RBF-DL). The proposed model adopts deep learning-based classifier to classify the unfair recommendation with fair ones to have a trustworthy ubiquitous system. The capability of proposed model is analyzed and validated by considering different attacks and additional feature of instances in comparison with generic recommendation systems.
Authored by Jayashree Agarkhed, Geetha Pawar
Based on the analysis of material performance data management requirements, a network-sharing scheme of material performance data is proposed. A material performance database system including material performance data collection, data query, data analysis, data visualization, data security management and control modules is designed to solve the problems of existing material performance database network sharing, data fusion and multidisciplinary support, and intelligent services Inadequate standardization and data security control. This paper adopts hierarchical access control strategy. After logging into the material performance database system, users can standardize the material performance data and store them to form a shared material performance database. The standardized material performance data of the database system shall be queried and shared under control according to the authority. Then, the database system compares and analyzes the material performance data obtained from controlled query sharing. Finally, the database system visualizes the shared results of controlled queries and the comparative analysis results obtained. The database system adopts the MVC architecture based on B/S (client/server) cross platform J2EE. The Third-party computing platforms are integrated in System. Users can easily use material performance data and related services through browsers and networks. MongoDB database is used for data storage, supporting distributed storage and efficient query.
Authored by Cuifang Zheng, Jiaju Wu, Linggang Kong, Shijia Kang, Zheng Cheng, Bin Luo
This paper designs a network security protection system based on artificial intelligence technology from two aspects of hardware and software. The system can simultaneously collect Internet public data and secret-related data inside the unit, and encrypt it through the TCM chip solidified in the hardware to ensure that only designated machines can read secret-related materials. The data edge-cloud collaborative acquisition architecture based on chip encryption can realize the cross-network transmission of confidential data. At the same time, this paper proposes an edge-cloud collaborative information security protection method for industrial control systems by combining end-address hopping and load balancing algorithms. Finally, using WinCC, Unity3D, MySQL and other development environments comprehensively, the feasibility and effectiveness of the system are verified by experiments.
Authored by Xiuyun Lu, Wenxing Zhao, Yuquan Zhu
Due to Bitcoin's innovative block structure, it is both immutable and decentralized, making it a valuable tool or instrument for changing current financial systems. However, the appealing features of Bitcoin have also drawn the attention of cybercriminals. The Bitcoin scripting system allows users to include up to 80 bytes of arbitrary data in Bitcoin transactions, making it possible to store illegal information in the blockchain. This makes Bitcoin a powerful tool for obfuscating information and using it as the command-and-control infrastructure for blockchain-based botnets. On the other hand, Blockchain offers an intriguing solution for IoT security. Blockchain provides strong protection against data tampering, locks Internet of Things devices, and enables the shutdown of compromised devices within an IoT network. Thus, blockchain could be used both to attack and defend IoT networks and communications.
Authored by Aditya Vikram, Sumit Kumar, Mohana
The spread of Internet of Things (IoT) devices in our homes, healthcare, industries etc. are more easily infiltrated than desktop computers have resulted in a surge in botnet attacks based on IoT devices, which may jeopardize the IoT security. Hence, there is a need to detect these attacks and mitigate the damage. Existing systems rely on supervised learning-based intrusion detection methods, which require a large labelled data set to achieve high accuracy. Botnets are onerous to detect because of stealthy command & control protocols and large amount of network traffic and hence obtaining a large labelled data set is also difficult. Due to unlabeled Network traffic, the supervised classification techniques may not be used directly to sort out the botnet that is responsible for the attack. To overcome this limitation, a semi-supervised Deep Learning (DL) approach is proposed which uses Semi-supervised GAN (SGAN) for IoT botnet detection on N-BaIoT dataset which contains "Bashlite" and "Mirai" attacks along with their sub attacks. The results have been compared with the state-of-the-art supervised solutions and found efficient in terms of better accuracy which is 99.89% in binary classification and 59% in multi classification on larger dataset, faster and reliable model for IoT Botnet detection.
Authored by Kumar Saurabh, Ayush Singh, Uphar Singh, O.P. Vyas, Rahamatullah Khondoker
Requirement Elicitation is a key phase in software development. The fundamental goal of security requirement elicitation is to gather appropriate security needs and policies from stakeholders or organizations. The majority of systems fail due to incorrect elicitation procedures, affecting development time and cost. Security requirement elicitation is a major activity of requirement engineering that requires the attention of developers and other stakeholders. To produce quality requirements during software development, the authors suggested a methodology for effective requirement elicitation. Many challenges surround requirement engineering. These concerns can be connected to scope, preconceptions in requirements, etc. Other difficulties include user confusion over technological specifics, leading to confusing system aims. They also don't realize that the requirements are dynamic and prone to change. To protect the privacy of medical images, the proposed image cryptosystem uses a CCM-generated chaotic key series to confuse and diffuse them. A hexadecimal pre-processing technique is used to increase the security of color images utilising a hyper chaos-based image cryptosystem. Finally, a double-layered security system for biometric photos is built employing chaos and DNA cryptography.
Authored by Fahd Al-Qanour, Sivaram Rajeyyagari
User privacy is an attractive and valuable task to the success of blockchain systems. However, user privacy protection's performance and data capacity have not been well studied in existing access control models of blockchain systems because of traceability and openness of the P2P network. This paper focuses on investigating performance and data capacity from a blockchain infrastructure perspective, which adds secondary encryption to shield confidential information in a non-invasive way. First, we propose an efficient asymmetric encryption scheme by combining homomorphic encryption and state-of-the-art multi-signature key aggregation to preserve privacy. Second, we use smart contracts and CA infrastructure to achieve attribute-based access control. Then, we use the non-interactive zero-knowledge proof scheme to achieve secondary confidentiality explicitly. Finally, experiments show our scheme succeeds better performance in data capacity and system than other schemes. This scheme improves availability and robust scalability, solves the problem of multi-signature key distribution and the unlinkability of transactions. Our scheme has established a sound security cross-chain system and privacy confidentiality mechanism and that has more excellent performance and higher system computing ability than other schemes.
Authored by Xiling Li, Zhaofeng Ma, Shoushan Luo
The emergence of smart cars has revolutionized the automotive industry. Today's vehicles are equipped with different types of electronic control units (ECUs) that enable autonomous functionalities like self-driving, self-parking, lane keeping, and collision avoidance. The ECUs are connected to each other through an in-vehicle network, named Controller Area Network. In this talk, we will present the different cyber attacks that target autonomous vehicles and explain how an intrusion detection system (IDS) using machine learning can play a role in securing the Controller Area Network. We will also discuss the main research contributions for the security of autonomous vehicles. Specifically, we will describe our IDS, named Histogram-based Intrusion Detection and Filtering framework. Next, we will talk about the machine learning explainability issue that limits the acceptability of machine learning in autonomous vehicles, and how it can be addressed using our novel intrusion detection system based on rule extraction methods from Deep Neural Networks.
Authored by Abdelwahid Derhab
International regulations specified in WP.29 and international standards specified in ISO/SAE 21434 require security operations such as cyberattack detection and incident responses to protect vehicles from cyberattacks. To meet these requirements, many vehicle manufacturers are planning to install Intrusion Detection Systems (IDSs) in the Controller Area Network (CAN), which is a primary component of in-vehicle networks, in the coming years. Besides, many vehicle manufacturers and information security companies are developing technologies to identify attack paths related to IDS alerts to respond to cyberattacks appropriately and quickly. To develop the IDSs and the technologies to identify attack paths, it is essential to grasp normal communications performed on in-vehicle networks. Thus, our study aims to develop a technology that can easily grasp normal communications performed on in-vehicle networks. In this paper, we propose the first message source identification method that easily identifies CAN-IDs used by each Electronic Control Unit (ECU) connected to the CAN for message transmissions. We realize the proposed method by utilizing diagnostic communications and an IDS installed in the CAN (CAN-IDS). We evaluate the proposed method using an ECU installed in an actual vehicle and four kinds of simulated CAN-IDSs based on typical existing intrusion detection methods for the CAN. The evaluation results show that the proposed method can identify the CAN-ID used by the ECU for CAN message transmissions if a suitable simulated CAN-IDS for the proposed method is connected to the vehicle.
Authored by Masaru Matsubayashi, Takuma Koyama, Masashi Tanaka, Yasushi Okano, Asami Miyajima
Modern connected vehicles are equipped with a large number of sensors, which enable a wide range of services that can improve overall traffic safety and efficiency. However, remote access to connected vehicles also introduces new security issues affecting both inter and intra-vehicle communications. In fact, existing intra-vehicle communication systems, such as Controller Area Network (CAN), lack security features, such as encryption and secure authentication for Electronic Control Units (ECUs). Instead, Original Equipment Manufacturers (OEMs) seek security through obscurity by keeping secret the proprietary format with which they encode the information. Recently, it has been shown that the reuse of CAN frame IDs can be exploited to perform CAN bus reverse engineering without physical access to the vehicle, thus raising further security concerns in a connected environment. This work investigates whether anonymizing the frames of each newly released vehicle is sufficient to prevent CAN bus reverse engineering based on frame ID matching. The results show that, by adopting Machine Learning techniques, anonymized CAN frames can still be fingerprinted and identified in an unknown vehicle with an accuracy of up to 80 %.
Authored by Alessio Buscemi, Ion Turcanu, German Castignani, Thomas Engel
Intrusion detection for Controller Area Network (CAN) protocol requires modern methods in order to compete with other electrical architectures. Fingerprint Intrusion Detection Systems (IDS) provide a promising new approach to solve this problem. By characterizing network traffic from known ECUs, hazardous messages can be discriminated. In this article, a modified version of Fingerprint IDS is employed utilizing both step response and spectral characterization of network traffic via neural network training. With the addition of feature set reduction and hyperparameter tuning, this method accomplishes a 99.4% detection rate of trusted ECU traffic.
Authored by Kunaal Verma, Mansi Girdhar, Azeem Hafeez, Selim Awad
This paper presents a case study for designing and implementing a secure communication protocol over a Controller Area Network (CAN). The CAN based protocol uses a hybrid encryption method on a relatively simple hardware / software environment. Moreover, the blockchain technology is proposed as a working solution to provide an extra secure level of the proposed system.
Authored by Adrian-Florin Croitoru, Florin Stîngă, Marius Marian
Controller Area Network with Flexible Data-rate(CAN FD) has the advantages of high bandwidth and data field length to meet the higher communication requirements of parallel in-vehicle applications. If the CAN FD lacking the authentication security mechanism is used, it is easy to make it suffer from masquerade attack. Therefore, a two-stage method based on message authentication is proposed to enhance the security of it. In the first stage, an anti-exhaustive message exchange and comparison algorithm is proposed. After exchanging the message comparison sequence, the lower bound of the vehicle application and redundant message space is obtained. In the second stage, an enhanced round accumulation algorithm is proposed to enhance security, which adds Message Authentication Codes(MACs) to the redundant message space in a way of fewer accumulation rounds. Experimental examples show that the proposed two-stage approach enables both small-scale and large-scale parallel in-vehicle applications security to be enhanced. Among them, in the Adaptive Cruise Control Application(ACCA), when the laxity interval is 1300μs, the total increased MACs is as high as 388Bit, and the accumulation rounds is as low as 40 rounds.
Authored by Lu Zhu, Yehua Wei, Haoran Jiang, Jing Long
In this work, the security sliding mode control issue is studied for interval type-2 (IT2) fuzzy systems under the unreliable network. The deception attacks and the denial-of-service (DoS) attacks may occur in the sensor-controller channels to affect the transmission of the system state, and these attacks are described via two independent Bernoulli stochastic variables. By adopting the compensation strategy and utilizing the available state, the new membership functions are constructed to design the fuzzy controller with the different fuzzy rules from the fuzzy model. Then, under the mismatched membership function, the designed security controller can render the closed-loop IT2 fuzzy system to be stochastically stable and the sliding surface to be reachable. Finally, the simulation results verify the security control scheme.
Authored by Yekai Yang, Bei Chen, Kun Xu, Yugang Niu
This paper presents a study on the "Dynamic Load Altering Attacks" (D-LAAs), their effects on the dynamics of a transmission network, and provides a robust control protection scheme, based on polytopic uncertainties, invariance theory, Lyapunov arguments and graph theory. The proposed algorithm returns an optimal Energy Storage Systems (ESSs) placement, that minimizes the number of ESSs placed in the network, together with the associated control law that can robustly stabilize against D-LAAs. The paper provides a contextualization of the problem and a modelling approach for power networks subject to D-LAAs, suitable for the designed robust control protection scheme. The paper also proposes a reference scenario for the study of the dynamics of the control actions and their effects in different cases. The approach is evaluated by numerical simulations on large networks.
Authored by Roberto Germanà, Alessandro Giuseppi, Antonio Pietrabissa, Alessandro Di Giorgio
National cultural security has existed since ancient times, but it has become a focal proposition in the context of the times and real needs. From the perspective of national security, national cultural security is an important part of national security, and it has become a strategic task that cannot be ignored in defending national security. Cultural diversity and imbalance are the fundamental prerequisites for the existence of national cultural security. Finally, the artificial intelligence algorithm is used as the theoretical basis for this article, the connotation and characteristics of China's national cultural security theory; Xi Jinping's "network view"; network ideological security view. The fourth part is the analysis of the current cultural security problems, hazards and their root causes in our country.
Authored by Weiqiang Wang
With the rapid development of Internet Technology in recent years, the demand for security support for complex applications is becoming stronger and stronger. Intel Software Guard Extensions (Intel SGX) is created as an extension of Intel Systems to enhance software security. Intel SGX allows application developers to create so-called enclave. Sensitive application code and data are encapsulated in Trusted Execution Environment (TEE) by enclave. TEE is completely isolated from other applications, operating systems, and administrative programs. Enclave is the core structure of Intel SGX Technology. Enclave supports multi-threading. Thread Control Structure (TCS) stores special information for restoring enclave threads when entering or exiting enclave. Each execution thread in enclave is associated with a TCS. This paper analyzes and verifies the possible security risks of enclave under concurrent conditions. It is found that in the case of multithread concurrency, a single enclave cannot resist flooding attacks, and related threads also throw TCS exception codes.
Authored by Tong Zhang, Xiangjie Cui, Yichuan Wang, Yanning Du, Wen Gao
The security and reliability of power grid dispatching system is the basis of the stable development of the whole social economy. With the development of information, computer science and technology, communication technology, and network technology, using more advanced intelligent technology to improve the performance of security and reliability of power grid dispatching system has important research value and practical significance. In order to provide valuable references for relevant researchers and for the construction of future power system related applications. This paper summarizes the latest technical status of attribute encryption and hierarchical identity encryption methods, and introduces the access control method based on attribute and hierarchical identity encryption, the construction method of attribute encryption scheme, revocable CP-ABE scheme and its application in power grid data security access control. Combined with multi authorization center encryption, third-party trusted entity and optimized encryption algorithm, the parallel access control algorithm of hierarchical identity and attribute encryption and its application in power grid data security access control are introduced.
Authored by Tongwen Wang, Jinhui Ma, Xincun Shen, Hong Zhang
In this paper, a sliding mode control (SMC) based on nonlinear disturbance observer and intermittent control is proposed to maximize the security of cyber-physical systems (CPSs), aiming at the cyber-attacks and physical uncertainties of cyber-physical systems. In the CPSs, the transmission of information data and control signals to the remote end through the network may lead to cyber attacks, and there will be uncertainties in the physical system. Therefore, this paper establishes a CPSs model that includes network attacks and physical uncertainties. Secondly, according to the analysis of the mathematical model, an adaptive SMC based on disturbance observer and intermittent control is designed to keep the CPSs stable in the presence of network attacks and physical uncertainties. In this strategy, the adaptive strategy suppresses the controller The chattering of the output. Intermittent control breaks the limitations of traditional continuous control to ensure efficient use of resources. Finally, to prove the control performance of the controller, numerical simulation results are given.
Authored by Xiao Gao
The excess buffering of packets in network elements, also referred to as bufferbloat, results in high latency. Considering the requirements of traffic generated by video conferencing systems like Zoom, cloud rendered gaming platforms like Google Stadia, or even video streaming services such as Netflix, Amazon Prime and YouTube, timeliness of such traffic is important. Ensuring low latency to IP flows with a high throughput calls for the application of Active Queue Management (AQM) schemes. This introduces yet another problem as the co-existence of scalable and classic congestion controls leads to the starvation of classic TCP flows. Technologies such as Low Latency Low Loss Scalable Throughput (L4S) and the corresponding dual queue coupled AQM, DualPI2, provide a robust solution to these problems. However, their deployment on hardware targets such as programmable switches is quite challenging due to the complexity of algorithms and architectural constraints of switching ASICs. In this study, we provide proof of concept implementations of two AQMs that enable the co-existence of scalable and traditional TCP traffic, namely DualPI2 and the preceding single-queue PI2 AQM, on an Intel Tofino switching ASIC. Given the fixed operation of the switch’s traffic manager, we investigate to what extent it is possible to implement a fully RFC-compliant version of the two AQMs on the Tofino ASIC. The study shows that an appropriate split between control and data plane operations is required while we also exploit fixed functionality of the traffic manager to support such solutions.
Authored by Gergő Gombos, Maurice Mouw, Sándor Laki, Chrysa Papagianni, Koen De Schepper
Dual Connectivity is a key approach to achieving optimization of throughput and latency in heterogeneous networks. Originally a technique introduced by the 3rd Generation Partnership Project (3GPP) for terrestrial communications, it is not been widely explored in satellite systems. In this paper, Dual Connectivity is implemented in a multi-orbital satellite network, where a network model is developed by employing the diversity gains from Dual Connectivity and Carrier Aggregation for the enhancement of satellite uplink capacity. An introduction of software defined network controller is performed at the network layer coupled with a carefully designed hybrid resource allocation algorithm which is implemented strategically. The algorithm performs optimum dynamic flow control and traffic steering by considering the availability of resources and the channel propagation information of the orbital links to arrive at a resource allocation pattern suitable in enhancing uplink system performance. Simulation results are shown to evaluate the achievable gains in throughput and latency; in addition we provide useful insight in the design of multi-orbital satellite networks with implementable scheduler design.
Authored by Michael Dazhi, Hayder Al-Hraishawi, Mysore Shankar, Symeon Chatzinotas
The security control problem of cyber-physical system (CPS) under actuator attacks is studied in the paper. Considering the strict-feedback cyber-physical systems with external disturbance, a security control scheme is proposed by combining backstepping method and super-twisting sliding mode technology when the transmission control input signal of network layer is under false data injection(FDI) attack. Firstly, the unknown nonlinear function of the CPS is identified by Radial Basis Function Neural Network. Secondly, the backstepping method and super-twisting sliding mode algorithm are combined to eliminate the influence of actuator attack and ensure the robustness of the control system. Then, by Lyapunov stability theory, it is proved that the proposed control scheme can ensure that all signals in the closed-loop system are semi-global and ultimately uniformly bounded. Finally, the effectiveness of the proposed control scheme is verified by the inverted pendulum simulation.
Authored by Dahua Li, Dapeng Li, Junjie Liu, Yu Song, Yuehui Ji
Security of Internet of Things (IoT) is one of the most prevalent crucial challenges ever since. The diversified devices and their specification along with resource constrained protocols made it more complex to address over all security need of IoT. Denial of Service attacks, being the most powerful and frequent attacks on IoT have been considered so forth. However, the attack happens on multiple layers and thus a single detection technique for each layer is not sufficient and effective to combat these attacks. Current study focuses on cross layer intrusion detection system (IDS) for detection of multiple Denial of Service (DoS) attacks. Presently, two attacks at Transmission Control Protocol (TCP) and Routing Protocol are considered for Low power and Lossy Networks (RPL) and a neural network-based IDS approach has been proposed for the detection of such attacks. The attacks are simulated on NetSim and detection and the performance shows up to 80% detection probabilities.
Authored by Ayushi Kharkwal, Saumya Mishra, Aditi Paul